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Appendix 1.A

1.A.1 LMM Foundations

In this section, we use In to denote the n × n identity matrix; 0 to denote the all-zeros matrix or
vector, with appropriate subscripts (if needed) to indicate dimensions; det(X) denotes the determi-
nant of the matrix X; and tr(X) denotes the trace of the matrix X. Recall that a two component
genomic variance model for linear mixed models is typically described in the following form:

y = Xβ + 1√
m

Zu + e,

where y ∈ Rn is the measured phenotype (response); X ∈ Rn×k is the matrix of the k covariates
(e.g. principal components, age, sex, etc.) with the corresponding vector of fixed effects β ∈ Rn;
Z ∈ Rn×m is the genotype matrix of n individuals genotyped on m genetic markers with u ∈ Rm

being the corresponding genetic effects vector; and e ∈ Rn is the error vector or the component
of y which cannot be explained by the model. We assume u and e are independent vectors and
moreover that u ∼ N

(
0, σ2

g Im

)
and e ∼ N

(
0, σ2

e In
)

with scalars σ2
g and σ2

e being the heritable
and non-heritable components of u and e respectively. In the LMM setting, some form of maximum
likelihood estimation is used to estimate the random and fixed effects components of the model in
order to identify genetic associations while correcting for confounding effects. Define

Hτ = 1
m

ZZT + τIn. (1)

Note that as y is a linear transformation3 of the independent multivariate normal random vectors
u and e, it is also multivariate normal and in fact,

y ∼ N (Xβ, σ2
g Hτ ) ,

where τ = σ2
e

σ2
g
. Let UX,⊥ ∈ Rn×(n−k) be a projection to a (n − k)-dimensional subspace that is

perpendicular to the columns of X i.e. UT
X,⊥X = 0. So, we can rewrite the model by pre-multiplying

both sides by UT
X,⊥ to get

UT
X,⊥y = 1√

m
UT

X,⊥Zu + UT
X,⊥e . (2)

3 Recall that if p ∼ N (µp, Σp), then Ap + q ∼ N (Aµp, AΣpAT) .



Clearly, UT
X,⊥y is also a linear transformation on y and therefore, we have UT

X,⊥y ∼ N (0, σ2
g UT

X,⊥Hτ UX,⊥) .
Now, given the data, we express the likelihood function as follows

L(τ, σ2
g | UT

X,⊥y) =
exp

(
− 1

2σ2
g

yTUX,⊥(UT
X,⊥Hτ UX,⊥)−1UT

X,⊥y
)

(2π)
n−k

2 ·
(
det(σ2

g UT
X,⊥Hτ UX,⊥)

)1/2 . (3)

We now get the log-likelihood just by taking the log on the both sides of eqn. (3) as follows:

ℓ(τ, σ2
g | UT

X,⊥y) = −n − k

2 log 2π − n − k

2 log σ2
g − 1

2 log
(
det(UT

X,⊥Hτ UX,⊥)
)

− 1
2σ2

g

· yTUX,⊥(UT
X,⊥Hτ UX,⊥)−1UT

X,⊥y. (4)

Differentiation of eqn. (4) w.r.t σ2
g and τ yields

∂ℓ

∂σ2
g

= −n − k

2σ2
g

+ 1
2σ4

g

yTUX,⊥(UT
X,⊥Hτ UX,⊥)−1UT

X,⊥y (5a)

∂ℓ

∂τ
= −1

2 · ∂∆1
∂τ

− 1
2σ2

g

· ∂∆2
∂τ

, (5b)

where ∆1 = log
(
det(UT

X,⊥Hτ UX,⊥)
)

and ∆2 = yTUX,⊥(UT
X,⊥Hτ UX,⊥)−1UT

X,⊥y. Next, we dif-
ferentiate each of the terms on the right hand side of eqn. (5b) separately. First,

∂∆1
∂τ

=
∂ log

(
det(UT

X,⊥Hτ UX,⊥)
)

∂ det(UT
X,⊥Hτ UX,⊥)

