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Abstract 56 
 57 

Patient heterogeneity represents a significant challenge for both individual patient management and 58 
clinical trial design, especially in the context of complex diseases. Most existing clinical classifications 59 
are based on scores built to predict patients’ outcomes. These classical methods may thus miss 60 
features that contribute to heterogeneity without necessarily translating into prognostic 61 
implications. 62 
To address patient heterogeneity at hospital admission, we developed ClustALL, a computational 63 
pipeline designed to handle common clinical data challenges such as mixed data types, missing 64 
values, and collinearity. ClustALL also facilitates the unsupervised identification of multiple and 65 
robust stratifications. We applied ClustALL to a prospective European multicentre cohort of patients 66 
with acutely decompensated cirrhosis (AD) (n=766), a highly heterogeneous disease. ClustALL 67 
identified five robust stratifications for patients with AD, using only data at hospital admission. All 68 
stratifications included markers of impaired liver function and number of organ dysfunction or 69 
failure, and most included precipitating events. When focusing on one of these stratifications, 70 
patients were categorized into three clusters characterized by typical clinical features but also having 71 
a prognostic value. Re-assessment of patient stratification during follow-up delineated patients’ 72 
outcomes, with further improvement of the prognostic value of the stratification. We validated 73 
these findings in an independent prospective multicentre cohort of patients from Latin America 74 
(n=580).  75 
In conclusion, this study developed ClustALL, a novel and robust stratification method capable of 76 
addressing challenges tied to intricate clinical data and applicable to complex diseases. By applying 77 
ClustALL to patients with AD, we identified three patient clusters, offering insights that could guide 78 
future clinical trial design.  79 
  80 

  81 
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Introduction 82 

Heterogeneity is a prevalent phenomenon observed in numerous diseases, including various types of 83 
cancer (1), autoimmune conditions like multiple sclerosis (2), and diabetes (3)). This becomes 84 
especially critical in diseases where environmental and lifestyle factors play a significant role. Acutely 85 
decompensated cirrhosis, which refers to the rapid development of overt ascites, overt hepatic 86 
encephalopathy, variceal haemorrhage, or any combination of these disorders, which often leads to 87 
nonelective admission to the hospital of patients who were previously stable (4), exemplifies 88 
significant inter-individual variability. It encompasses a range of causes of cirrhosis, comorbidities, 89 
precipitating events, clinical presentations, and outcomes (4). This clinical heterogeneity poses a 90 
considerable challenge as it likely accounts for the diverse responses to treatment and outcomes 91 
observed in these patients (5). Therefore, we reasoned that analysing a large population of patients 92 
with acutely decompensated cirrhosis should allow us to develop stratification tools.  93 

 94 
A major tool for the characterization of patient heterogeneity is the identification of patient 95 
subtypes, also defined as patient stratification. Importantly, the World Health Organization has 96 
acknowledged patient stratification as a valuable approach for enhancing population health 97 
management and providing better-tailored services (6). In conceptual terms, patient stratification 98 
can be described as the process of grouping or clustering patients based on specific characteristics or 99 
patterns without relying on labelled data or information about future outcomes (7). Therefore, 100 
contrary to scores developed using classical statistical approaches based on the clinical course, 101 
stratification can capture features explaining patients’ heterogeneity independently of their 102 
association with patient outcomes. 103 
 104 
Numerous attempts have been made to identify subgroups within clinical datasets (7–9). However, 105 
the lack of a universally applicable approach poses a significant challenge in the field of clustering 106 
analysis. Although there have been advancements beyond the classical k-means and hierarchical 107 
clustering methods, no general framework still allows the organization and classification of clustering 108 
methodologies in the clinical setting (10). Instead, many ad-hoc applications have been developed for 109 
specific scenarios, but their generalizability is often limited. While there is no global classification, 110 
these applications can be grouped based on specific characteristics such as managing missing values, 111 
collinearity, or mixed data (9). For instance, when handling missing data, some methods exclude 112 
samples from the analysis, potentially resulting in a loss of statistical power, while others rely on a 113 
single imputation, overlooking the potential bias that can be introduced (11). Highly correlated 114 
variables represent a challenge. Some methods exclude them, while others employ dimensionality 115 
reduction techniques such as Principal Component (PC) reduction to capture underlying lower-116 
dimensional data patterns (12,13). However, both decisions may affect the outcome of the 117 
clustering, as sensitivity analyses are rarely conducted. Moreover, indiscriminate feature selection 118 
can inadvertently remove informative features along with noisy ones, potentially biasing the results 119 
(14). Furthermore, most clustering methodologies assume the existence of a single stratification, 120 
disregarding the possibility of having none or multiple valid alternatives for subgrouping the 121 
population (15). Interestingly, trace-based clustering methodologies have recently emerged to aid in 122 
the interpretation and validation of the identified subgroups, often requiring domain knowledge and 123 
expert input (16).  124 
 125 
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Additionally, the evaluation of clustering outcomes is an open problem that is based on the quality of 126 
the produced clusters. In the case of unsupervised clustering, where no preliminary classification 127 
exists, evaluations are typically referenced against theoretical benchmarks. For instance, when 128 
addressing the optimal number of clusters, various theoretical quality metrics are available such as 129 
the clustering coefficient (17) or the silhouette index (18) among many others. Importantly, while 130 
there is no universal methodology that excels across all scenarios for all data sets, as dictated by the 131 
"no free lunch" theorem (19), there exist strategies that yield high-quality results (20–22). Another 132 
essential measure—referred to as robustness—lacks a precise definition. Robustness, in general 133 
terms, signifies the capacity of a system to withstand changes (23). In our context, we investigate 134 
whether a clustering remains stable when subjected to perturbations. In this work, we considered 135 
two types of perturbations: those derived from changes in the population and those arising from 136 
changes in the algorithm’s parameters. In the case of population-based perturbations, we quantify 137 
how a given clustering is influenced by variations in the underlying population. Bootstrapping is one 138 
approach to address this scenario (24). In the case of parameter-based perturbations, we assess the 139 
impact of parameter adjustments in the clustering algorithm on the identified clustering (25). 140 
Consider a scenario where a parameter "x" defines our clustering strategy. How different is the 141 
resulting clustering when using "x=1" versus "x=1.1"? Here, robustness translates to clusterings that 142 
maintain stability even when parameter values shift. For the reader's clarity, we will name the two 143 
different robustness criteria: population-based robustness and parameter-based robustness. 144 
 145 
Importantly, there is currently no methodology capable of addressing all the aforementioned 146 
scenarios while ensuring both definitions of robustness. To address these challenges 147 
comprehensively, we developed ClustALL, a novel framework that robustly identifies patient 148 
subgroups by addressing all the previously mentioned challenges and limitations of existing 149 
methodologies, and applied ClustALL -as a proof-of-concept- in two large prospective cohorts of 150 
patients non-electively admitted to the hospital for acutely decompensated cirrhosis.  151 
 152 
In this study, ClustALL was applied to a large prospective cohort of patients non-electively admitted 153 
to the hospital for acutely decompensated cirrhosis. The resulting stratifications were thoroughly 154 
characterized, aiming to identify any particular stratification of special interest in the clinical context 155 
showing prognostic value. We then validated the reproducibility of this stratification using a separate 156 
prospective cohort of patients. One further aim of the study was to demonstrate the usability of 157 
stratification over the disease course, with prognostic value. 158 

