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Abstract 28 

Introduction: No conclusive evidence for a link between polyunsaturated fatty acids (PUFA) and 29 

cerebral aneurysm has been found in observational research. The aim of our study was to determine the 30 

causal impact of PUFA on cerebral aneurysm. 31 

Methods: Two sample Mendelian randomization (MR) was performed using genetic instruments 32 

derived from a recent genome wide association study (GWAS) of fatty acids from UK Biobank and 33 

outcome data obtained from the large-scale cerebral aneurysm GWASs in European ancestry which 34 

include IA, aneurysmal subarachnoid hemorrhage (aSAH) and unruptured intracranial aneurysm (uIA). 35 

Sensitivity analyses were implemented with MR-Egger intercept test, MR-PRESSO, leave-one-out 36 

analysis and so on. Bayesian colocalization (COLOC) methods was conducted to focus on the 37 

association between the fatty acid gene expression and cerebral aneurysm. 38 

Results: Genetically predicted assessed omega-3 fatty acids decreased the risk for IA (OR = 0.80, 95% 39 

CI: 0.69 - 0.91, P = 1.01ⅹ10-3) and aSAH (OR = 0.71, 95% CI: 0.61 - 0.84, P = 3.73ⅹ10-5). Furthermore, 40 

the Docosahexaenoic acid decreased the risk for IA (OR = 0.75, 95% CI: 0.63 - 0.87, P = 3.12ⅹ10-4) 41 

and aSAH (OR = 0.67, 95% CI: 0.55 - 0.8, P = 2.32ⅹ10-5). The same results were discovered from ratio 42 

of omega-3 fatty acids to total fatty acids. While the ratio of omega-6 fatty acids to omega-3 fatty acids 43 

increased the risk of IA (OR = 1.27, 95% CI: 1.12 – 1.44, P = 1.53ⅹ10-4) and aSAH (OR = 1.35, 95% 44 

CI: 1.17 – 1.56, P = 5.78ⅹ10-5). The result of the COLOC suggested that the above four kinds of fatty 45 

acids and IA, aSAH likely share causal variants in gene fatty acid desaturase 2, separately.  46 

Conclusion: This study utilized integrative analysis of MR and colocalization to discover causal 47 

relationships between genetic variants, PUFA and cerebral aneurysm.  48 

Funding: This study was funded by the Natural Science Foundation of China (82072777), the Natural 49 

Science Foundation of Xiamen (3502Z20227097), Fujian Provincial Health Commission, Provincial 50 

Health and Health Young and Middle-aged Backbone Talent Training Project (2022GGB010). 51 

 52 

Keywords: polyunsaturated fatty acids, intracranial aneurysm, subarachnoid hemorrhage, Mendelian 53 

randomization. 54 
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Introduction 57 

Intracranial aneurysm (IA) is confined, pathological dilatations of the walls of intracranial arteries, 58 

which currently considered a chronic inflammatory disease that affects the intracranial arteries (Aoki et 59 

al., 2017) with a prevalence of approximately 3% in the general population (Vlak et al., 2011). About 60 

85% of spontaneous subarachnoid hemorrhage (SAH) is due to ruptured IA (Macdonald et al., 2017). 61 

Unruptured IAs (uIAs) are frequently asymptomatic, but IA rupture can result in aneurysmal 62 

subarachnoid hemorrhage (aSAH), which has a poor prognosis (30% of death, 30% of independence 63 

and 30% of dependence), with patients often suffering from a disability or even death (Chen et al., 64 

2020;  (Nieuwkamp et al., 2009). In light of the elevated rates of mortality and morbidity brought on 65 

by IA, it is crucial to explore the pathogenesis of intracranial aneurysm.  66 

   Polyunsaturated fatty acids (PUFA) are fatty acids that contain multiple double bonds in their 67 

molecular structure. According to the position and number of double bonds, polyunsaturated fatty acids 68 

can be further divided into two categories, omega-3 and omega-6. The long-chain omega-3 69 

polyunsaturated fatty acid (omega-3) and docosahexaenoic acid (DHA) have been suggested to have 70 

cardioprotective (Burr et al., 1989;  (Wang et al., 2006), anti-inflammatory (Massaro et al., 2006), 71 

immunoregulatory (Yang et al., 2013), antioxidant (Carrepeiro et al., 2011;  (Bouzidi et al., 2010) and 72 

anti-tumor activities (Calviello et al., 2006). A recent study reported a significant decrease in red blood 73 

cell distribution width, pulse wave analysis and heart rate in patients with abdominal aortic aneurysm 74 

who were supplemented with 1.8 g of long-chain omega-3 polyunsaturated fatty acids for 12 weeks, 75 

suggesting an improving in intravascular inflammation and vascular stiffness (Meital et al., 2019;  76 

