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Abstract 
 
OBJECTIVE: Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic 
illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can 
predict clinical outcome remains unknown.  
 
METHODS: We acquired diffusion-weighted MRI to map axonal connectivity between each pair of 319 
parcellated brain regions in 61 antipsychotic-naive individuals with First Episode Psychosis (FEP; 15-25 years, 
46% female) and a demographically matched sample of 27 control participants, along with clinical follow-up data 
in patients 3 months and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-
regional pairwise connectivity coupled with connectome-based predictive modelling to predict longitudinal 
change in symptoms and functioning.  
 
RESULTS: Individuals with FEP showed disrupted connectivity in a brain-wide network linking all brain regions 
when compared with controls (𝑝!"# = .03). Baseline structural connectivity significantly predicted change in 
functioning over 12 months (𝑟 = .44; 	𝑝!"# = .041), such that lower connectivity within fronto-striato-thalamic 
systems predicted worse functional outcomes. 
 
CONCLUSIONS: Brain-wide reductions of structural connectivity exist during the early stages of psychotic 
illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural 
connectivity can predict change in patient functional outcomes up to one year after engagement with treatment 
services.  
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The brain is often modelled as a collection of specialized regions connected by a complex web of axonal fibres 
(Bullmore & Sporns, 2009; Fornito et al., 2016). These fibres enable the coordination of neuronal dynamics and 
the transport of trophic and other molecules throughout the brain. Since the time of Wernicke, researchers have 
viewed the symptoms of psychosis as resulting from a disruption of this intricate network of connectivity (Fornito 
et al., 2012; Friston, 1998; Stephan et al., 2009; Wernicke, 1906), a view supported by a large body of magnetic 
resonance imaging (MRI) research identifying widespread alterations of axonal connectivity across different 
stages of psychotic illness (Fornito et al., 2012; Karlsgodt, 2020; Kubicki et al., 2005; Parnanzone et al., 2017).  
 
Recent advances in connectomics have enabled brain-wide mapping of structural dysconnectivity (Fornito et al., 
2015; Sporns, 2011). These methods have identified diffuse white-matter pathology in people diagnosed with 
psychotic illness (Klauser et al., 2017; Zalesky et al., 2011), while other studies have emphasised the role of 
specific circuits (Van Den Heuvel et al., 2019), including frontotemporal fibre bundles (Voineskos et al., 2010; 
Wheeler & Voineskos, 2014). The majority of studies to date have been conducted in samples of individuals with 
established schizophrenia who are taking antipsychotic medication, preventing an understanding of structural 
alterations proximal to illness onset.  
 
Studies in non-human primates have demonstrated reduced white-matter volume with increasing exposure to 
antipsychotic medications (Dorph-Petersen et al., 2005). Similarly, longitudinal observational studies in humans 
examining brain-wide white-matter integrity have consistently demonstrated alterations that coincide with 
antipsychotic initiation (Meng et al., 2018; Szeszko et al., 2014). Together, these studies suggest that antipsychotic 
exposure may be masking, or be mistaken for, illness-related structural dysconnectivity. The few previous studies 
examining whole-brain structural connectivity in antipsychotic-naïve first-episode samples have focused on 
topological or global measures of connectivity, reporting less effective organizational patterns and overall 
decreases in connectivity (Li et al., 2018; Zhang et al., 2015). However, the specific connections affected, and 
their clinical relevance is unknown. Moreover, most studies in patients have focused on how structural alterations 
are associated with current symptoms assessed cross-sectionally rather than on predicting how clinical outcomes 
change longitudinally. Such longitudinal changes are more clinically relevant, having implications for early 
detection and intervention strategies, but no prior study has examined whether structural connectivity can predict 
longitudinal changes in symptoms or other outcomes at the level of individual antipsychotic-naïve patients. The 
clinical relevance of structural dysconnectivity in psychosis is thus unclear.  
 