  159 
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Results  160 

ClustALL, a robust data-driven framework for patient stratification in complex 161 
diseases  162 
 163 

We developed a specialized stratification framework, referred to as ClustALL, specifically designed to 164 
accurately identify all potential alternatives for stratifying a population using clinical multimodal data 165 
at hospital admission as input. The ClustALL methodology consists of three main steps illustrated in 166 
Figure 1 and detailed in the Methods section: (1) Data Complexity Reduction (depicted in the Green 167 
Panel of Fig.1) aims to simplify the original dataset by mitigating the impact of redundant 168 
information (highly correlated variables). As a result, we obtain a set of embeddings, each one 169 
derived from different groupings of clinical variables. (2) Stratification Process (depicted in the 170 
Purple Panel of Fig.1), where, for each embedding, multiple stratification analyses are performed 171 
using different combinations of distance metrics and clustering methodologies. From each 172 
combination, denoted as "embedding + distance metric + clustering method”, a stratification is 173 
derived. (3) Consensus-based Stratifications step (depicted in the Red Panel of Fig.1) aims to identify 174 
robust stratifications that, in addition, exhibit minimal variation when combination parameters 175 
(“embedding + distance metric + clustering method”) are slightly modified. ClustALL performs a 176 
population-based robustness analysis for each stratification using bootstrapping. This analysis 177 
ensures that combinations associated with non-robust stratifications are excluded. The resulting 178 
stratifications are then compared using the Jaccard distance. As a result, a heatmap is generated to 179 
visually identify groups of representative stratifications (green squared lines). The selection of 180 
representative stratifications enables the preservation of those stratifications that demonstrate 181 
parameter-based robustness: consistency even when various parameters, like distance metrics or 182 
clustering methods, are altered. For each group of stratifications, the centroid is selected as the final 183 
stratification (green squares).  184 

 185 
Combining these three steps allows ClustALL to identify none, one, or multiple robust 186 
stratifications in a given population of patients with complex diseases. Importantly, a specific 187 
implementation of ClustALL is designed to effectively handle datasets with missing data effectively, 188 
ensuring that incomplete information does not hinder the stratification process.  189 

  190 
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ClustALL uncovers stratification in a cohort of patients with acutely 191 
decompensated cirrhosis: a proof-of-concept  192 

Study population.  193 
The ClustALL approach was applied to a subset of individuals from the European PREDICT cohort 194 
(26), which included 766 patients with acute decompensation of cirrhosis and 74 clinical features 195 
collected at hospital admission, with less than 30% missing values. Complete information on patient 196 
characteristics and short-term outcomes, including acute-on-chronic liver failure (ACLF), liver 197 
transplant, and death, can be found in Supplemental Table 1. 198 

 199 
ClustALL identified five different alternatives to stratify the population.   200 

The ClustALL workflow was utilized to discover potential new sub-phenotypes of patients with acute 201 
decompensation of cirrhosis within the PREDICT cohort upon hospital admission (Fig.2). To handle 202 
missing values in the dataset, we employed the ClustALL framework, which incorporates imputations 203 
using 1,000 iterations, as described in the Methods section. The Data Complexity Reduction Step 204 
resulted in 72 embeddings (Fig.2.1). The Stratification Process generated 288 stratifications based on 205 
the different combinations of "embedding + distance metric + clustering method” (Fig.2.2). Among 206 
these, 144 population-based robust stratifications were identified through the Consensus-based 207 
Stratifications step, resulting in five groups of parameter-based representative stratifications. The 208 
centroid was selected for each group of stratifications, (Fig.2.3). 209 

 210 
ClustALL provides better resolution than classical clustering tools 211 

We conducted an analysis to assess the added value of ClustALL when compared with classical 212 
clustering methodologies such as k-means or hierarchical clustering. Regarding the classical 213 
methodologies, our findings revealed that when using correlation as a distance metric, 90% of 214 
patients were consistently assigned to a single cluster, regardless of the number of clusters 215 
considered; when Gower distance was utilized, the distribution of patients across clusters presented 216 
a more balanced distribution (Table S2). Notably, the population-based robustness of the 217 
stratifications generated by ClustALL was significantly higher (p-value <0.01) compared to the results 218 
obtained using k-means and hierarchical clustering (Fig.S3). In summary, our observations 219 
demonstrate that ClustALL significantly outperforms classical methodologies regarding population-220 
based robustness. 221 

