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eMethods. Supplementary Note

Enrollment criteria 
Stanford’s Iqbal Farrukh and Asad Jamal Alzheimer’s Disease Research Center (ADRC) is a cohort of healthy older controls and patients with AD and related neurological disorders (n=323 with LRS and short-read NGS, age range 45-92 years old, 169 females and 154 males, healthy controls = 150, mild cognitive impairment (MCI) individuals = 60, AD cases = 30, other diagnoses = 83). All participants underwent a history and neurological exam, cognitive testing, and blood draw. Most participants also underwent brain imaging including MRI and amyloid PET scanning. Roughly 1/3 of the participants also provided cerebrospinal fluid (CSF). Diagnoses were determined in a consensus conference meeting comprised of neurologists and neuropsychologists using standard clinical criteria for AD, MCI, and related disorders such as Parkinson’s disease and Lewy body disease. 

The Stanford Aging and Memory Study (SAMS) is a cohort of cognitively unimpaired older individuals (n=109 with LRS and short-read NGS, age range 60-88 years old, 58 females and 51 males). SAMS eligibility criteria include normal or corrected vision and hearing, native English speaking, no neurologic or psychiatric disease history, Clinical Dementia Rating score of zero, and normal performance on standardized neuropsychological testing. Participants underwent CSF collection, plasma collection, and brain imaging, including MRI and amyloid PET. Unimpaired cognitive status was confirmed in a consensus conference meeting comprised of neurologists and neuropsychologists using standard clinical criteria. 

The Washington University St Louis (WUSTL) data enrolled participants as part of the Knight local ADRC (n=1,979 with short-read NGS, transcriptomics and/or CSF and/or plasma proteomics, age range 18-103 years old, 1034 females and 945 males, healthy controls = 1005, AD cases = 858, other diagnoses = 116). The WUSTL cohort includes longitudinally assessed community-dwelling adults older than 18 years old via prospective studies of memory and aging since 1979. All participants are required to participate in core study procedures, including annual longitudinal clinical assessments, neuropsychological testing, neuroimaging, and biofluid biomarker studies. Samples have been obtained from over 5,510 participants, including 2,426 AD cases, 694 AD-related dementia cases, 148 Frontotemporal dementia cases, 88 dementia with Lewy Body cases, and 2,156 cognitively normal healthy individuals.

Multi-omics cohort aggregated at Washington University St Louis (WUSTL)
Three omics modalities were analyzed as part of this study: plasma proteomics dataset, cerebrospinal fluid (CSF) proteomics dataset, and blood RNAseq dataset.  Within each, participants considered for quantitative traits locus (QTL) analysis were required to have short-read NGS-based genotype data.  Some analyses were restricted to healthy control-only participants, while others (when non-specified) considered all participants regardless of the disease status. Below we describe the acquisition protocol for each omics modality.

CSF Proteomics Quality Control
[bookmark: bookmark=id.gjdgxs][bookmark: bookmark=id.30j0zll]Proteomic data generation and QC were done as reported before1,2. Briefly, CSF samples were collected through lumbar puncture from participants after an overnight fast. Samples were processed and stored at -80 ⁰C until they were sent for protein measurement. In total, 3591 CSF samples were collected.  CSF samples from Washington University were sent for protein measurement using the SOMAscan platform3 (SOMAscan7k), measuring 7596 aptamers. The SOMAscan7k data underwent initial normalization by SomaLogic. At the sample level, they performed hybridization normalization. The aptamers were then divided into S1, S2, and S3 normalization groups based on signal-to-noise ratio. SomaLogic then performed median normalization to remove biases due to protein concentration, pipetting variation, reagent concentration variation, and assay timing among others. Each sample was normalized to a reference to account for technical and biological variance. This step was performed with iterative Adaptive Normalization by Maximum Likelihood (ANML) until convergence was reached. This method is a modification of median normalization. Further quality control was performed on the normalized SOMAscan7k data provided by SomaLogic according to an in-house protocol for CSF samples. Aptamers were removed if they failed either of two criteria: first, if the maximum absolute difference between the aptamer scale factor and median scale factor of any plate is > 0.5; second, if the median cross-plate coefficient of variation (CV) was >0.15. Interquartile range (IQR) was then calculated for every aptamer based on log-10 transformed aptamer levels. Aptamer values outside of 1.5-fold of the IQR were replaced with NA values. Aptamers with call rate <65% (aptamer measurement in less than 65% of samples) were excluded, and the same criteria were used to remove samples. The call rate for aptamers was then recalculated and a more stringent call rate threshold of 85% was applied. The sample call rate was recalculated after aptamer removal and a call rate threshold of 85% was applied at the sample level. Overall, 1210 participants of European ancestry with short-read NGS passed QC and were included in this study.