·
∂ det(UT

X,⊥Hτ UX,⊥)
∂τ

= 1
det(UT

X,⊥Hτ UX,⊥)
· det(UT

X,⊥Hτ UX,⊥) tr
(

(UT
X,⊥Hτ UX,⊥)−1 ∂(UT

X,⊥Hτ UX,⊥)
∂τ

)

= tr

(UT
X,⊥Hτ UX,⊥)−1

∂
(

1
mUT

X,⊥ZZTUX,⊥ + τIn−k

)
∂τ

 = tr
(
(UT

X,⊥Hτ UX,⊥)−1
)

, (6)

where the second equality follows from ∂ det(A)
∂x = det(A) tr

(
A−1 ∂A

∂x

)
. Similarly for the second

term in eqn. (5b), we have

∂∆2
∂τ

=
∂
(
yTUX,⊥(UT

X,⊥Hτ UX,⊥)−1UT
X,⊥y

)
∂τ

= yTUX,⊥

(
∂(UT

X,⊥Hτ UX,⊥)−1

∂τ

)
UT

X,⊥y

= yTUX,⊥

(
−(UT

X,⊥Hτ UX,⊥)−1
(

∂(UT
X,⊥Hτ UX,⊥)

∂τ

)
(UT

X,⊥Hτ UX,⊥)−1
)

UT
X,⊥y

= − yTUX,⊥(UT
X,⊥Hτ UX,⊥)−2UT

X,⊥y = −
∥∥∥(UT

X,⊥Hτ UX,⊥)−1UT
X,⊥y

∥∥∥2

2
, (7)

where the second equality holds as ∂A−1

∂x = −A−1 ∂A
∂x A−1 and the last equality directly follows from

eqn. (6) that ∂
(

U⊤
X,⊥Hτ UX,⊥

)
∂τ = In−k . Finally, combining eqns. (6) and (7), we rewrite eqn. (5b) as

follows

∂ℓ

∂τ
= −1

2 tr
((

U⊤
X,⊥Hτ UX,⊥

)−1
)

+ 1
2σ2

g

∥∥∥∥(UT
X,⊥Hτ UX,⊥

)−1
U⊤

X,⊥y
∥∥∥∥2

2
. (8)
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Equating eqns. (5a) and (8) to zero gives the REML estimators. The resulting equations clearly
have no analytic solution and have to be solved numerically. A standard iterative procedure [2,4,6]
(i.e. Newton’s method) is to first assign initial values to τ and then (i) solve

σ̂2
g =

y⊤UX,⊥
(
U⊤

X,⊥Hτ UX,⊥
)−1

U⊤
X,⊥y

n − k
(9)

based on eqn. (5a), and (ii) use the τ and σ̂2
g from eqn. (9) to calculate new τ that makes eqn. (8)

closer to zero. Repetition of (i) and (ii), ending at (i), is continued until a desired degree of accuracy
is attained.

Computing UX,⊥. One way to compute UX,⊥ to use a QR decomposition on the matrix of
covariates X. Then, the matrix Q ∈ Rn×k would be a basis for the column span of X. Then, it
follows that

UX,⊥UT
X,⊥ = I − QQT = I − UXUT

X.

Newton’s Method. As stated above, the system of equations emerging from the log-likelihood
estimation have no analytic solution and need to be solved numerically. We chose to use a standard
iterative approach (Newton’s method) to estimate the parameters. More specifically, we use the
secant method which is a finite-difference approximation of Newton’s method.

Algorithm 1 Newton’s Method to estimate variance components of LMM
1: Input: Sketched response vector ys1 ∈ Rn, sketched GRM matrix K ∈ Rs1×s1 , number of

samples n, number of markers m, number of covariates k, tolerance for iterative method tol,
initial guess τ0.