 222 

Characterization of the five robust stratifications within the PREDICT population 223 
After identifying the robust stratifications, we aimed to explore and characterize the distinct clusters 224 
observed in each of the five alternative stratifications. These stratifications divided the patients into 225 
two clusters, except for stratification 1, which had three clusters. We visually investigated the 226 
separation by representing each stratification in a low-dimensional space using the corresponding 227 
embeddings derived from the dendrogram depths (Fig.3A-E) and the complete dataset (Fig.S2). 228 
Further exploration revealed that stratification 1 was a subdivision of stratification 2 (Fig.3F). We 229 
then determined the minimal sets of variables (excluding the cirrhosis severity scores (Table S1 230 
variables 44 to 48)) with the highest predictive performance in differentiating the clusters for each 231 
stratification (Tables S3-S7) (27). The different classification approaches were described by 25 232 
variables from a total of 74 (Table S1 variables 1 to 74), with 8 to 12 variables per stratification 233 
(Fig.4A). Notably, all stratifications included: (i) serum bilirubin concentration (either as a continuous 234 
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variable or categorized under the term “liver dysfunction”(28)) (ii) International Normalized Ratio 235 
(INR) (either as a continuous variable or categorized under the term “coagulation dysfunction” (28); 236 
(iii) the number of organ dysfunction or failure. Precipitating events were present in all but one 237 
stratification (stratification 3) either as a sum or individually (gastrointestinal bleeding, alcohol-238 
related hepatitis, acute viral hepatitis). Diabetes mellitus was included in two stratifications. 239 
Conversely, age, sex, BMI, cause of cirrhosis and lifestyle were present in no or one stratification. 240 
Interestingly, stratification 1 and 2 shared almost the same minimal set of variables. Both 241 
stratifications identified a group of patients with a severe phenotype attested by low serum sodium, 242 
low serum albumin, high serum bilirubin, high INR, high C-Reactive Protein (CRP) and leucocytes, and 243 
the number of precipitating events (Fig.4B). Hepatic encephalopathy was present in stratification 1 244 
but not in 2 (29). A complete statistical characterization of the stratifications is provided in Tables S3 245 
to S7. Considering the clinical implications of the features and the finer classification of the patients, 246 
we identified stratification 1 as the most insightful for further exploration in patients with acute 247 
decompensation of cirrhosis. Henceforth, in our discussions, we will refer to this specific stratification 248 
as 'AD-strat'.  249 

 250 
AD-strat provides prognosis value  251 

The AD-strat stratification is defined by three subgroups (clusters) of patients with acutely 252 
decompensated cirrhosis revealing different clinical characteristics and disease progression. Cluster 253 
1 included 306 patients (39.95%) who exhibited the most clinically critical scenario (Fig.5A, B and 254 
Table S3). These individuals had the highest rates of organ dysfunction, clinical events, and 255 
precipitating events (Table S1). They had a marked acute inflammatory profile (high white blood cell 256 
count, and C-reactive protein level) poor liver function (low levels of albumin, and high levels of INR 257 
and serum bilirubin) and more hepatocyte injury (higher levels of serum aspartate 258 
aminotransferase). Conversely, Cluster 2 (n=118; 15.4%) and Cluster 3 (n=342; 44.6%) had a less 259 
severe presentation. The main difference between Cluster 2 and 3 was hepatic encephalopathy, 260 
found in 89% of the patients in Cluster 2 and almost no patients in Cluster 3 (Fig.5A, B and Table S2). 261 
Importantly, a significant prognostic value of AD-strat was revealed by exploring the cumulative 262 
incidence of ACLF and death over 90-day follow-up (Fig.5C). Patients in Cluster 1 had poor short-263 
term outcome, with a cumulative incidence of ACLF and death, both by 90 days of 24.1 and 21.5, 264 
respectively. While Clusters 2 and 3 had similar risks of ACLF by 90 days (8.6% and 10.2 %, 265 
respectively), the risk of death by 90 days was lower for Cluster 2 than Cluster 3 (4.3% vs 10.7%).  266 
 267 
When we compared the clusters identified with ClustALL - exclusively using data obtained at 268 
admission - with the groups of patients based on their clinical course (26), we found a statistically 269 
significant association (Fisher test, p-value < 0.01) (see Table S8). We observed that 61% of patients 270 
with pre-ACLF were in Cluster 1 and 48% of patients with stable decompensated were in Cluster 3.  271 

 272 

Reproducibility of the stratification model in an independent cohort 273 
 274 

We assessed the validity of the AD-strat model in a large independent prospective multicentre 275 
cohort that included 580 patients with acute decompensation of cirrhosis from the Latin-American 276 
ACLARA study (30). Using as a reference the PREDICT AD-strat clusters, we labelled ACLARA patients 277 
using the k-nearest neighbours (kNN) classification algorithm (Table S9) (31). The classification 278 
model included the 12 predictive variables previously identified in the feature importance analysis 279 
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(Fig.3B Stratification 1). Importantly, the labelling was consistent and independent of the imputation 280 
(Fig.6A), and the distribution of individuals by AD-strat clusters within ACLARA closely mirrored that 281 
of the PREDICT cohort (Fig.6B). As expected, the clustering of the ACLARA cohort exhibited similar 282 
clinical feature patterns to the PREDICT cohort (Fig.6C, Fig.3B Stratification 1). Furthermore, the 283 
features describing the subgroups demonstrated statistical significance (Table S10). Finally, we 284 
assessed the clinical relevance of the clustering in terms of prognosis, specifically examining the 285 
short-term outcomes available in the ACLARA cohort 28 days after hospital admission. Similar to 286 
results obtained in the PREDICT cohort, Cluster 1 displayed a bad prognosis for both ACLF and death, 287 
while Cluster 3 showed a better prognosis (Fig.6D). In ACLARA, all patients from Cluster 2 were 288 
afflicted by hepatic encephalopathy (Table S10) and showed a poor prognosis similar to that of 289 
Cluster 1. Ethnicity was homogeneously distributed across clusters (Table S2). In particular, Native 290 
Americans represented 21% of Cluster 1, 15% of Cluster 2, and 14% of Cluster 3. Complete 291 
information on patient characteristics and short-term outcomes is reported in Supplemental Table 292 
9. 293 