Here, we aimed to test whether alterations in structural connectivity are isolated to specific circuits or diffusely 
distributed throughout the brain within antipsychotic-naïve individuals experiencing a first-episode of psychosis.  
Our primary aims were to (1) comprehensively map alterations in structural connectivity during the initial stages 
of psychotic illness; and (2) examine whether structural connectivity can predict longitudinal changes in 
psychiatric symptoms and functional outcomes at three- and twelve-months following engagement with treatment 
services.  
 
Method 
 
Study Design 
The study took place at the Early Psychosis Prevention and Intervention Centre, which is part of Orygen Youth 
Health, Melbourne, Australia. The current study uses data from a larger trial registered with the Australian New 
Zealand Clinical Trials Registry in November 2007 (ACTRN12607000608460) and received ethics approval from 
the Melbourne Health Human Research and Ethics committee. After entering the study at baseline, patients were 
randomized to one of two groups: one given antipsychotic medication plus intensive psychosocial therapy and the 
other given a placebo plus intensive psychosocial therapy. A demographically matched healthy control group with 
no psychiatric diagnoses was also recruited. For both patient groups, the treatment period spanned six months. 
Diffusion-weighted Imaging (DWI), structural T1w, and functional MRI scans were acquired at baseline, prior to 
randomization into a treatment arm. Structural T1w, functional MRI, and clinical assessments were also conducted 
at baseline, 3 and 12 months, and have been analysed in other reports (Chopra et al., 2020; Chopra et al., 2021; 
Chopra et al., 2023). Here, we focus on the diffusion MRI data, which were only acquired at baseline. The 
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randomization phase of the study terminated at 6 months, so patients in either group could have received 
antipsychotic medication and ongoing psychosocial interventions between 6 and 12 months into the study. Further 
research and safety protocols can be found elsewhere (Francey, O'Donoghue, et al., 2020; O'Donoghue et al., 
2019). 
 
Participants 
 
We recruited 61 people aged 15-25 years (46% female) who were experiencing a first episode of psychosis, 
defined as fulfilling Structured Clinical Interview for DSM-IV criteria for a psychotic disorder (see Supplementary 
Table 1 for details). We repeated primary analyses after excluding individuals with a missing diagnosis or 
cannabis-induced psychotic disorder (see Results). We also recruited a demographically matched control group 
(n=27) without a psychotic diagnosis. Additional patient inclusion criteria to minimise risk were: ability to provide 
informed consent; comprehension of English language; no contraindication to MRI scanning; duration of 
untreated psychosis of less than 6 months; living in stable accommodation; low risk to self or others; none or 
minimal previous exposure to antipsychotic medication (< 7 days of use or lifetime 1750mg chlorpromazine 
equivalent exposure; further details provided in Supplementary table 1).  
 
MRI acquisition and processing  
 
Diffusion-weighted imaging (DWI) and structural T1-weighted data were acquired using a 3T Siemens Trio Tim 
scanner at the Royal Children's Hospital in Melbourne, Australia. Acquisition parameters are provided in the 
Supplement. Whole-brain probabilistic tractography was preformed was performed using standardized, 
reproducible workflows (Al-Sharif et al., 2020; Theaud et al., 2020). Importantly, probabilistic tractography 
algorithms are prone to false positives and do not directly index the quantitative strength of connections between 
pairs of regions (Maier-Hein et al., 2017; Schilling et al., 2019). We therefore implemented a state-of-the-art 
optimisation procedure, Convex Optimization Modelling for Microstructure Informed Tractography (COMMIT2), 
which is superior to other methods on key benchmarks derived from fibre-tracking phantoms (Nelson et al., 2023; 
Schiavi et al., 2020). COMMIT2 filters and re-weights pair-wise connections strengths according to their 
contribution to the observed DWI signal, providing more biologically accurate and quantitative estimates of 
connectivity than traditional streamline count measures. To create whole-brain structural connectivity matrices, 
COMMIT2-re-weighted streamlines were assigned to the closest region, as defined by previously validated 
cortical (Schaefer et al., 2018) and subcortical (Tian et al., 2020) atlases, yielding undirected structural 
connectivity matrices defining pair-wise connections for 319 parcellated regions. A detailed overview of DWI 
processing and optimisation can be found in the Supplement. 
 