2: Output: Estimated variance components (τ0, σ2
g)

3: newton_raphson(ys1 , K, UX, n, m, k, tol, τ0) :
4: Hτ = 1

mK + τ0In

5: P = (I − UXU⊤
X)Hτ (I − UXU⊤

X)
6: Pinv = P†

7: σ2
g = 1

n−k y⊤
s1Pinvys1

8: lle = −n−k
2 log 2π − n−k

2 log σ2
g − 1

2 log(det(P)) − n−k
2

9: Use secant method on lle to determine current δ (convergence criterion)
10: if |δ| < tol :
11: return τ0, σ2

g

12: else:
13: return newton_raphson(ys1 , K, UX, n, m, k, tol, τ0 − δ)
14: end

Appendix 1.B Our theoretical contributions

In this section, we show that sketching the random effects matrix Z ∈ Rn×m of an LMM described in
Section 2.1 maintains enough information for effective statistical inference. Specifically, we focus on
the binary testing problem for an LMM, where we decide between two parameter sets, (σ2

g,0, τ0) and
(σ2

g,1, τ1). We show that by replacing the random effects matrix in an LMM4 ZS, where S ∈ Rm×s is
4 For notational simplicity, in this section we drop the subscript in the marker sketching matrix S2 and denote it by

just S. We also drop the subscript in the marker sketching dimension s2 and denote it by just s.
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a Gaussian sketching matrix and s is linear in n, the original problem can be decided with arbitrarily
small increase in the testing error by instead deciding the sketched problem. See Theorem 3 for a
precise statement of our results.

Let PD(·) denote the probability of an event under the distribution D. We will use results about
the following random matrix distribution.

Definition 1. (Wishart Ensemble) An n × n matrix W is sampled from a Wishart ensemble
with p degrees of freedom and covariance matrix Σ (denoted W ∼ Wn(p, Σ)) if W = GGT , where
G ∈ Rn×p and each row of G is distributed i.i.d. as Gi∗ ∼ N (0p, Σ).

Next, we introduce some necessary concepts from information theory. For more information on the
below definitions and theorems, we refer the reader to [7].

Definition 2. (KL-Divergence) Given probability distributions P and Q both supported on the
set X with probability density functions p(·) and q(·) respectively, the KL-divergence from Q to P
is denoted by:

DKL(P||Q) =
∫

X
p(x) log2

p(x)
q(x) .

If there exists x ∈ X such that q(x) = 0 and p(x) ̸= 0 or vice-versa, then the KL-divergence is
defined to be infinite.

Definition 3. (Total Variation Distance) Given probability distributions P and Q both sup-
ported on the set X , the total variation distance is denoted by:

DTV(P, Q) = sup
X⊂X

∣∣PP(X) − PQ(X)
∣∣.

The so-called “data processing inequality” is stated in many forms, but the following will be most
useful for our purposes. It will allow us to bound the KL-divergence between two distributions by
bounding the KL-divergence between a different pair of distributions.

Theorem 1. (Data processing inequality) Let P and Q be probability distributions with prob-
ability density functions, and let f(·) be an arbitrary (possibly random) function where the random-
ness of f(·) is independent from P and Q. Then, the following inequality holds,

DKL(f(P) || f(Q)) ≤ DKL(P || Q),

where f(P) and f(Q) denotes the distribution of f(·) applied to the random variables with the
respective distributions.

The following well-known inequality allows us bound total variation distance between two distri-
butions by the KL-divergence.

Theorem 2. (Pinsker’s inequality) Let P and Q be probability distributions that have corre-
sponding probability density functions. Then,

DTV(P, Q) ≤
√

1
2DKL(P||Q).

First, we start by bounding the KL-divergence between zero-centered multivariate Gaussian distri-
butions with differing covariance matrices. The bound in KL-divergence between these distributions
will later be used to bound the KL-divergence between different LMMs via the data-processing in-
equality.
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Lemma 1. Let D1 = N (0, ZZT ) and D2 = N (0, ZSST ZT ), where Z ∈ Rn×m is a fixed full-rank
matrix with m > n and S ∈ Rm×s is a Gaussian sketching matrix. i.e., each entry of S is i.i.d. as
Sij ∼ N (0, 1/s). If s = O

(
n
ϵ2

)
, then for large enough n, with probability at least 0.98,

DKL(D1||D2) ≤ ϵ.

Proof. By Section 9 of [3], we have the following closed form expression for the KL-divergence
between D1 and D2:

DKL(D2||D1) = 1
2

(
log det ZZT

det ZSST ZT
− n + tr[(ZZT )−1(ZSST ZT )]

)
.