 294 

AD-strat as a marker for clinical management  295 
 296 

Finally, we investigated the clinical value of the stratification during the follow-up visits of the 297 
PREDICT cohort. Based on the PREDICT study design (26), two follow-up visit plans were established 298 
depending on the reported disease severity (CLIF-C AD-score) at hospital admission (Fig. 7A). For 299 
patients with a CLIF-C AD-score ≥ 50, the scheduled visits were performed at hospital admission and 300 
1, 4, 8 and, 12 weeks after enrolment. For patients with a CLIF-C AD-score < 50, the scheduled visits 301 
were performed only at hospital admission and 1 and 12 weeks after enrolment. 302 
 303 
Of the 766 patients included in the PREDICT study, 688 had at least one follow-up visit. For this 304 
subset of patients with available data, we labelled each of them at each follow-up visit using the kNN 305 
algorithm (Fig. 7B). This approach allowed an overview of the patient stratification over the entire 306 
study duration and revealed the patient flow over time highlighting cluster transitions. 307 
 308 
Consistent with the previous AD-strat characterization at hospital admission (Fig.5 and Table S3), we 309 
identified more than 50% of patients with CLIF-C AD score ≥ 50 (n=486) were classified as Cluster 1, 310 
while patients with CLIF-C AD score < 50 (n=280) were predominantly classified as Cluster 3 (66.4%) 311 
(Fig.7B). Changes in cluster proportions were observed during the patients' follow-up. Stratification 312 
changes over time were more pronounced among patients with CLIF-C AD scores≥ 50 at hospital 313 
admission, showing a progressive reduction of patients classified as Cluster 1 (55.8% at HA, 38.8% at 314 
week 1, 39.2% at week 4, 25% at week 8, and 17.1% at week 12) and an increase of those classified 315 
as Cluster 3 (32.1% at HA, 54.6% at week 1, 50.9% at week 4, 67.9% at week 8, and 74.3% at week 316 
12). Additionally, there was a progressive increase in the proportion of patients classified as Cluster 317 
3 for those patients with CLIF-C AD-score < 50 at hospital inclusion (66.4% at HA, 83.3% at week 1, 318 
and 82.5% at week 12). 319 
 320 
To assess the effectiveness of the AD-strat throughout disease progression, we determined its 321 
prognostic value in two scenarios: 1) using the stratification at hospital admission, and 2) using the 322 
stratification at the last visit reported before the occurrence of any adverse event (we considered 323 
any visit between week 1 and 12) or at the end-of-study (EOS) (week 12 visit). A significant 324 
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difference was observed (p<0.001, Wilcoxon test) when comparing the time window between the 325 
visit used in each scenario and the occurrence of adverse events (Fig. S5), indicating that in the 326 
second scenario, we evaluated patients during a visit much closer to the event. 327 
 328 
Ultimately, the cumulative incidence of ACLF and death as stratified at the last visit demonstrated a 329 
more significant separation between clusters compared to patient stratification at hospital admission 330 
(Fig.8). There was an increase in the incidence for those patients classified as Cluster 1 (18.46% and 331 
18.45% at baseline and 28.16% and 26.8% at the last visit for ACLF and death, respectively). 332 
Accordingly, the goodness-of-fit parameters indicated an improvement in risk prediction with the last 333 
visit stratification, suggesting an enhanced predictive power as the event approached (Table S11).  334 
 335 

  336 
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Methods 337 

ClustALL Framework 338 
Given a set of patients affected by a complex disease with clinical data available, the goal of ClustALL 339 
is to identify all the possible alternatives to stratify them that are robust and consistent, even when 340 
different parameters or settings are used to generate the stratifications (distance metric, clustering 341 
algorithm, and the number of imputations).  342 
 343 

Input data 344 
ClustALL accepts both binary and numerical clinical variables as input. Categorical features are 345 
transformed using a one-hot encoder method. A minimum of two features is required, but including 346 
more features would lead to more precise clustering. It is important to note that increasing the 347 
number of features may also increase the computation time. 348 
 349 

Step 1. Data Complexity Reduction 350 
In this step, highly correlated features are replaced by a reduced set of variables that account for 351 
their variability. To that end: 352 

Step 1.1. Dendrogram. Hierarchical clustering is applied to the data, resulting in a 353 
dendrogram where variables are grouped based on similarity (32). The depth of each branch 354 
represents the distance between the groups of variables. All the possible depths of the dendrogram 355 
are extracted, and the sets of variables beneath each depth are stored as Depth. 356 

Step 1.2. Preprocessing. Principal Component Analysis (PCA) is computed for each set of 357 
variables corresponding to each Depth, and the first three principal components are stored in a new 358 
matrix (Embedding) (33). For sets that contain only one variable, the variable itself is stored to 359 
generate the replacement matrix. This results in a complexity-reduced data set (Embedding) for each 360 
considered Depth. A subset of depths can be considered when the number of variables is too large.  361 