Statistical analysis  
 
Group-level differences in structural connectivity  
 
Most studies of structural connectivity rely on standard statistics to compare group mean values of connectivity 
estimates (e.g., t-tests, linear regressions). This approach ignores the fact that such estimates often have a highly 
non-Gaussian distribution because many participants may not have a reconstructed connection linking a given 
pair of regions, meaning that a proportion of individuals will have a connectivity weight of zero while the 
remaining participants have some non-zero weight estimate.  
 
To address this problem, we fitted zero-inflated gamma regression models at each pairwise connection (Mills, 
2013). The zero-inflated gamma regression model is a two-part hurdle model that encompasses a zero-inflation 
component and a gamma component. The zero-inflation component, modelled using a logistic regression, 
accounts for the difference in the probability of observing a zero at a given edge. The gamma component, using a 
logarithmic link function, characterizes the differences in positive non-zero connectivity strength at a given edge.  
All models were adjusted for age, sex, and mean framewise displacement (head motion). Detailed information 
regarding the zero-inflated gamma regression model can be found in the Supplement. 
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The Network Based Statistic (NBS) was used to perform familywise error-corrected (FWE) inference at the level 
of connected components of edges (Zalesky et al., 2010), with the primary component-forming threshold, τ, set 
to 𝑝  <   .05. Further statistical details can be found in the Supplement as well as results obtained with 𝜏  =   .01 
and 𝜏  =   .001 (SFig1). 
 
To comprehensively delineate changes in structural connectivity across the 21,476 different connections, we 
present the results at three different scales: (1) the individual edge level, embedded in the spatial layout of the 
brain (e.g., Fig 1A); (2) the level of individual brain regions, to identify specific brain areas attached to a high 
number of connections implicated in the NBS subnetwork (e.g., Fig1F/L); and (3) the network-level, in which 
different regions are aggregated in one of 10 canonical brain networks (Schaefer et al., 2018; Tian et al., 2020; 
Yeo et al., 2011) where we show the proportions of affected edges both within and between these networks (e.g., 
Fig1B-C).  
 
To determine whether the observed structural connectivity alterations showed any network-specificity, we 
calculated the proportion of edges within a given NBS component that fell within each of ten canonical brain 
networks (e.g., Fig1B – upper triangle of matrix). Different brain networks have intrinsic differences in size, 
meaning that larger networks will generally have a higher likelihood of being implicated. We therefore present 
both raw proportions and proportions normalized by the total number of possible network connections (edges 
included in the final analysis) between each pair of networks (e.g., Fig1B – lower triangle of matrix); the former 
identifies preferential involvement of a given network in an absolute sense while the latter accounts for differences 
in the number of potential connections (i.e., the tendency for highly interconnected networks to be more likely to 
be implicated in a given NBS network).  
 
Connectome-based prediction of clinical outcomes 
 
We used connectome based predictive modelling (CPM; Shen et al., 2017) to assess whether structural 
connectivity at baseline can predict longitudinal change in patient symptoms and functioning from baseline to 3-
months (Δ3-months) and baseline to 12-months (Δ12-months). We computed proportional change scores 
(𝑦$ 	−	𝑦% 𝑦$⁄ , where 𝑦$ and 𝑦% correspond to the clinical scale values measured at time 1 and 2, respectively) for 
the two preregistered primary trial outcome measures (Francey, O’Donoghue, et al., 2020)––total scores for the 
Social and Occupational Functioning Assessment Scale (SOFAS) and the Brief Psychiatric Assessment Scale 
(BPRS)––at each of two longitudinal timepoints (Δ3-months, Δ12-months). For Δ3-months and Δ12-months 
analysis, 34 and 31 patients with complete data at both timepoints, respectively, were included in the analysis. 
Change score on both measures did not significantly differ between the two treatment groups at Δ3-months or 
Δ12-months (𝑎𝑙𝑙	𝑝 > .29). Distributions of change scores for each scale at each timepoint are provided in SFig2. 
 