(Meital et al., 2020). Omega-3 and DHA down-regulate multiple aspects of the inflammatory process, 77 

such as oxidative stress and inflammation in macrophages (Meital et al., 2019). According to a recent 78 

retrospective study, high levels of free fatty acids on admission can provide some reference predictions 79 

for the poor prognosis of patients with aSAH at 3 months (Wang et al., 2021). Other studies 80 

demonstrated that arachidonic acid (AA) and AA-containing phospholipids were not detected in 81 

unruptured IA walls, whereas AA and AA-containing phospholipids were detected in significantly 82 

higher amounts in ruptured IA walls than in unruptured IA walls (Takeda et al., 2021). 83 

Mendelian randomization (MR) is the use of genetic variation in non-experimental data to 84 

estimate the causal link between exposure and outcome, and it can reduce the impact of behavioral, 85 

social, psychological, and other factors (Davey Smith et al., 2014). And in recent years, many MR 86 

studies have emerged to provide clinical evidence (Hu et al., 2023;  (Yuan et al., 2019). To investigate 87 

the etiology of cerebral aneurysms, it is essential to further clarification of the causal relationship 88 

between PUFAs and cerebral aneurysms through Mendelian randomization. 89 

Methods 90 

Study design 91 

In this study, we performed a two-sample Mendelian randomization analysis to examine the 92 

causal effects of PUFA and cerebral aneurysms using genome wide association study (GWAS) 93 

summary statistics. This instrumental-variable analysis mimics RCT with respect to the random 94 

allocation of single nucleotide polymorphisms (SNPs) in offspring (independent of confounding factors 95 

such as sex and age). In addition, this MR design has to fulfill three assumptions: (i) genetic 96 
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instruments predict the exposure of interest (P < 5×10–8); (ii) genetic instruments are independent of 97 

potential confounders; (iii) genetic instruments affects the outcome only via the risk factors (Boef et al., 98 

2015). The MR analysis used summary GWAS data publicly available from GWASs and no individual 99 

level data used. Due to the fact that each of the original GWASs had obtained ethical approval and 100 

participant consent, they were not required. 101 

Data source and selection of genetic instruments 102 

SNPs associated with 5 PUFAs were obtained from the open GWAS website, containing omega-3 103 

fatty acids, omega-6 fatty acids, DHA, the ratio of omega-3 fatty acids to total fatty acids and ratio of 104 

omega-6 fatty acids to omega-3 fatty acids. According to the GWAS id, we named the ratio of omega-3 105 

fatty acids to total fatty acids and ratio of omega-6 fatty acids to omega-3 fatty acids abbreviated as 106 

omega-3-pct and omega-6 by omega-3, respectively. They are derived from a large-scale UK Biobank 107 

GWAS of fatty acids with 114,999 individuals of European ancestry (Borges et al., 2022). Circulating 108 

omega-3 (i.e., DHA and total omega-3) and omega-6 (i.e., linoleic acid and total omega-6) fatty acid 109 

concentration were measured using a targeted high-throughput nuclear magnetic resonance 110 

metabolomics platform (Julkunen et al., 2021). The mean concentration of total omega-3 fatty acids, 111 

DHA and omega-6 fatty acids was 0.53 (SD 0.22) mmol/L, 0.23 (SD 0.08) mmol/L and 4.45 (SD 0.68) 112 

mmol/L. (Supplementary Table 1) 113 

For the outcome, the genetic effect of the corresponding SNP on IA and aSAH were obtained 114 

from the most recent GWAS with a total of 65796 Europeans (6252 IA cases and 59544 controls) and 115 

63740 Europeans (4196 aSAH cases and 59544 controls) after excluding UK Biobank (Bakker et al., 116 

2020). And Summary statistics for uIA phenotypes were extracted from the from the FinnGen database 117 

