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Abstract 34 

Psychiatric disorders are complex, heritable, and highly polygenic. Supported by findings of abnormalities 35 

in functional magnetic resonance imaging (fMRI) based measures of brain connectivity, current 36 

theoretical and empirical accounts have conceptualized them as disorders of brain connectivity and 37 

dysfunctional integration of brain signaling, however, the extent to which these findings reflect common 38 

genetic factors remains unclear. Here, we performed a multivariate genome-wide association analysis of 39 

fMRI-based functional brain connectivity in a sample of 30,701 individuals from the UK Biobank and 40 

investigated the shared genetic determinants with eight major psychiatric disorders. The analysis revealed 41 

significant genetic overlap between functional brain connectivity and schizophrenia, bipolar disorder, 42 

attention-deficit hyperactivity disorder, autism spectrum disorder, anxiety, and major depression, adding 43 

further genetic support for the dysconnectivity hypothesis of psychiatric disorders and identifying 44 

potential genetic and functional targets for future studies.   45 
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Introduction 46 

Psychiatric disorders are heritable and highly polygenic1–4, and carry a high burden of disease, measured 47 

in years lived with disability5. Akin to the polygenic architecture of the disorders, where a number of 48 

variants each contribute with small effects, findings from imaging genetics studies have documented a 49 

distributed pattern of small effects across the genome for brain phenotypes derived from magnetic 50 

resonance imaging (MRI)6. Likewise, brain imaging studies of psychiatric disorders have revealed 51 

distributed anatomical and functional alterations across the brain, with a large body of literature indicating 52 

alterations in functional brain connectivity in individuals with a range of psychiatric disorders, including 53 

schizophrenia (SCZ; e.g. Petterson-Yeo et al., 20117), bipolar disorder (BIP; e.g. Syan et al., 20188), 54 

autism spectrum disorders (ASD; e.g. Hong et al.,20199), attention-deficit hyperactivity disorder (ADHD; 55 

e.g. Gao et al., 201910), major depression (MDD; e.g. Brakowski et al., 201711), post-traumatic stress 56 

disorder (PTSD; e.g. Akiki et al., 201712), anxiety disorders (ANX; e.g. Xu et al., 201913), and anorexia 57 

nervosa (AN, e.g. Fuglset et al., 201614).  58 

Altered brain connectivity in psychiatric disorders might reflect changes in synaptic functioning. 59 

Evidence from induced pluripotent stem cell research shows that mutations relevant to psychiatric 60 

disorders cause synapse deficits15, genome-wide association studies (GWAS) of psychiatric disorders 61 

identified various genes involved in synaptic functioning4,16–18, and gene expression studies identified 62 

differential expression patterns in synapse related genes in these disorders19. 63 

While both neuroimaging and genetic studies each have pointed to synaptic alterations in psychiatric 64 

disorders, only a few have specifically tested this hypothesis in an integrated imaging-genetics framework. 65 

A few studies have explored the genetic architecture of functional brain connectivity20–24, and studies 66 

assessing polygenic risk scores have indicated links between psychiatric disorders and abnormal brain 67 

connectivity25,26. Previous studies also illustrated genetic correlation between various brain imaging 68 

phenotypes and psychiatric disorders that confirm a large degree of shared effect sizes across single 69 

nucleotide polymorphisms (SNPs)27–29. However, we still lack a concise map of the overlap in genetic 70 

architecture between psychiatric disorders and the brain functional connectome. 71 

Recent evidence from anatomical imaging suggests a distributed nature of genetic effects on the brain, 72 

calling for tools that take a multivariate approach to imaging genetics, beyond univariate genome-wide 73 

association studies of single brain phenotypes30. We hypothesized that such distributed nature of genetic 74 

effects is also observable in the genetic architecture of functional imaging given the functional interplay of 75 

brain regions (nodes) in the connectome. A multivariate approach would perform better at capturing these 76 

distributed effects than conventional univariate GWASs30. Using data from the UK Biobank, we therefore 77 

deployed such approach to study the genetic architecture of functional brain connectivity – here defined as 78 

the correlation between time series data of large-scale brain network nodes31,32. Based on previous 79 

research pointing at dysconnectivity in psychiatric disorders, we expected that there is overlapping genetic 80 
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architecture between the functional connectome and the disorders that can be captured using our 81 

multivariate approach. We therefore assessed genetic overlap between the connectome and eight major 82 

psychiatric disorders (ADHD, AN, ANX, ASD, BIP, MDD, PTSD and SCZ; Suppl. Table 1). 83 

 84 

Results 85 

Multivariate and univariate genome-wide association studies of the connectome 86 

We performed two multivariate GWAS using the Multivariate Omnibus Statistical Test (MOSTest)30, 87 

which exploits the shared signal between related traits to discover genetic variants associated with the 88 

traits in a multivariate fashion. We performed one MOSTest analysis based on connectivity of 210 89 

connections between 21 large-scale brain network nodes derived from an independent component analysis 90 