We will bound the KL-divergence between D1 and D2 with high probability over the distribution
of the sketching matrix S. We first bound the log-determinant term.

Note that each row of ST ZT is independently distributed as [ST ZT ]i ∼ N (0, ZZT ). Hence,
ZSST ZT is distributed as a Wishart ensemble. By Theorem 1 in [1], if n

s → η ∈ (0, 1),

log det ZSST ZT −
∑n

i=1 log
(
1 − i

s−1

)
− log det ZZT√

−2 log
(
1 − n

s

) →L N (0, 1) as s → ∞,

where →L denote convergence in distribution. For fixed η, we can simplify the summation term as
follows:

n∑
i=1

log
(

1 − i

s − 1

)
→
∫ η

0
log (1 − x) dx = (η − 1) log(1 − η) − η, as n → ∞,

n

s
→ η.

Therefore, for large n and s, we have the following asymptotic equality in distribution (denoted by
≈D), where g ∼ N (0, 1),∣∣∣log det ZSST ZT − log det ZZT

∣∣∣ ≈D

√
−2 log (1 − η) · g + (η − 1) log(1 − η) − η. (10)

Using the inequality log(x) ≥ 2x − 2 for x ∈ [1/2, 1], we can solve for a value of η ∈ (0, 1/2) that
guarantees that | log det ZSST ZT − log det ZZT | is bounded by some ϵ ∈ (0, 1). With probability
0.99, |g| ≤ 3. Hence, with probability at least 0.99,

| log det ZSST ZT − log det ZZT | ≈D

√
−2 log (1 − η) · g + (η − 1) log(1 − η) − η

≤
√

4η · 3 + 2(1 − η)η − η

≤ C
√

η,

where C is some universal constant. Therefore, η = O(ϵ2) suffices to guarantee that

| log det ZSST ZT − log det ZZT | < ϵ

in the previous inequality asymptotically with probability at least 0.99. While eqn. (10) only denotes
asymptotic equality in distribution, convergence in distribution implies that the probability that

| log det ZSST ZT − log det ZZT | > C
√

η
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holds differs from the asymptotic result by an arbitrarily small amount for large enough n. There-
fore, for large enough n and s = Ω( n

ϵ2 ), we conclude that:

P
(
| log det ZSST ZT − log det ZZT | < ϵ

)
≥ 0.985. (11)

We will use this inequality to bound the KL-divergence later. However, next, we bound the trace
term. First, we rearrange the equation using the cyclic property of the trace:

tr[(ZZT )−1(ZSST ZT )] = tr[ST ZT (ZT Z)−1ZS] = tr[ST PZS],

where PZ ∈ Rm×m is the projection to the row space of Z. Note that the projection is idempotent,
and so,

tr[ST PZS] = tr[PZSST PZ] = tr
[
PZ · Wm

(
s,

1
s

· I
)

· PZ

]
,

where we use that SST ∼ Wm(s, 1
s · Im), i.e., SST is distributed as a m × m Wishart ensemble

with s degrees of freedom and covariance matrix equal to 1
s · Im. Since the Wishart ensemble

is rotationally invariant (this immediately follows from rotational invariance of the multivariate
Gaussian distribution), we can assume without loss of generality that PZ is the projection to the
first n standard basis vectors. From here it is easier to see that:

tr
[
PZ · Wm

(
s,

1
s

· I
)

· PZ

]
= tr

[
Wn

(
s,

1
s

· I
)]

,

where we consider the size n × n Wishart matrix, since all entries not in the top n × n corner of
PZ · Wm

(
s, 1

s · I
)

· PZ are zero. We then observe that the trace of Wn

(
s, 1

s · I
)

is the sum of the
diagonal entries, and the i-th diagonal entry is equal to ⟨gi, gi⟩, where gi ∈ Rs and gi ∼ N (0, 1

s · I).
Therefore,

tr
[
Wn

(
s,

1
s

· I
)]

=
n∑

i=1

1
s

·
s∑

j=1
g2

ij ,

where gij ∼ N (0, 1). Note that g2
ij is then a chi-squared random variable. The expectation of the

above trace is n, and by Lemma 1 in [5],

P

|
n∑

i=1

1
s

·
s∑

j=1
g2

ij − n| > ϵ

 ≤ P

|
n∑

i=1

s∑
j=1

g2
ij − ns| > 4

√
n · ϵ

√
s

4

 ≤ exp
(

−ϵ2s

16

)
.