(https://r8.finngen.fi/pheno/I9_ANEURYSM) with a total of 314556 Europeans (1788 uIA cases and 118 

312768 controls). (Supplementary Table 1) 119 

According three essential model assumptions of MR. First, SNPs were associated with the 120 

appropriate exposure at the genome-wide significance threshold P < 5×10-8. Second, to quantify the 121 

strength of the genetic instruments, SNPs with an F statistic less than 10 were excluded. Third, we 122 

clustered SNPs in linkage disequilibrium (LD, R2≥0.001 and within 10 mb). Fourth, to eliminate 123 

unclear, palindromic and associated with known confounding factors (body mass index (McDowell et 124 

al., 2018), blood pressure (Sun et al., 2022), type 2 diabetes (Tian et al., 2022), high-density lipoprotein 125 

(Huang et al., 2018)) SNPs. Fifth, If an instrumental SNP for the exposure was not available from the 126 

outcome data set, we replaced it with a suitable proxy SNP (r2>0.8 in the European 1000 Genomes 127 

Project reference panel using LDlink https://ldlink.nci.nih.gov/]) or removed it in the absence of such a 128 

proxy. SNPS located in the MHC region were removed. Finally, removing SNPs with potential 129 

pleiotropy and outlier through mendelian randomization pleiotropy residual sum and outlier 130 

(MR-PRESSO). Then, the heterogeneity between-SNP were tested using inverse variance weighting 131 

(IVW) and the MR‒Egger method based on the SNPs that were retained after pleiotropy correction. 132 

(Figure 1.) Details of the SNPs used as instrumental variables were displayed in Supplementary Tables 133 

2 - 4.  134 

Mendelian randomization analyses and Sensitivity analysis  135 
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Eleven MR analytical approaches were used in this study to investigate the causal impacts of 136 

PUFA on the cerebral aneurysm. As the main analysis, we used standard IVW estimates, is 137 

characterized by an analysis that does not take into account the presence of an intercept term and uses 138 

the inverse of the outcome variance (quadratic of the standard error) as a weight to provide a 139 

comprehensive estimate of the impact of the PUFA on the cerebral aneurysm. Furthermore, additional 140 

MR analyses, such as MR-Egger regression, weighted median, simple mode, weighted mode methods 141 

and so on were implemented as complements to the IVW, because these methods could provide more 142 

robust estimates over a wider range of scenarios. The MR-Egger method can provide causal estimates 143 

that are unaffected by breaches of standard IV assumptions and can detect whether standard IV 144 

assumptions are violated (Bowden et al., 2015). The weighted median method provides consistent 145 

estimates of effect, when at least half of the weighted variance provided by horizontal pleiotropy is 146 

valid (Bowden et al., 2016). We also performed reverse MR studies, where the cerebral aneurysms 147 

were treated as the exposure and PUFA was treated as the result, in order to thoroughly investigate the 148 

potential existence of reverse causation. To assess the robustness of the above results, a series of 149 

sensitivity analyses, including IVW, MR-Egger, MR-Egger intercept test, MR-PRESSO global test and 150 

“leave-one-out” method were conducted. 151 

Bayesian colocalization (COLOC) 152 

Bayesian colocalization (COLOC) analysis assesses whether single-nucleotide variants linked to 153 

gene expression and phenotype at the same locus are shared causal variants, and thus, gene expression 154 

and phenotype are “colocalized.” This approach assumes that: (1) in each test region, there exists at 155 

most one causal SNP for either trait; (2) the probability that a SNP is causal is independent of the 156 

probability that any other SNP in the genome is causal; (3) all causal SNPs are genotyped or imputed 157 

and included in analysis. According to these assumptions, there are five mutually exclusive hypotheses 158 

for each test region: (1) there is no causal SNP for either trait (H0); (2) there is one causal SNP for trait 159 

1 only (H1); (3) there is one causal SNP for trait 2 only (H2); (4) there are two distinct causal SNPs, 160 

one for each trait (H3); and (5) there is a causal SNP common to both traits (H4). A large PP for H4 161 