 362 
Step 2 Stratification Process 363 
In this step, ClustALL calculates and pre-evaluates stratifications for each Embedding. For each 364 
Embedding, the dissimilarity between patients’ pairs is computed using correlation-based distance 365 
and Gower dissimilarity metric, resulting in two distance matrices. Clustering algorithms are then 366 
applied (34–36) depending on the distance used: k-means and hierarchical clustering for correlation 367 
distance matrices, and k-medoids and hierarchical clustering for the Gower distance matrix. 368 
Throughout all experiments, five different cluster numbers are evaluated k��2, 3, 4, 5, 6	. The 369 
optimal number of clusters for each strategy is determined based on the consensus from three 370 
different measures of clustering internal validation: the sum-of-squares based index or WB-ratio, the 371 
Dunn index, and the average silhouette width (37,38). The objective is to group patients with 372 
comparable data while ensuring that patients in separate clusters are as dissimilar as possible from 373 
those in other clusters. As the output for this step, a stratification is derived for each combination 374 
denoted as “embedding + distance metric + clustering method”. 375 
 376 

Step 3 Consensus-based stratifications 377 
Step 3.1. Population-based robustness. A data-driven threshold is used to define 378 

population-based robust subgroups or clusters. For each resulting stratification from the previous 379 
step, cluster-wise stability is computed by bootstrapping the dataset 1,000 times and calculating the 380 
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Jaccard similarity index to the originally defined clusters (39). Stratifications with less than 85% 381 
stability (Fig.S4) are excluded based on data distribution. The remaining stratifications are denoted 382 
as Stratfilt.  383 

Step 3.2. Jaccard distance is applied to compute distances between the population-based 384 
robust stratifications. Then, to identify parameter-based robust clusters (where a minor modification 385 
in parameter selection provides a similar result), ClustALL considers those combinations that are part 386 
of a group of stratifications (green squares in Consensus-based stratifications step in Fig.1). Then, as 387 
initial criteria, that can be modified by the user, centroids from each "combination group" are 388 
selected as parameter-based robust stratifications (coloured green squares in Consensus-based 389 
stratifications step in Fig.1). The outcome can be none, one, or multiple ways to stratify the 390 
population robustly. In the current analysis, we considered parameter-based robust representatives: 391 
centroids of a combination group that includes at least 5 population-based robust stratifications.  392 

 393 

ClustALL enables input data with missing values  394 
ClustALL can be adapted to work with missing data (Fig.S1). To that end, the ClustALL method is 395 
modified as follows: 396 
Step 1 adaptation. First, a dendrogram and its associated depths are computed considering the 397 
original dataset with missing values. The original dataset is then imputed 1,000 times with the MICE 398 
algorithm to ensure the results are not derived from a single imputation (40). For each Depth 399 
previously calculated and each imputed dataset, the Data Complexity Reduction step is applied.  400 
Step 2 adaptation. Step 2.1 is computed for each combination of depth, distance metric, clustering 401 
algorithm and each Embedding derived from an imputed dataset. The selection of the optimal 402 
number of clusters is based on the consensus from cluster internal validation and the mode of the 403 
imputed datasets for each corresponding embedding. Afterward, a distance matrix (Dmat) between 404 
individuals is obtained by computing how often two individuals are assigned to the same cluster in 405 
each imputation (Fig.S1). Then, Dmat calculates a final stratification score using correlation-based 406 
distance and h-clust. In our experience, limited optimization is required here because summarizing 407 
the stratification over all imputations separately strengthens what is observed in each imputed 408 
dataset. Extra care will be required only in cases where imputations may differ significantly. After 409 
this modification, the method follows as previously described (Fig.S1). 410 
 411 

Data source 412 
The data utilized in this study were obtained from two independent multicentre studies: the 413 
European PREDICT cohort and the Latin-American ACLARA cohort, conducted as part of the European 414 
Project DECISION (26,41). Both cohorts collected various measures including clinical, 415 
pharmacological, biomarker, and outcome data from patients with acute decompensation of 416 
cirrhosis upon hospital admission and during follow-up visits. The follow-up period was 90 days for 417 
the PREDICT cohort and 28 days for the ACLARA cohort. To be eligible for the present study, patients 418 
were required to have acute decompensation of cirrhosis upon hospital admission, with available 419 
information on short-term outcomes, drug intake, and available biological samples. Ultimately, 766 420 
patients from the PREDICT cohort and 580 patients from the ACLARA cohort and 74 features 421 
(continuous and categorical) were included in the analysis. The features included demographic 422 
information, clinical and laboratory data, medical history, risk factors, and cirrhosis scores at hospital 423 
admission, with missing values accounting for less than 30% (Table S1). To avoid bias from missing 424 
data, imputation was performed with 1,000 iterations using the Multivariate Imputation by Chained 425 
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Equations (MICE) method (21). 426 

Demographics 
Age, sex, height

+

, weight
+

, BMI, ethnicity (Black or African 

American, Asian, White, other)  

Cause of cirrhosis Alcohol, viral, alcohol + viral, NASH, cryptogenic, other 

Main reason for 

hospitalization 

Ascites, hepatic encephalopathy, gastrointestinal bleeding, 

spontaneous bacterial peritonitis, other infection 

Manifestations at admission 

Clinical Events (ascites, hepatic encephalopathy, gastrointestinal 

bleeding, acute kidney injury, bacterial infection, acute alcoholic-

steatohepatitis, acute viral hepatitis, hepatocellular carcinoma), 

number of clinical events (the sum of clinical events), number of 

precipitating events (the sum of precipitating events: proven 

bacterial infection, acute alcoholic-steatohepatitis, CLIF-C AD > 

50), organ dysfunction (liver, renal, cerebral, coagulation, cardiac, 

respiratory), number of organ dysfunctions (the sum of organ 

dysfunctions), organ failure (liver, cerebral, coagulation, cardiac, 

respiratory), number of organ failures (the sum of organ failures) 

Cirrhosis Severity Scores Child-Pugh, CLIF-C AD, CLIF-C OF, MELD, MELDNA 

Medical history 
History of diabetes, history of hypertension, history of previous 

decompensations 

Lifestyle Alcohol, active alcohol consumption
+

, tobacco 

Laboratory variables 

(measured in serum) 

Alanine transaminase, aspartate aminotransferase, albumin, 

bilirubin (total), gamma-GT, C-reactive protein, sodium, 

potassium, glucose
+

, hemoglobin, hematocrit, creatinine, white 

blood cell count, lymphocytes, monocytes, neutrophils, INR 

(International Normalized Ratio), platelet, SpO2 (%), SpO2/FiO2 

Ratio 

Table 1. Complete list of input features. Patient characteristics included in the analysis: demographics, 427 
cause of cirrhosis, main reason for hospitalization, manifestations at admission, cirrhosis severity 428 
scores, medical history, lifestyle and laboratory variables.