Therefore, for every ϵ ∈ (0, 1), we conclude the following:

P
(
| tr[(ZZT )−1(ZSST ZT )] − n| > ϵ

)
→ 0 as n → ∞,

s

n
≥ 1. (12)

Therefore, by eqns. (11, 12), for large enough n and s = Cn
ϵ2 , for some universal constant C, we

have with probability at least 0.98 over the distribution of the Gaussian sketching matrix S ∈ Rm×s

that,

DKL(D2||D1) = 1
2

(
log det ZZT

det ZSST ZT
− n + tr[(ZZT )−1(ZSST ZT )]

)
≤ 1

2(ϵ + ϵ) ≤ ϵ.

Hence, we conclude the lemma statement.
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We also note that s ≥ n is necessary for the statement to hold, otherwise the distributions
would have different support and the KL-divergence would be infinite. This implies the dependency
of our sketch size on n in the above lemma is optimal.

We now show that one can perform a binary hypothesis test on the parameters of an LMM
described in Section 2.1 by performing it instead on a sketched version of the model while only
increasing the error probability of the test by an arbitrarily small term ϵ. Intuitively, this means
that we can use sketching to reduce the number of columns in the random effects matrix Z to a
size that is linear in n while preserving the information of the distribution.

Theorem 3. Consider the binary hypothesis testing problem for the probabilistic model described in
Section 2.1 with two sets of parameters, (σ2

g,0, τ0) and (σ2
g,1, τ1). Let D0 = N (Xβ, σ2

g,0 · ZZT + τ0In)
and D1 = N (Xβ, σ2

g,1 ·ZZT +τ1I) represent the null and alternative hypothesis of the original model.
Let D̃0 = N (Xβ, σ2

g,0 · ZSST ZT + τ0In) and D̃1 = N (Xβ, σ2
g,1 · ZSST ZT + τ1I), where S ∈ Rm×k

is a Gaussian sketching matrix, represent the corresponding sketched distributions.
If h : Rn → {0, 1} is a hypothesis test which satisfies:

PD̃0
(h(y) ̸= 0) + PD̃1

(h(y) ̸= 1) ≤ ∆,

i.e., the sum of type one and type two error on the sketched testing problem is at most ∆, then for
s = O( n

ϵ4 ), with probability at least 0.98 over the distribution of S,

PD0(h(y) ̸= 0) + PD1(h(y) ̸= 1) ≤ ∆ + ϵ.

Proof. First, by the data processing inequality (Theorem 1),

DKL(D0 || D̃0) ≤ DKL(N (0, ZZT ) || DKL(N (0, ZSST ZT )).

To see this, observe that given r ∼ N (0, ZZT ) and r̃ ∼ N (0, ZSST ZT ), we can sample d ∼
N (Xβ, τ0I). Then, σg,0 · r + d ∼ D0 and σg,0 · r̃ + d ∼ D̃0. Notice that the randomness of d is
independent from D0 and D̃0.

Next, let H0, H̃0, H1, and H̃1 denote the distribution of h(y) where the distribution of y is
given by D0, D̃0, D1, and D̃1 respectively. Any valid hypothesis test h(·) must be independent from
D0 and D̃0, so we again apply the data processing inequality to conclude:

DKL(H0 ||H̃0) ≤ DKL(D0 || D̃0) ≤ DKL(N (0, ZZT ) || N (0, ZSST ZT )).