(PP.H4 above 0.75) strongly supports shared causal variants affecting both gene expression and 162 

phenotype (Kurki et al., 2023).  163 

Statistical Analysis 164 

For the MR analysis, IVs with F values over 10 were considered strong instruments that could 165 

alleviate bias from weak instruments (Pierce et al., 2011). The formula used to calculate F values is as 166 

follows: F = [(N-K-1) R2]/[k(1-R2)], where R2 represents the proportion of variance explained by the 167 

genetic variants, N represents the sample size, and k represents the number of included SNPs. R2 = 168 

∑ 2β2(1 − 𝐸𝐴𝐹)𝐸𝐴𝐹𝑘
1 , where EAF is the effect allele frequency and β is the estimated effect on LTL 169 

(Park et al., 2010). Given the limited number of cases in the GWAS, we calculated the statistical power 170 

for MR analysis using the mRnd website (https://shiny.cnsgenomics.com/mRnd/). To account for 171 

multiple testing in our primary analyses, a Bonferroni-corrected threshold of P < 0.0033 (α=0.05/15 [5 172 

exposures and 3 outcomes]) was applied. All statistical analyses performed in this investigation were 173 

carried out using the “TwoSampleMR”, “phenoscanner”, “RadialMR”, “MendelianRandomization” 174 

and “MRPRESSO” packages in R software (version 4.2.2). 175 
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Results 176 

According to the above methodology, we filtered out the corresponding SNPs. (Supplementary 177 

Table 2 – 4)  178 

In the outcome of IA, IVW analysis indicated that omega-3 fatty acid  (OR = 0.80, 95% CI: 0.69 179 

- 0.91, P = 1.01ⅹ10-3), DHA (OR = 0.75, 95% CI: 0.63 - 0.87, P = 3.12ⅹ10-4) and omega-3-pct (OR = 180 

0.8, 95% CI: 0.71 - 0.90, P = 2.34ⅹ10-4) decreased the risk for IA. And omega-6 by omega-3 increased 181 

the risk for IA (OR = 1.27, 95% CI: 1.12 – 1.44, P = 1.53ⅹ10-4). The results and directionality of other 182 

MR methods revealed consistency. (Supplementary Figure 1) However, there was no any causal 183 

relationship between Omega-6 fatty acid and IA. (Figure 2.) 184 

In the outcome of aSAH, omega-3 fatty acid (OR = 0.71, 95% CI: 0.61 - 0.84, P = 3.73ⅹ10-5), 185 

DHA (OR = 0.67, 95% CI: 0.55 - 0.80, P = 2.32ⅹ10-5) and omega-3-pct (OR = 0.76, 95% CI: 0.66 - 186 

0.87, P = 1.16ⅹ10-4) decreased the risk for aSAH. And omega-6 by omega-3 increased the risk for 187 

aSAH (OR = 1.35, 95% CI: 1.17 – 1.56, P = 5.78ⅹ10-5). The results and directionality of other MR 188 

methods revealed consistency. (Supplementary Figure 2) However, there was no any causal 189 

relationship between omega-6 fatty acid and aSAH. (Figure 3.) 190 

In the outcome of uIA, there was no any causal relationship between all of the above five PUFAs 191 

and uIA. (Figure 4.) In the result of reverse MR, MR analysis of all groups failed sterling filiting test. 192 

To assess the robustness of the above results, a series of sensitivity analyses, including MR-Egger, 193 

IVW, MR-Egger intercept test, “leave-one-out” method and MR-PRESSO global test, were conducted 194 

(Supplementary Table 5 and Supplementary Figure 3-5). All P-values of the MR-Egger intercept tests, 195 

Q test and MR-PRESSO were > 0.05, indicating that no horizontal pleiotropy and heterogeneity existed. 196 

All steiger test indicated correct directionality. 197 

Although there is consistent evidence that PUFAs have a beneficial causal effect on cerebral 198 

aneurysm, it is uncertain if PUFAs are mediators in the hereditary causative route of cerebral aneurysm. 199 

For achieve that, we tested for shared causative SNPs between PUFAs and cerebral aneurysm using 200 

COLOC. In COLOC analysis, we further calculated the posterior probability of each SNP being causal 201 

to both of the traits (PPH4). We identified shared causal SNP of omega-3 fatty acid and IA, aSAH in 202 

gene fatty acid desaturase 2 (FADS2), respectively. Similarly, in DHA, omega-3-pct, omega-6 by 203 

omega-3, these three fatty acids and IA, aSAH also obtain the same result. (Table 1.) 204 