 +

Variables not included in ACLARA cohort. 429 
 430 

CLustALL comparison to different clustering methodologies 431 
A comparison was conducted between the ClustALL framework and classical clustering algorithms. 432 
Stratification was performed on 1,000 imputed datasets using classical k-means and hierarchical 433 
methodologies with k values of 2 and 3, considering that ClustALL robust stratifications comprised 434 
two or three patient subgroups. Bootstrapping was performed for the classical clusters to evaluate 435 
cluster-wise stability (39). The resulting stability was compared to ClustALL stability through the 436 
Kolmogorov–Smirnov test. Moreover, the clinical utility of the various stratifications was assessed by 437 
examining the clinical insights obtained from the different clusters. 438 

439 
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Statistical Methods 440 
All analyses were performed in the R Computing Environment version 4.0.3 (42).  441 

 442 
Descriptive statistics 443 

Descriptive characteristics of the PREDICT and ACLARA study populations were reported as means 444 
with standard deviations for continuous variables and proportions of patients for categorical 445 
variables.  446 

Feature Analysis 447 
The identification of the minimal-size predictive signatures with maximal predictive power leading to 448 
each stratification was performed using the fbed.reg function with default hyperparameters from 449 
the ‘MXM’ R package (27). 450 

Parametric Tests 451 
Differences between clusters in the PREDICT and in the ACLARA cohorts were assessed using one-452 
way ANOVA for continuous variables, while binary variables were tested with the chi-square test. 453 
The association between the PREDICT clusters identified with ClustALL - exclusively using data 454 
obtained at admission - with the groups of patients based on their clinical course (26), was tested 455 
with the Fisher test. 456 

Stratification model reproducibility  457 
AD-strat model was validated in and in a separate cohort of patients with acute decompensation of 458 
cirrhosis from the ACLARA cohort and in PREDICT follow-up time points. For this purpose, the kNN 459 
model was trained on the PREDICT AD-strat cluster labels based on the signatures previously defined 460 
as most predictive in the feature analysis. The K parameter was selected based on accuracy, the area 461 
under the curve (AUC), error rate (ER), false positives (FP), and false negatives (FN) (Table S7). After 462 
applying the KNN algorithm, the target data (ACLARA cohort and PREDICT follow-up) was labelled 463 
based on the majority votes from the K nearest neighbours and imputed datasets. 464 

Survival Analysis 465 
Cumulative incidences of ACLF development and liver-related death were estimated using the 466 
cumulative incidence function of the ‘survival’ R Package. Liver transplantation was considered a 467 
competing event. A p-value lower than 0.05 with Benjamini and Hochberg (BH) adjustment was 468 
considered statistically significant. 469 
 470 

Longitudinal analysis and model evaluation 471 
All PREDICT patients with ≥1 post-baseline assessment (n = 688) were included in longitudinal 472 
outcomes analyses for a period of 90 days after hospital admission. Sankey diagrams were 473 
generated to show the patients’ transfers among the AD-strat clustering, liver transplant, ACLF 474 
development, death and survival status. The predictive power of the stratification models at 475 
different time points in the PREDICT cohort was evaluated using BIC, AIC, Concordance, and 476 
Likelihood ratio goodness-of-fit parameters (41). 477 