Hence, by Lemma 1 and Pinsker’s inequality (Theorem 2),

DTV
(
H0, H̃0

)
≤
√

1
2DKL(N (0, ZZT ) || DKL(N (0, ZSST ZT )) ≤ ϵ,

with probability at least 0.98 over the distribution of the Gaussian sketch S with s = O
(

n
ϵ4

)
. By

the same argument, DTV
(
D1, D̃1

)
≤ ϵ. Then,

|PD0(h(y) ̸= 0) − PD̃0
(h(y) ̸= 0)| ≤ sup

H⊂{0,1}
|PH0(h ∈ H) − PH̃0

(h ∈ H)| = DTV(H0, H̃0) ≤ ϵ.

By the same argument, |PD1(h(y) ̸= 1) − PD1(h(y) ̸= 1)| ≤ ϵ. We can now derive the statement of
the theorem using the previous inequalities and the assumption on the hypothesis test h(·).

PD̃0
(h(y) ̸= 0) + PD̃1

(h(y) ̸= 1) ≤ ∆

7



⇒
PD0(h(y) ̸= 0) + PD1(h(y) ̸= 1)

≤ ∆ + |PD0(h(y) ̸= 0) − PD0(h(y) ̸= 0)| + |PD1(h(y) ̸= 1) − PD1(h(y) ̸= 1)|
⇒

PD0(h(y) ̸= 0) + PD1(h(y) ̸= 1) ≤ ∆ + 2ϵ.

Hence, we conclude the statement of the theorem after adjusting ϵ by a constant factor.

1.B.1 Best Practices

The performance of our approach relies heavily on the sketching dimensions selected on the given
dataset. If one is too stringent with the sketch dimension used for the samples, there may not
be enough data present after sketching to yield accurate results. Similarly if the sketch dimension
for the markers is too low, the resulting estimate for the relatedness matrix may not be accurate
enough to yield meaningful results. However, if the sketch dimensions are too large (particularly
the sample sketch dimension), that may result in diminishing returns. More specifically, the sketch
dimension may be too large to experience improvements in execution time versus other state-of-
the-art methods. Another bottleneck of a large sketching dimension is running into convergence
issues when the dataset is too large after sketching.

The sketching parameters need to be tailored to each scenario to experience the best performance
and results. For example, we would expect poor performance when applying MaSkLMM to a dataset
with 10k samples and 100k markers using a sample sketch dimension of 5% as it will leave very little
samples to perform accurately. However, if we apply the same sketch dimension to a dataset with
500k samples, then we would have plenty of information left after sketching to perform accurately.
We see such tradeoffs in Figures 2 and 3.

1.B.2 Quality Control

In this section, we discuss the parameters used for quality control (QC) and pruning in the real
genotypes. Filtering was performed on both individuals and variants with at least 95% missing data.
We checked for problematic sex assignment in missing gender fields using the X chromosome. We
performed filtering for variants with minor allele frequency (MAF) < 0.05 and for variants which
are not in Hardy-Weinberg equilibrium (HWE) with p-values at least 1e-16. This is done separately
for cases and controls. We removed individuals with high or low heterozygosity rates and removed
closely related individuals with Identity-by-descent (IBD) method owing to cryptic relatedness.

1.B.3 UK Biobank Data

For the HYP and CAD dataset, the samples were extracted from UK Biobank data containing
331,256 European ancestry individuals and 411 parent phecode items (excluding infectious diseases,
injuries, poisonings and pregnancy complications). This data was generated using a combination
of NLP methods and manual curating to map ICD-10-CM codes to more meaningful phenotypes,
clustered appropriately. More specifically, we included 6,300 ICD-10 diagnoses (data field 41270)
with non-zero number of patients in our analyses. To reduce the dimensionality and increase the
interpretability of our analyses, we further mapped the ICD-10 codes on to PheCode. Out of all
6,300 ICD-10 items, 4,807 could be mapped onto at least one valid PheCode, representing 505
PheCode and 1,434 child PheCode. We removed PheCode in categories that are dominated by non-
genetic causes (infectious diseases, injuries & poisonings and pregnancy complications categories).
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As a result of this process, we mapped a total of 4,004 ICD-10 codes to 411 parent PheCodes,
including key ones such as hypertension and coronary artery disease, which were employed in our
experiments.. [8]. Also, we downsampled the amount of controls in the data for CAD to experiment
with varying ratios of cases to controls resulting in the 50k individuals.