Plasma Proteomics Quality Control
[bookmark: bookmark=id.1fob9te][bookmark: _heading=h.tyjcwt][bookmark: bookmark=id.3znysh7][bookmark: bookmark=id.2et92p0][bookmark: bookmark=id.3dy6vkm][bookmark: bookmark=id.1t3h5sf]Plasma samples were collected through blood draws from participants at Knight ADRC from Washington University. Samples were processed and stored at -80 ⁰C until they were sent for protein measurement.  7548 aptamers were measured before proteomics QC with the SOMAscan platform3 (SOMAscan7k).  The SOMAscan7k data were initially normalized by SomaLogic. At the sample level, they performed hybridization normalization. The aptamers were then divided into S1, S2, and S3 normalization groups based on signal-to-noise ratio. SomaLogic then performed median normalization to remove biases due to protein concentration, pipetting variation, reagent concentration variation, and assay timing among others. Each sample was normalized to a reference to account for technical and biological variance. This step was performed with iterative Adaptive Normalization by Maximum Likelihood (ANML) until convergence was reached. This method is a modification of median normalization. Plasma proteomics data were next QCed in-house with the 7 steps: First, we transformed the protein level into log-10 scale and filtered aptamers per limit of detection, scale factor difference, and coefficient of variation; Second, we used IQR-based outlier expression level to flag outliers; Third, we removed aptamers and samples with <65% call rate; Fourth, we re-calculated call rate for analytes and removed aptamers with call rate <85%; Fifth, we re-calculated missing rate for participants and remove participants with < 85% call rate cut-off; Sixth, we back transformed the protein-level into raw values; Seventh, we removed the non-human aptamers. Overall, 1150 participants of European ancestry and 200 participants of African ancestry with short-read NGS passed QC and were included in this study.

Blood-based RNASeq (transcriptomics) Quality Control
RNA-seq data was first processed with fastqc software.  The data was next aligned to the GRCh38 reference genome using STAR (version 2.7.8a).  To quantify the count per gene, Salmon (version 1.7.0) was used to infer gene expression for all samples to quantify the coding transcripts of Homo Sapiens reference genome (hg38) accessed from the GENCODE database. Overall, 428 participants of European ancestry with short-read NGS passed QC and were included in this study.

Short-read Next Generation Sequencing (NGS) Genotype Quality Control
We performed joint analysis and quality control (QC) for all samples. Whether we started from BAM or CRAM files, all were converted to fastq files. Alignment was conducted against GRCh38.p13 genome reference. Variant calling was performed for WGS following GATK’s 4.2 Best Practices. WGS data was filtered with allele-specific VQSR filtering with a truth sensitivity 99.7%. WGS data was filtered to remove low-complexity regions, and regions with excessive depth. Only those variants and indels that fell within the above 99.9% confidence threshold were considered for analysis; additional variant filters included allele-balance (AB = 0.3–0.7) and missingness (geno = 0.05). Variants out of Hardy Weinberg equilibrium (P<1x10-8) or with differential missingness between cases and controls, WGS, or different sequencing platforms were removed from the analysis. In addition, individuals with more than 2% of missing variants and whose genotype data indicated a sex discordant from the clinical database were removed from the dataset. The principal component analysis to account for population stratification was performed using plink1.9’s pca function. Overall, 5510 participants passed WGS QC.

Validation of the 3’UTR insertion genotype with IGV for Stanford LRS participants
The genotypes of rs1990622, rs3173615, and the 3’ UTR insertion were extracted for participants with both LRS and short-read NGS available. 18 individuals with discordant doses of the three variants in LRS – where the dose of any of the three variants differed from any other – were identified for validation with IGV. For these participants, LRS genome alignments were visualized in IGV18 and the dose of the TMEM106B 3’ UTR deletion was determined by the following criteria: (1) the dose was set to 0 if no reads contained the deletion, (2) the dose was set to 1 if at least two but not all reads contained the deletion, and (3) the dose was set to 2 if all reads contained the deletion. After the visualization of reads in IGV, 15 individuals among the 18 were actually concordant for the three genotypes, two individuals were discordant, and one was set as unknown for the deletion due to having only one read with the deletion among 10 reads overlapping this region. Regarding the two discordant individuals, one had the SV deletion genotype concordant with rs1990622 but discordant with rs3173615, while the other had the SV deletion genotype discordant with rs1990622 but concordant with rs3173615.