  478 
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Discussion 479 
 480 
Traditional patient classification methods based on outcome prediction scores may overlook 481 
important heterogeneity factors. To address this issue, we developed ClustALL, a computational 482 
pipeline that handles various clinical data challenges and identifies robust patient stratifications. We 483 
applied ClustALL to a cohort of patients with acute decompensation of cirrhosis, identifying five 484 
robust stratifications with prognostic value.  485 
 486 
Optimal patient stratification is required to sustain the precision medicine revolution occurring in 487 
the clinical setting (43). While significant progress has been made in classification problems, 488 
particularly in domains like single-cell transcriptomic analysis (44,45), unsupervised clustering of 489 
patients based on clinical information is still in the developmental stage (7,46). Notably, the existing 490 
challenges in clinical stratification are often addressed using ad-hoc solutions that consider mixed 491 
data types, missing values, or highly correlated variables. However, no comprehensive method 492 
currently exists that addresses all these challenges. To overcome the aforementioned idiosyncrasies 493 
in clinical data, we have developed a novel computational framework named ClustALL. Significantly, 494 
beyond addressing existing challenges, ClustALL improves over other existing methodologies by 495 
allowing the identification of more than one robust stratification within a given population. Clinical 496 
data is complex and allows for multiple uses and "multiple interpretations" that may result in several 497 
valid groupings (47). Indeed, the concept of "multiple interpretations" arises from how variables are 498 
utilized in the clustering process and has been a subject of research in the early 21st century (48). 499 
Another distinctive feature of ClustALL is the consistency of the resulting representative 500 
stratifications even when limited modifications in the clustering parameter settings are applied. In 501 
the context of biological data, such as gene expression data, this property has already been already 502 
defined as the “propensity of a clustering algorithm to maintain output coherence over a range of 503 
settings”(49). Interestingly, this definition has been applied in the study of exposome and 504 
pregnancy-related mortality in the United States (50). In summary, we believe that ClustALL 505 
represents one of the initial necessary steps towards incorporating two necessary features into 506 
clinical stratification: parameter-based robustness and the identification of more than one 507 
stratification. 508 
 509 
To assess the effectiveness of ClustALL, we applied it as a proof-of-concept in a cohort of patients 510 
with acutely decompensated cirrhosis considering data collected at hospital admission. Such an 511 
attempt to apply stratification to patients with cirrhosis has never been conducted. The stratification 512 
we set up differs from the scores developed and routinely used in patients with cirrhosis (e.g., MELD, 513 
MELD-Na, Child-Pugh, CLIF-C-AD) both in terms of design and use. Indeed, all these scores were built 514 
using a follow-up endpoint (usually death) in patients receiving therapies. These scores are helpful to 515 
identify patients at high risk of poor outcomes, but they do not fully capture the heterogeneity of 516 
the patients at admission for several reasons: (a) some features explaining patients heterogeneity 517 
might not have an independent prognostic value, either because the prognostic information they 518 
carry is contained in other variables, or because therapies administered to patients during their 519 
follow-up blunt their impact; (b) a similar survival rate does not imply similar pathophysiological 520 
mechanisms. For instance, in PREDICT, clusters 2 and 3 have a similar rate of ACLF, while they 521 
strongly differ with regard to the prevalence of hepatic encephalopathy. The stratification presented 522 
here is not intended to guide clinical bedside decisions or to replace a prognostic score but rather to 523 
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identify homogeneous patient populations at hospital admission. This stratification could base the 524 
development of future clinical trials including more homogeneous patient populations. In this 525 
regard, to make this stratification easily accessible to all, we developed an online calculator and 526 
application available at https://decision-for-liver.eu/for-scientists/clustall-web-application/. The 527 
purely data-driven approach and the development and independent validation of the stratifications 528 
in large prospective multicentre European and Latin American cohorts strengthen our results.  529 
 530 
Through this analysis, as a first step, we identified five alternative stratifications for patients with 531 
acute decompensation of cirrhosis. Interestingly, all stratifications included markers of impaired liver 532 
function, namely serum bilirubin and INR, but also the number of organ dysfunction or failure, and 533 
all but one included precipitating events. This emphasizes that these features are crucial when 534 
designing a clinical trial including patients with acute decompensation of cirrhosis. On the contrary, 535 
some features like age, sex, BMI, cause of cirrhosis and lifestyle were present in no or only one 536 
stratification suggesting that these features are not key when designing a clinical trial. The 537 
stratification we selected (AD-strat) provided a more granular resolution by allowing the 538 
identification of three subgroups of patients. In this stratification, diabetes mellitus is taken into 539 
account. While it is known that diabetes is an independent risk factor for cirrhosis decompensation 540 
(51,52), the role of diabetes once acute decompensation has happened has been overlooked so far. 541 
This place of diabetes is quite unique since causes of cirrhosis, comorbidities or lifestyle were not 542 
part of the key features of AD-strat. Hepatic encephalopathy strongly impacted the categorization of 543 
patients with acutely decompensated cirrhosis. Notably, 89% and 100% of the patients in Cluster 2 544 
from the PREDICT and ACLARA cohorts, respectively, presented hepatic encephalopathy at the time 545 
of hospital admission. This may explain the intermediate prognosis observed in patients within 546 
Cluster 2, as hepatic encephalopathy is recognised by its fluctuating nature and potential 547 
reversibility (53,54). The dynamic nature of hepatic encephalopathy may also explain why Cluster 2 548 
was not a static group over time (55).  549 

 550 
Furthermore, tracking patients over time using AD-strat labelling allowed for dynamic and improved 551 
identification of patients at high risk of adverse events in the PREDICT cohort. These results highlight 552 
the ability of the ClustALL not only to stratify patients using baseline characteristics but also that the 553 
use of AD-strat labelling over time is able to improve this prediction. 554 

 555 
Although our study showed promising results, it is important to acknowledge some limitations. 556 
Firstly, our stratification was based solely on routinely available clinical data at hospital admission, 557 
which may not provide a comprehensive view of patients’ conditions. Future studies should extend 558 
our findings with biological data, ideally derived from multiomic analyses. Moreover, it is crucial to 559 
consider that the predictive power in the ACLARA cohort was only assessed at 28 days due to the 560 
study design. 561 

 562 
In conclusion, this study introduces a novel unsupervised clustering framework, ClustALL, able to 563 
overcome the limitations of previously available stratification methods. ClustALL is available as 564 
OpenSource (https://github.com/TranslationalBioinformaticsUnit/ClustALL_AD/). When applied to 565 
the setting of acute decompensation of cirrhosis, ClustALL enhanced our understanding of patients’ 566 
heterogeneity emphasizing the importance of liver function and the number of organ dysfunctions 567 
or failures, precipitating events, and conversely the limited role of age, sex, BMI, cause of cirrhosis 568 
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and lifestyle at this stage of the liver disease. The selected stratification, AD-strat, might be a useful 569 
tool to better design future clinical trials by including more homogeneous patient populations.  570 
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Data availability 571 
Researchers who provide a methodology sound proposal can apply for the data, as far as the 572 
proposal is in line with the research consented by the patients. These proposals should be requested 573 
through https://www.clifresearch.com/decision/Home.aspx. Data requestors will need to sign a data 574 
transfer agreement. The code to generate the ClustALL method is available on GitHub, at 575 
https://github.com/TranslationalBioinformaticsUnit/ClustALL_AD/. 576 
 577 
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Figure Legends 761 