 205 

 206 

Discussion 207 
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PUFA supplementation is controversial for the prevention of cerebral aneurysm disease, while 208 

cerebral aneurysm is a heterogeneous disease with various pathogenic mechanisms. Here, we 209 

implemented multiple rigorous MR methods to appraise the possible causal association of PUFA with 210 

cerebral aneurysm and its different states. We demonstrated that the omega-3 fatty acids, DHA, 211 

omega-3-pct, and omega-6 by omega-3 causally decreased the risk for IA and aSAH. And omega-6 212 

fatty acids causally increased the risk of IA and aSAH. In addition to IVW, consistency was seen in the 213 

outcomes and directionality of different MR methods. We identified shared causal SNPs of omega-3 214 

fatty acid, DHA, omega-3-pct, omega-6 by omega-3 and IA in genes FADS2, respectively. The same 215 

results were acquired from these four PUFAs and aSAH. The results of reverse MR and COLOC 216 

jointly increase the validity of our findings. 217 

This could be connected to PUFAs can decrease the aneurysm's inflammatory process. The 218 

pathophysiology of IA involves inflammatory processes (Ge et al., 2022), which may include 219 

degeneration of the endothelium and vasa vasorum, as well as fragmentation of the internal elastic 220 

lamina (Nakatomi et al., 2000;  (Meng et al., 2014). As an underlying mechanism, the prostaglandin 221 

E2 in macrophages was considered by Aoki et al. as a factor regulating such chronic inflammation 222 

involved in the progression and rupture of IAs (Aoki et al., 2017). However, multiple elements of the 223 

inflammatory process, including oxidative stress and inflammation in macrophages, can be 224 

downregulated by omega-3 and DHA (Meital et al., 2019). In the Abdominal aortic aneurysm (AAA), 225 

supplementation with the omega-3 PUFA, DHA, suppressed production of 8-isoprostane, the gold 226 

standard biomarker of oxidative stress and a specific marker of lipid peroxidation (Kadiiska et al., 227 

2005). The results concord with data from both experimental animal studies (Saraswathi et al., 2007;  228 

(Zúñiga et al., 2010) and human clinical trials (Mori et al., 2003;  (Barden et al., 2015) that suggest 229 

omega-3 PUFAs  decrease 8-isoprostane levels and ease oxidative stress. The findings from a 230 

randomized controlled trial suggest that omega-3 PUFAs improve erythrocyte fatty acid profile and 231 

ameliorate factors associated with inflammation in AAA patients (Meital et al., 2019). For aSAH, a 232 

prospective study demonstrated that administration of omega-3 fatty acids after aneurysmal SAH may 233 

reduce the frequency of cerebral vasospasm through the effects of anti-inflammatory and reduce both 234 

platelet aggregation and plasma triglycerides, and have neuroprotective effects and may improve 235 

clinical outcomes (Nakagawa et al., 2017). At the same time, it may have a preventive effect on the 236 

complication of intracranial hemorrhage after aneurysm surgery (Saito et al., 2017). A multi-center 237 

study with a sizable sample size is still required to clarify the trend of the effect of omega-3 fatty acids 238 

on aSAH, even though the favorable outcomes of these two studies have a certain reference value. 239 

Furthermore, Ririko et al. findings that AA and AA-containing phospholipids were not detected in the 240 

unruptured IA while they were detected in a significantly larger amount in the ruptured IA and suggest 241 

that the stability of the turnover of AA and linoleic acid in human unruptured IA walls is sustained 242 