We implemented CPM using nested 𝑘 -fold cross-validation. First, the structural connectivity weights and 
behavioural change scores were divided into four distinct subsets or 'folds' of subjects. The model was trained on 
three folds, while the fourth, or 'held out', fold remained separate. The training process involved iteratively 
selecting different sets of three folds for training and using the model to predict outcomes for the fourth fold. This 
was repeated four times, with each fold being held out once. To train the model, a Spearman correlation between 
structural connectivity and the behavioural change score was computed within the training set and edges with 𝑝 <
.01 uncorrected were selected as features (Shen et al., 2017). To ensure robustness of our findings, significant 
models were repeated using 𝑝 < .05	and 𝑝 < .001 as alternate feature selection thresholds (see SFig4). Then for 
each subject, the structural connectivity weights of the selected positively and negatively correlated edges were 
summed separately, resulting in two summary metrics per subject. These metrics were used to train two separate 
general linear models to predict the behavioural change score, and to predict the behavioural change score in the 
held-out test set. The product-moment correlation between observed and predicted change score within the held-
out test set was used to assess prediction performance.  
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The entire 𝑘-fold modelling process was repeated 100 times to estimate the sampling error of the model’s 
prediction performance. To assess model significance, we permuted the behaviour scores 1000 times and repeated 
the k-fold modelling process, resulting in a null distribution of product-moment correlations. We then estimated 
𝑝-values as the proportion of null correlations greater than the mean observed model performance across the 100 
repeated runs of the	𝑘-fold modelling process (𝑟&'()). 
 
Overall, eight primary prediction models were run, corresponding to two primary behavioural change scores 
(SOFAS, BPRS) at two timepoints (Δ3-months, Δ12-months), using two separate feature selection methods (edges 
positively or negatively correlated with the outcome measures). For each model, the null permutations began with 
the same computational seed, ensuring that the same permutation scheme was used at each null across models. To 
implement FWE correction across the eight primary models, we retained the maximum product-moment 
correlation across each of these models for each of 1000 permutations. This allowed us to compute a FWE 
corrected 𝑝-value for each model (Alberton et al., 2020; Winkler et al., 2014), with statistical significance assessed 
at 𝑝!"# 	< 	 .05. In addition to these models examining primary outcomes, we repeated the above process using 
four exploratory secondary outcome measures: Scale for the Assessment of Negative Symptoms (SANS), 
Hamilton Anxiety Rating Scale (HAMA), Hamilton Depression Rating Scale (HAMD) and World Health 
Organization Quality of Life Scale (WHOQOL).  
 
To assess which edges were the most strongly implicated in predicting longitudinal changes in behaviour within 
significant models, we examined the network- and region-level architecture of edges that were selected as part of 
the feature selection process in at least half (50%) of the 100 iterations of k-fold cross-validation. Interpretations 
based on more conservative thresholds of 80% and 100% are provided in the supplement (SFig5). All code used 
for MRI processing, statistical analyses and generating figures can be found online at 
https://github.com/sidchop/PsychosisConnectome. 
 
Results 
 
Demographics and clinical characteristics 
 
We have previously reported the demographics and clinical characteristics of this cohort. Briefly, patient and 
control samples did not differ significantly in sex or handedness, but the patients were, on average, 1.9 years 
younger and had 2 years less education (see Supplement for further details). 
 
Connectome-wide disruptions of structural connectively in antipsychotic-naïve FEP 
 
We identified a single NBS component showing widespread structural dysconnectivity in patients compared with 
controls, comprising 3209 edges (14.9%) linking all 319 regions (𝑝!"#  =   .03; 	Figure	1A). Within this network, 
2681 edges (68.7%) showed lower connectivity and 1221 edges (31.3%) showed higher structural connectivity in 
patients.  

Evaluating raw proportions, connections associated with reduced structural connectivity in patients were 
predominantly concentrated in the default mode and frontoparietal networks (Fig1B). Evaluating normalized 
proportions, which emphasize network involvement after accounting for differences in the total number of 
possible connections, the disruptions showed a more homogenous distribution, implicating a similar proportion 
of connections in each network (Fig1B, Fig1D). At a regional level, right precuneus, parietal cortex, left temporal 
pole, visual cortex, and posterior putamen were among the areas most strongly implicated in the network of lower 
structural connectivity (Fig1D).  