TMEM106B 3’UTR insertion genotype quality control in ADSP
A TMEM106B 3’ UTR deletion was identified in Biograph and Manta SV calls (chr7:12242077; SVLEN=-322; SVTYPE=DEL, with Manta SVLEN varying between -321 and -323 base pairs for a few unique samples). 612 samples were duplicates of 288 unique participants. Among these duplicate individuals, 45 Biograph SV genotypes were discordant among replicates while 6 were discordant in Manta. Among these discordant genotypes, 5 were concordant in Manta and Biograph for a given sample/instance of one participant, albeit discordant in the other sample, and thus within participant discrepancy was related to the actual reads in the sample. These 5 participants were thus excluded from further analysis. The remaining discordant participant in Manta had 6 replicate samples, and the other 5 were concordant, thus the SV genotype was set to this majority. In all instances of Biograph discordances, the genotype of one of the replicates was concordant with the Manta genotypes. As such and upon manual inspection, Biograph calls were judged to be less reliable than Manta for this particular deletion, and analysis in ADSP refers to SV genotype by Manta. Among the 612 duplicate samples, all SNVs (rs1990622, and rs3173615) were concordant across duplicates. One instance among duplicated genotypes was kept for analysis leading to 16,582 unique participants in ADSP.
WUSTL dataset genomics analysis
[bookmark: bookmark=id.4d34og8]Plasma pQTL analysis
[bookmark: bookmark=id.2s8eyo1][bookmark: bookmark=id.17dp8vu][bookmark: bookmark=id.3rdcrjn][bookmark: bookmark=id.26in1rg][bookmark: bookmark=id.35nkun2][bookmark: bookmark=id.lnxbz9][bookmark: bookmark=id.1ksv4uv][bookmark: bookmark=id.44sinio][bookmark: bookmark=id.2jxsxqh]A linear regression model was used from lm function in R for each protein.  Protein abundances were log-10 transformed first and z-value normalization next.  Covariates were age, sex, genotype PC1-10, and proteomics PC 1-2. The final sample size for EUR and AFR pQTL analyses were 1150 and 200. The sample sizes for healthy control only were 120 AFR and 711 EUR.
[bookmark: bookmark=id.z337ya]CSF pQTL analysis
[bookmark: bookmark=id.3j2qqm3][bookmark: bookmark=id.1y810tw]A linear regression model was used from lm function in R for each protein. Protein-abundances were log-10 transformed first and z-value normalization next.  Covariates were genotype PC1-10 and 60 PEER factors, which were highly associated with age, and sex. The final sample size for EUR pQTL analysis was 1210 and the sample size for healthy control-only pQTL analysis was 588.
Blood eQTL analysis
[bookmark: bookmark=id.4i7ojhp][bookmark: bookmark=id.2xcytpi]Linear regression was used from lm function in R.  RNA TMEM106B gene expression levels were log10 transformed from the raw count values and covariates were age and sex.  The sample size for healthy control only EUR eQTL is 428.
Differential abundance analysis of the PGRN mutation carriers vs the non-carriers 
Linear regression was used from lm function in R for each protein. The plasma protein TMEM106B and GRN levels were log-10 transformed first and z-value normalization next.  Significance (p-value on Figure 3 boxplots) was assessed based on the estimated difference from the linear regression of mutation status on protein level after adjusting for age, sex, and proteomic PC1 and PC2.
Differential abundance analysis of Alzheimer’s cases vs controls
The same methods were used here as for the PRGN mutation carriers vs non-carriers described above. Analyses were done both on plasma and cerebrospinal fluid protein levels of TMEM106B and GRN.