1.B.4 Additional Information

In this section, we assess the performance of MaSk-LMM through additional experiments on real
and synthetic data.

(a) (b)

Fig. 1: (a) Top two principal components of individuals with British and Irish ancestries from the
UK Biobank data after performing quality control and pruning. The vertical lines show where we
selected British and Irish samples to use in our simulation. (b) Using that subset as ancestors in
the "mosaic-chromosome" scheme, we generated 10k synthetic individuals and plotted the top two
principal components.

Table 1: Average execution time (in minutes) and causal/spurious associations captured by MaSk-
LMM (varied sample sketch dimension), Regenie, and BOLT-LMM when applied to the simulated
dataset, D1. The minimum and maximum times are shown in parentheses.

MaSk (0.1) MaSk (0.2) MaSk (0.3) Regenie BOLT

time 0.5 (0.4/0.5) 0.7 (0.5/0.7) 1.0 (0.6/1.1) 30.5 (26.5/35.2) 22.0 (18.7/25.1)

assocs. 4 (0) 8 (1) 13 (2) 13 (3) 13 (3)
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Fig. 2: Performance of MaSk-LMM as we vary the sketching dimension used on the number of
samples. We applied MaSk-LMM on a simulated dataset of 10k individuals and approximately
250k SNPs with about 100 SNPs set as causal using no sketching for the markers. We repeated this
evaluation 10 times and report the average number of causal associations, spurious associations and
execution time.

Table 2: Average execution time (in minutes) and causal/spurious associations captured by MaSk-
LMM (varied sample sketch dimension), Regenie, and BOLT-LMM when applied to the simulated
dataset, D2. The minimum and maximum times are shown in parentheses.

MaSk (0.1) MaSk (0.2) MaSk (0.3) Regenie BOLT

time 15.2 (14.6/15.8) 74.0 (68.4/79.7) 197.3 (167.6/232.9) 309.3 (289.6/335.7) 219.6 (209.5/231.8)

assocs. 16 (4) 18 (20) 19 (28) 20 (45) 7 (35)

Table 3: Average execution time (in minutes) and causal/spurious associations captured by MaSk-
LMM (varied sample sketch dimension), Regenie, and BOLT-LMM when applied to the simulated
dataset, D3. The minimum and maximum times are shown in parentheses.

MaSk (0.03) MaSk (0.04) MaSk (0.05) Regenie BOLT

time 37.1 (35.1/40.1) 56.8 (55.2/61.5) 88.5 (85.0/94.7) 911.4 (866.5/950.7) 1674.5 (1643.9/1747.1)

assocs. 13 (2) 16 (9) 21 (34) 24 (220) 9 (130)
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Fig. 3: Performance of MaSk-LMM as we vary the sketching dimension used on the number of
markers when computing the GRM. We applied MaSk-LMM on a simulated dataset of 10k indi-
viduals and approximately 250k SNPs with about 100 SNPs set as causal using a constant sketch
dimension of 0.4 for the samples. We repeated this evaluation 10 times and report the average
number of causal associations, spurious associations and execution time.

Table 4: Number of causal associations and execution time of MaSk-LMM applied to D1 (British-
Irish data with 10k samples and 265k SNPs) and varying the sample sketch dimension with no
marker sketching.

Sketching dimension 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Num. causal 5 14 15 16 16 15 17 17 18 21

Execution time (hours) 0.025 0.03 0.05 0.1 0.2 0.3 0.5 0.7 0.9 1.2
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Table 5: Number of causal associations and execution time of MaSk-LMM applied to D1 (British-
Irish data with 10k samples and 265k SNPs) and varying the marker sketch dimension with no
sample sketching. When setting marker sketching to 10%, the method did not converge (entry set
to "n/a").

Sketching dimension 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Num. causal n/a 15 16 17 17 17 17 17 17 17

Execution time (hours) 1.7 1.3 1.1 0.9 0.9 1.1 1.1 1.2 1.2 1.1

Fig. 4: Manhattan plot for Hypertension.

Fig. 5: Manhattan plots for Coronary Artery Disease.
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