Considering connections showing increased structural connectivity in patients, raw proportions indicated a 
predominant concentration within the default mode network (Fig1G, Fig1H), but once again normalized 
proportions pointed to a more homogeneous distribution across networks. At a regional level, the right dorsal 
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anterior thalamus, posterior cingulate, visual and somatomotor cortices were among the areas most strongly 
implicated in the network of higher structural connectivity. 

These findings remained largely consistent when excluding individuals with missing or substance-induced 
psychosis diagnoses (SFig1), and when using different zero-inflation thresholds for determining the minimum 
number of zero values within an edge prior to exclusion (SFig6). The findings also remained consistent using 
primary component-forming thresholds of 𝜏 = 	0.01, but not 𝜏 = 	0.001, suggesting that the detected effect is 
diffuse and spatially widespread (SFig3). We did not detect any significant differences in connectivity between 
the two treatment groups at baseline.  

 

 

Figure 1 – Top row (A-F) shows lower connectivity in patients and the bottom row (G-L) shows higher 
connectivity in patients. A/G) Visualisation of the significant NBS subnetwork, with the nodes coloured by 
network and weighted by degree; B/H) heatmap of the proportion of edges within the NBS component that fall 
within each of the canonical networks as represented quantified using raw and D/H) normalized proportions (see 
Methods for details); C/E-I/K) a circle plot of the proportion of edges within the NBS component that fall within 
each of the canonical networks as represented quantified using raw (C/I) and normalized (E/K) proportion; F/L) 
surface renderings depicting the number of edges in the NBS subnetwork attached to each brain region. Legend 
shows Schaefer 300 region (Schaefer et al., 2018) and Tian subcortex 32 region (Tian et al., 2020) atlas. a Indicates 
anterior; AMY, amygdala; CAU, caudate nucleus; d, dorsal; DA, dorsoanterior; DMN, default mode network; 
DAttn, dorsal attention network; DP, dorsoposterior; FPN, frontoparietal/control network; GP, globus pallidus; 
HIP, hippocampus; l, lateral; Lim, cortical limbic network; m, medial; MTL, medial-temporal lobe (amygdala and 
hippocampus); NAc, nucleus accumbens; p, posterior; SomMot, somatomotor network; Stri, striatum; PUT, 
putamen; THA, thalamus 

 

Structural connectivity reliably predicts longitudinal changes in functioning 

Structural connectivity significantly predicted change in functioning (SOFAS) over 12-months ( 𝑟&'() =
.44; 	𝑝!"# = .041; Figure 2A). This model considered edges that were positively correlated with behavioural 
change as features, indicating that lower axonal connectivity was robustly associated with lower functional 
recovery during the early stages of psychosis. A large proportion of the most reliably predictive structural 
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connections were found between the default mode and frontoparietal networks (Fig2B-C). After accounting for 
network size, connections within limbic and thalamic regions, and between striatum and limbic regions, were 
preferentially implicated (Fig2C). At a regional level, bilateral medial and lateral prefrontal cortex and posterior 
putamen were among the areas most strongly contributing to prediction (Fig2D). No significant associations were 
detected for symptoms (BPRS) or for change scores over 3-months. 

For the secondary outcome measures, structural connectivity again significantly predicted change in Δ12-months 
functioning, this time using the WHOQ scale (𝑟&'() = .41; 	𝑝	 = 	 .013), but this effect did not survive FWE 
correction. Similar regional and network level connections were implicated as in the primary SOFAS prediction 
model (SFig7). Prediction performance for all models is provided in the SFig8. 

To assess the impact of potential confounders, we examined correlations between behavioural change scores on 
the two primary outcome measures (SOFAS and BPRS) and age, sex, head motion, antipsychotic medication 
exposure (total cumulative olanzapine equivalent dose). No significant correlations were detected between 
behavioural change scores and these variables for either baseline to 3-month or baseline to 12-month time points 
(all 𝑝	 > 	 .05). 