(Takeda et al., 2021). Several earlier studies employing rat model found that the thickened aneurysmal 243 

wall and various brain areas after subarachnoid hemorrhage had higher amounts of free fatty acids, 244 

including AA  (Gewirtz et al., 1999;  (Ikedo et al., 2018). This is in line with results of our MR 245 

analyses between omega-6 fatty acid and aSAH. 246 

Besides, in the development of cardiovascular disease, genetically higher plasma α-linolenic and 247 

linoleic are inversely associated with large-artery stroke and venous thromboembolism, whereas AA 248 

level have a favorable correlation with these cardiovascular diseases (Yuan et al., 2019). This is may be 249 

associated with the ∆5-desaturase and ∆6-desaturase, which are the primary rate-limiting enzyme for 250 

the synthesis of inborn long-chain PUFAs and is encoded by the fatty acid desaturase 1 (FADS1) gene 251 
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and fatty acid desaturase 2 (FADS2) gene (Simopoulos, 2010). Even the aortic valve's fatty acid 252 

composition might be impacted by FADS1  (Plunde et al., 2020). In our COLOC analysis, we 253 

identified shared causal SNP of omega-3 fatty acid and IA, aSAH in gene fatty acid desaturase 2 254 

(FADS2), respectively. The same result was also found in DHA, omega-3-pct, omega-6 by omega-3. It 255 

is obvious that omega-3 fatty acids play a vital role in vascular-related diseases. Conversely, it's 256 

incorrect to assume that all forms of omega-6 fatty acids would worsen blood vessel damage. More 257 

thorough large-sample study is still required for additional validation. 258 

However, several limitations should be taken into account in our study. First, given that the 259 

participants in this study were form European population, the results of this study cannot be smoothly 260 

extrapolated to other ethnic groups with diverse lifestyles and cultural backgrounds. Hence, further 261 

multi-ancestry studies are needed to evaluate whether our findings can be generalized to individuals of 262 

other ancestries. Second, since MR analyses extrapolated causal hypotheses by exploiting the random 263 

allocation of genetic variants, it was difficult to completely distinguish between mediation and 264 

pleiotropy using MR approaches. The generous variants in our genome probably affect one or more 265 

phenotypes, even though we made an effort to remove the impacts of pleiotropic and heterogeneous 266 

factors and confounders, some effects may still be there. Third, not all SNPs were examined, as some 267 

were removed because of LD (and no proxy SNPs were found), which may have impacted the results. 268 

Fourth PUFAs were measured from nonfasting peripheral plasma specimens, not aneurysm cavity 269 

blood and aneurysm wall tissue Fifth, there is currently a lack of GWAS datasets of cerebral aneurysms 270 

from different cerebrovascular sites, and exploring the relationship between genetically predicted 271 

PUFAs and the occurrence of specific types of cerebral aneurysms remains a challenge in current MR 272 

analyses. 273 

Conclusion 274 

In view of the extremely poor prognosis of cerebral aneurysms and the high mortality rate of 275 

secondary rupture, our research focuses on the causal relationship between PUFAs and cerebral 276 

aneurysms to improve our understanding of the pathogenic mechanism of various PUFAs in cerebral 277 

aneurysms. And provide new insights into the diagnosis and treatment of brain aneurysms in the future. 278 
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Figure legends 489 

Figure 1. Flowchart showing Mendelian randomization.  490 

MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and 491 

outlier; SNPs, single-nucleotide polymorphisms; MVMR, multivariable Mendelian randomization; 492 

IVW, inverse variance weighting; PUFA: polyunsaturated fatty acids; COLOC: colocalization. 493 

 494 

Figure 2. Mendelian randomization analysis of the association between PUFA and IA.  495 

PUFA: polyunsaturated fatty acids; IA: intracranial aneurysm; nSNP: number of single-nucleotide 496 

polymorphisms; OR: odds ratio; CI: confidence interval; MR, Mendelian randomization; IVW, inverse 497 

variance weighting; DHA: docosahexaenoic acid. 498 

 499 

Figure 3. Mendelian randomization analysis of the association between PUFA and aSAH.  500 

PUFA: polyunsaturated fatty acids; aSAH: aneurysmal subarachnoid hemorrhage; nSNP: number of 501 

single-nucleotide polymorphisms; OR: odds ratio; CI: confidence interval; MR, Mendelian 502 

randomization; IVW, inverse variance weighting; DHA: docosahexaenoic acid. 503 

 504 

Figure 4. Mendelian randomization analysis of the association between PUFA and uIA.  505 

PUFA: polyunsaturated fatty acids; uIA: unruptured intracranial aneurysm; nSNP: number of 506 

single-nucleotide polymorphisms; OR: odds ratio; CI: confidence interval; MR, Mendelian 507 

randomization; IVW, inverse variance weighting; DHA: docosahexaenoic acid. 508 

 509 
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