 762 
Figure 1. Schematic overview of the different steps of ClustALL approach (best viewed in colour). 763 
ClustALL takes clinical variables as input. First, data complexity is reduced by grouping the features 764 
into a dendrogram, assessing the resulting depths, and using Principal Component Analysis (PCA) 765 
(green panel). The output is an embedding for each possible depth. Then, stratification is 766 
computed considering the combination of different distance measures, clustering techniques, and 767 
cluster numbers (K) (purple panel). In the final step, non-robust stratifications are filtered, and the 768 
centroids derived from computing Jaccard (coloured green squares) similarity among the robust 769 
stratifications (green squares) are considered the final representatives of the stratifications (red 770 
panel). 771 

Figure 2. Summary of the outputs from the different steps of the ClustALL framework when 772 
applied to the PREDICT cohort (N=766). Input data comprised 74 clinical features with less than 773 
30% missing values. The analysis utilized 1,000 imputed datasets. The Data Complexity Reduction 774 
step (green) was applied to 72 depths of the 1,000 imputed datasets. The Stratification Process 775 
step (purple) considered various clustering combinations resulting in 288 stratifications. After 776 
bootstrapping, 144 robust stratifications remained. Finally, in the Consensus-based Stratification 777 
step (red), five groups of robust stratifications (red squares) were identified, and the centroid was 778 
selected from each group as the final stratifications (red coloured squares). 779 

Figure 3. Principal Component projection of the ClustALL robust stratifications based on the 780 
embedding associated with each stratification. (A-E). Low-dimension representation of the robust 781 
stratifications after applying the ClustALL framework to the PREDICT cohort. For each one of the 5 782 
robust stratifications identified by ClustALL, the Principal Component Analysis of the Embeddings 783 
corresponding to the specific dendrogram depth associated with the stratification is shown. The x 784 
(Dim1) and y (Dim2) axes represent the first and second principal components respectively, which 785 
are linear combinations of the original variables. (F). The overlap between the clusters in 786 
stratifications 1 and 2 shows that stratification 1 is a subdivision of stratification 2. 787 

Figure 4. Overview of the variables driving the ClustALL stratifications. (A). Heatmap with the 788 
minimal set of variables required to describe the 5 different stratifications, accounting for 25 out of 789 
74 input variables. (B). Heatmaps of the minimal set of patient characteristics per stratification. The 790 
heatmap colour scale depends on the data type. In the case of binary variables, the value indicates 791 
the percentage of patients with such binary characteristics, e.g., the presence of Diabetes Mellitus. 792 
For continuous variables, the colour scale represents a scaled value from the highest cluster mean 793 
(100.0) to the lowest cluster mean (0.0), e.g., Albumin and CRP. Abbreviations: ASH = Acute 794 
Alcoholic-Steatohepatitis, AST = Aspartate aminotransferase, CL= Cluster, CRP = C-Reactive Protein, 795 
HE = Hepatic encephalopathy, HCC = Hepatocellular Carcinoma, INR = International normalized 796 
ratio, WBC = White blood cell counts. 797 

 798 
Figure 5. Clinical overview of the AD-strat derived clusters in the PREDICT cohort. (A, B). 799 
Distribution of the highest predictive performance-related patient characteristics among AD-strat 800 
clusters; (A) categorical variables, (B) numerical variables. C) Cumulative incidence of ACLF (left) 801 
and death (right) according to the AD-strat clustering in PREDICT cohort considering 90 days after 802 
hospital admission, with the number of patients at risk per cluster (Transplantation counted as a 803 
competing risk to death). Abbreviations: AST = Aspartate aminotransferase, CRP = C- Reactive 804 
Protein, INR = International normalized ratio, WBC = White blood cell counts. 805 

Figure 6. Reproducibility of the AD-strat model in the ACLARA cohort. (A) Distribution of the 806 
labels in the ACLARA cohort after applying the kNN model 1,000 times. (B) Proportion of patients 807 
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distributed in the 3 clusters in the PREDICT and the ACLARA cohorts. (C) Heatmap of patient 808 
characteristics per cluster in the ACLARA cohort. Bars on the right show the colour scale 809 
representing the proportion with each binary characteristic, such as diabetes. Continuous 810 
variables, such as bilirubin, represent a scaled value from the highest cluster mean (1.0) to the 811 
lowest cluster mean (0.0). (D) Cumulative incidence of ACLF (up) and death (down) according to 812 
the AD-strat clustering in ACLARA cohort considering 28 days after hospital admission, with the 813 
number of patients at risk per cluster (Transplantation counted as a competing risk to death). 814 
Abbreviations: AST = Aspartate aminotransferase, CRP = C- Reactive Protein, INR = International 815 
normalized ratio, WBC = White blood cell counts. 816 
 817 
Figure 7. Distribution and transition of the AD-strat derived clusters at different visits in the 818 
PREDICT cohort. (A). Schematic representation of PREDICT study design. Two follow-up visit plans 819 
were defined according to the reported disease severity (CLIF-C AD-score) at hospital admission 820 
(red). The information about the occurrence of any adverse event (liver transplant, ACLF or death) 821 
during the whole visit plan or the absence of events at the end of the study was tracked (blue). (B) 822 
Sankey plots show the cluster label of each patient over the follow-up visits. The follow-up flows of 823 
patients with CLIF-C AD >= 50 at hospital admission (up) and CLIF-C AD <50 at hospital admission 824 
(down) are shown. The distribution of the patients assessed at each follow-up visit per cluster is 825 
shown as frequency and proportion on the top of the Sankey representations. The accumulated 826 
frequency and proportion of adverse events at each follow-up visit respecting the whole cohort 827 
(for CLIF-C AD >=50, n=486; for CLIF-C AD < 50, n=280) are shown on the bottom of the Sankey 828 
representations. Reported event/eos, shows the status of a patient at the “end of the study”: 829 
patients with a reported event or patients with no reported event. 830 

 831 
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