 

 

Figure 2 – A) Product-moment correlation between observed and predicted behavioral change score (prediction 
performance) between baseline and 12-months for the two primary trial outcome measures (Social and 
Occupational Functional Assessment Scale; SOFAS; Brief Psychiatric Rating Scale; BPRS). For each of the scales, 
two models were computed, that selected connections that were either positively (blue) or negatively (red) 
correlated with the outcome measure. B) A heatmap of the proportion of edges robustly implicated in predicting 
change in SOFAS (higher connectivity predicts improvement) within the prediction subnetwork that fall within 
each of the canonical networks as represented quantified using raw (upper triangle) and normalized (lower triangle) 
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proportions (see Methods for details). C) surface renderings depicting the number of edges in the prediction 
subnetwork attached to each brain region. 

Discussion  
 
Whether disruptions of structural connectivity in people with psychosis are concentrated within specific circuits 
or diffusely distributed across the entire brain, and whether they are attributable to antipsychotic medication, or 
clinically relevant, has thus far remained unclear. We used advanced whole-brain tractography to map differences 
in structural connectivity between antipsychotic-naïve individuals experiencing a first episode of psychosis and a 
normative control group, finding a diffuse, brain-wide network of reduced connectivity that was evenly distributed 
across all canonical brain networks. We further found that structural connectivity can robustly predict changes in 
general functioning at the individual patient-level, with lower connectivity within fronto-striato-thalamic circuits 
predicting worse outcomes over one year.  
 
Wide-spread differences in structural connectivity in antipsychotic-naïve psychotic illness 
 
Fibre bundles largely showed lower connectivity in patients compared to healthy controls and implicated an 
extensive network connecting all brain regions. This result aligns with previous research showing that 
hypoconnectivity is far more widespread than previously indicated by studies examining isolated regions (Klauser 
et al., 2017; Repple et al., 2023; Zalesky et al., 2011). Our findings further extend this research by demonstrating 
that these alterations are present even in the very early stages of illness onset and in the absence of antipsychotic 
medication exposure, suggesting that they are directly associated with illness-related processes.  
 
Some studies have revealed more severe and extensive structural connectivity changes in later stages of illness, 
suggesting potentially progressive white matter pathology (Cetin-Karayumak et al., 2020; Cropley et al., 2017). 
These previous findings are based on observations of subtle or spatially confined alterations observed in the early 
stages of illness, compared to later stages (Di Biase et al., 2017). In contrast, our findings demonstrate that 
prominent and widespread dysconnectivity is present at least from the outset of psychosis. This discrepancy could 
be attributed to the increased sensitivity of our current study due to the application of state-of-the-art streamline 
filtering and reweighting, resulting in a sensitive and biologically interpretable indicator of structural connectivity 
(Nelson et al., 2023; Schiavi et al., 2020). Additionally, we employed zero-inflated generalised linear models to 
address both zero-inflation and non-Gaussian distributions in brain-wide mass-univariate analyses, negating the 
need for the arbitrary exclusion of large proportions of connections. These considerations have been largely 
overlooked in previous investigations of whole-brain structural connectivity and have potentially resulted in lower 
sensitivity to detect connectivity alterations.  
 
Since our findings show dysconnectivity prior to starting antipsychotic treatment, it is possible that later-stage 
connectivity changes, to the extent that they progress, may result from prolonged antipsychotic use. Indeed, the 
only two blinded, randomised and placebo-controlled studies of antipsychotic-naïve individuals with psychosis 
have demonstrated a decline in brain-wide white-matter integrity (Voineskos et al., 2020) and cerebellar white-
matter volume (Chopra et al., 2020) following antipsychotic treatment, with the latter study conducted in the same 
cohort of patients used here. Thus, while the early-stage connectivity alterations detected in the current study 
could represent initial stages of progressive pathology, longitudinal studies examining whole brain connectivity 
across both prodromal and latter stages of illness would be required to test this hypothesis. Indeed, an alternative 
hypothesis is that our findings could represent altered neurodevelopment. Prior longitudinal work has shown that 
white matter alterations may not worsen during transition to illness, but may represent an altered 
neurodevelopmental course marked by early maturational peaks and premature white matter decline (Di Biase et 
al., 2021) or accelerated age-related decline (Cropley et al., 2017). 