eFigure 1. Effect of age on TMEM106B protein level in CSF and plasma.
A) Scatterplot of normalized plasma TMEM106B protein level against age at plasma draw. The blue line is added for linear smoothing with gray area as the confidence interval.
B) Scatterplot of normalized CSF TMEM106B protein level against the age at CSF draw.  The blue line is added for linear smoothing with gray area as the confidence interval.
C) Table summarizing the correlation analyses of age and TMEM10B protein levels in CSF and plasma.
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[bookmark: bookmark=id.1ci93xb]eFigure 2. Effect of age on TMEM106B or GRN levels in two tissue types in two ancestries
[bookmark: bookmark=id.qsh70q][bookmark: bookmark=id.2bn6wsx][bookmark: bookmark=id.3whwml4]A) Scatterplot of age effects on normalized plasma TMEM106B in AFR ancestry. The blue line is added for linear smoothing with gray area as confidence interval.
B) Scatterplot of age effects on normalized plasma TMEM106B in EUR ancestry. The blue line is added for linear smoothing with gray area as confidence interval.
C) Scatterplot of age effects on normalized CSF TMEM106B in EUR ancestry. The blue line is added for linear smoothing with gray area as confidence interval.
D) A table summarizing the correlation coefficients and p-value for the panels A-C.
[bookmark: bookmark=id.3as4poj]E) Scatterplot of age effects on normalized plasma GRN in AFR ancestry. The blue line is added for linear smoothing with gray area as confidence interval.
F) Scatterplot of age effects on normalized plasma GRN in EUR ancestry. The blue line is added for linear smoothing with gray area as confidence interval.
G) Scatterplot of age effects on normalized CSF GRN in EUR ancestry. The blue line is added for linear smoothing with gray area as confidence interval.
H) A table summarizing the correlation coefficients and p-value for the panels E-G.
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eFigure 3. Effect of sex on TMEM106B or GRN levels in two tissue types in two ancestries.
[bookmark: bookmark=id.1pxezwc][bookmark: bookmark=id.49x2ik5]A) Boxplot of sex effects on normalized plasma TMEM106B in AFR ancestry.
B) Boxplot of sex effects on normalized plasma TMEM106B in EUR ancestry.
C) Boxplot of sex effects on normalized CSF TMEM106B in EUR ancestry.
D) Table summarizing the sex difference and p-value from the linear regression for panels A-C.
[bookmark: bookmark=id.2p2csry]E) Boxplot of sex effects on normalized plasma GRN in AFR ancestry.
F) Boxplot of sex effects on normalized plasma GRN in EUR ancestry.
G) Boxplot of sex effects on normalized CSF GRN in EUR ancestry.
H) Table summarizing the sex difference and p-value from the linear regression for panels E-G.
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eFigure 4. Colocalization analyses between the AD and FTLD-TDP GWAS and the plasma pQTL GWAS (deCODE and ARIC). Note that the FTLD-TDP GWAS only included directly genotyped variants, i.e., not imputed, and thus the intersection of this GWAS and the pQTL GWAS (bottom panels) led to a small number of variants (300 to 600) compared to the intersection of the AD GWAS and the pQTL GWAS. As such, the colocalization analysis is less robust for the FTLD-TDP GWAS. For this reason, the bottom right panel, while indicative of a shared association does show PP3 higher than PP4 when formally computed (green variants spread across the diagonal). Note also, that the linkage (r2) is shown for the EUR 1000 genomes panel and thus does not apply well to the ARIC AA GWAS, which we still show for illustration purposes. 
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eFigure 5. Effects of variants rs1990622(A) and rs3173615(C) on levels of protein TMEM106B in two tissues.
[bookmark: bookmark=id.147n2zr][bookmark: bookmark=id.3o7alnk]A) Boxplot of normalized protein TMEM106B from EUR plasma samples across the genotype of rs3173615 (left) and rs1990622 (right) in healthy controls. 
[bookmark: bookmark=id.ihv636][bookmark: bookmark=id.23ckvvd][bookmark: bookmark=id.32hioqz]B) Boxplot of normalized protein TMEM106B from AFR plasma samples across the genotype of rs3173615 (left) and rs1990622 (right) in healthy controls. 
C) Boxplot of normalized protein TMEM106B from EUR CSF samples across the genotype of rs3173615 (left) and rs1990622 (right) in healthy controls. 
A summary of these results is reported in eTable 2.
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eTable 1. Demographics per ‘omics modalities in the WUSTL Neurogenomics dataset. (Age at blood draw, Sex, diagnostic status (AD: Alzheimer’s disease, HC: Healthy Control, Other: Other diagnosis).

	Tissue
	OmicsType
	Ancestry
	Age Range
	Sex (female/male)
	Status
(AD/HC/Other)

	CSF
	Proteomics
	EUR
	18-91
	599/611
	555/588/67

	Plasma
	Proteomics
	EUR
	33-104
	617/533
	367/711/72

	Plasma
	Proteomics
	AFR
	47-98
	131/69
	77/120/3

	Blood
	RNAseq
	EUR
	45-94
	238/190
	0/428/0







eTable 2. Association of TMEM106B variants across tissues and in multiple populations.

	Tissue
	SNP
	Ancestry
	Status
	Effect size
	pval

	Plasma
	rs3173615
	EUR
	Control
	0.0226
	6.3×10-8

	Plasma
	rs1990622
	EUR
	Control
	0.0227
	5.6×10-8

	Plasma
	rs3173615
	AFR
	Control
	0.0290
	0.0321

	Plasma
	rs1990622
	AFR
	Control
	0.0290
	0.0387

	CSF
	rs3173615
	EUR
	Control
	0.2800
	7.2×10-27

	CSF
	rs1990622
	EUR
	Control
	0.2800
	3.9×10-27
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