 
While we find that the largest number of affected connections fall between the default mode and frontoparietal 
network and the rest of the brain, when normalizing for network size we find a substantially more homogenous 
distribution of affected networks. Therefore, the preferential implication of specific systems may largely be a 
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function of the larger number of regions comprising higher-order association networks. Our findings align with 
previous work showing spatially diffuse intra-axonal connectivity, as opposed to localised alterations in white 
matter (Klauser et al., 2017). Although the precise causal mechanisms underlying diffuse dysconnectivity remain 
unknown, several factors may contribute, including genes (Anderson et al., 2020; Bohlken et al., 2016; Romme 
et al., 2017), inflammation (Trépanier et al., 2016; Wang et al., 2020), and social determinants such as low 
socioeconomic status (Qiu & Liu, 2023; Rakesh & Whittle, 2021), or lifestyle factors such as poor nutrition, 
physical inactivity, and substance use (Moser et al., 2018; Raghava et al., 2021). 
 
Structural connectivity predicts longitudinal changes in functioning 
 
Our prediction modelling revealed that lower structural connectivity within fronto-striato-thalamic circuits at 
baseline can robustly predict declines in functional outcome up to 12-months post-baseline. To our knowledge, 
our findings provide the first evidence demonstrating that axonal connectivity in these circuits has ramifications 
for functional recover in FEP. Alterations of fronto-striato-thalamic circuits have long been implicated in the 
pathogenesis of psychosis, with functional alterations present across all stages of psychosis (Dandash et al., 2014; 
Dandash et al., 2017; Fornito et al., 2013; Sabaroedin et al., 2023; Sabaroedin et al., 2022; Sabaroedin et al., 2019) 
and structural alterations reported in first episode (Quan et al., 2013), first-degree relatives (De Leeuw et al., 2015), 
and established schizophrenia (Levitt et al., 2017; Zhao et al., 2020). Treatment response in first-episode patients 
is associated with increased functional coupling in these same circuits (Chopra et al., 2021; Sarpal et al., 2016; 
Sarpal et al., 2015) as well as global structural connectivity patterns (Crossley et al., 2017). Our findings thus 
suggest that lower inter-regional axonal connectivity within these circuits may be a prospective marker of more 
severe illness that is less likely to show improvements in functional outcome or potentially respond to treatment. 
Alternatively, disruptions of these circuits may represent a neurodevelopmental aberration that limits the 
remediation of circuit functioning, preventing recovery after psychosis onset. Future studies should examine 
whether the prediction of functional outcomes using the connectivity in these circuits is specific to psychotic 
illness. 
 
Limitations and conclusions 
 
The practical challenges of recruiting medication-naïve individuals limited the sample size of the current cohort. 
It is possible that sample characteristics such as lack of medication exposure or differences in illness severity may 
impact the generalisability of our findings, although the functional and symptom ratings of our patients are 
comparable to epidemiologically representative or ‘markedly ill’ first-episode psychosis cohorts (Henry et al., 
2010; Leucht et al., 2005; see Chopra et al., 2021 for discussion on generalisability). Our approach is also limited 
by the accuracy of diffusion MRI (Maier-Hein et al., 2017). While the processing procedures we applied enhanced 
the biological validity of our connectivity measures as much as possible (Schiavi et al., 2020) further 
developments in non-invasive connectivity mapping and tractography will be required to allow more precise 
mechanistic inferences. 
 
In conclusion, diffuse brain-wide reductions of structural connectivity exist during the early stages of psychotic 
illness and cannot be attributed to antipsychotic medication. Structural connectivity in fronto-striato-thalamic 
circuits prospectively predicts functional recovery up to one year following engagement with treatment services.  
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