(ICA), and one based on signal variance across the duration of the functional scan in the respective 21 91 

nodes. The two measures (connectivity and node variance) are mathematically related, yet they reflect 92 

different properties of functional brain connectivity, specifically properties of within large-scale brain 93 

network connectomics (node variance; referred to as node level) and between network connectomics 94 

(connectivity; referred to as edge level). Both measures have previously been found to be altered in 95 

psychiatric disorders33. The main analysis included data from 30,701 white British individuals aged 45-82 96 

years (52.8% females) and replication analysis included an independent sample of 8954 individuals (42% 97 

white British) aged 45-83 (52.9% female). The Miami plots in Figure 1A illustrate the multivariate genetic 98 

associations calculated using MOSTest (N=30,701), and for comparison the associations identified using 99 

the traditional min-p approach, which takes the smallest p-value across univariate GWASs. 100 

Supplementary Figure 1 depicts corresponding QQ-Plots. MOSTest identified 15 genetic loci significantly 101 

(P < 5e-8) associated with functional brain connectivity (FC) and 5 loci significantly associated with node 102 

variance (Suppl. Table 2), whereas the min-p approach only identified 2 loci for FC and 3 loci for node 103 

variance. Four of the five loci identified for node variance were also present for FC, in line with the 104 

phenotypic relationship between the two. Replication analysis in the independent replication sample 105 

(N=8954) confirmed robustness of the main analysis, with 14 of 15 connectivity loci and all node variance 106 

loci replicating at the targeted multivariate replication rate of P < .05 (Figure 1C). Furthermore, to test 107 

whether the method by which we derived the functional brain measures affected the results, we 108 

supplemented our data-driven ICA approach with a separate region of interest (ROI) based pipeline, where 109 

we defined brain networks using an atlas of brain regions (see Methods). Results of these analyses indicate 110 

converging results despite an independent processing pipeline and network definition approach (Suppl. 111 

Fig. 2, Suppl. Table 3). 112 

The bottom row in Figure 1A shows individual univariate p-values for the MOSTest-discovered 113 

loci, illustrating that the univariate approach is only good at capturing strong effects (e.g. locus 3 for FC), 114 

yet fails to discover loci with enriched signal across brain phenotypes. This also indicates that signal 115 
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captured by the min-p approach reflects mostly the effect of individual phenotypes, rather than the 116 

combined signal as captured by MOSTest. Figure 1B further illustrates the distributed nature of effects 117 

across the brain, where a given locus shows differential patterns of regional SNP effects. Finally, genetic 118 

correlation analysis of univariate node variance GWAS (Suppl. Fig. 3) illustrated strong genetic 119 

correlations between different brain network nodes, largely in line with the phenotypic correlations 120 

observed when correlating the fMRI time series, adding further support to a distributed nature of effects in 121 

fMRI-based connectomics. 122 

 123 
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Figure 1. Multivariate and univariate architecture of the brain functional connectome highlight a 

distributed nature of effects across the brain. (A) The left column of the figure illustrates the results for 

functional brain connectivity, the right column for node variance. The first row shows Miami plots with the 

multivariate GWAS results from the MOSTest approach in the top, and the results from the traditional min-p 

approach at the bottom. The second row shows for each locus identified by MOSTest, the univariate p-values of 

the lead SNP in each locus. A majority of loci identified by the multivariate approach were not detected via the 

univariate approach. P-values are two-sided. (B) For each of the genome-wide significant loci underlying 

functional brain connectivity identified using the multivariate MOSTest approach, this panel shows nominally 

significant (P<0.05) connections from corresponding univariate statistics. These figures show differential patterns 

of regional SNP effects and highlight the distributed nature of the genetic effects on connectivity. (C) Results 

from replication analysis. The Manhattan plots depict the MOSTest summary statistics from Panel A and the loci 

replicated at nominal P < .05 in the independent replication sample are shown in orange. The table specifies 

corresponding multivariate replication numbers. 

 124 

 125 

To complement the multivariate stream, we further analyzed the univariate GWAS for each 126 

connection in the full brain network and for each node variance separately, investigating whether the 127 

identified architecture from MOSTest is largely determined by a few network nodes or connections 128 

contributing with prominent signal or if it is determined by many nodes or connections, each contributing 129 

with subtle signal. Figure 2 depicts the SNP-based heritability for each connection (panel A) and for each 130 

node (panel B). SNP-based heritability ranged from 0.14% to 10.58% for brain connectivity (for 7 131 

connections it could not be computed) and 137 out of 210 connections had a heritability above 1.96 times 132 

its standard error, indicating genetic signal34. The connection with the highest heritability was the 133 

connection between nodes reflecting activity in the prefrontal cortex (network 16) and the frontal network 134 

(network 14). For node variance, SNP-based heritability ranged from 3.92% to 13.64% with all nodes 135 

above 1.96 times their standard error, and highest heritability observed for node 9 (temporo-parietal 136 

network). Univariate analysis revealed no significant loci for any of the nodes or edges when controlling 137 

for the total number of edges or nodes through Bonferroni correction. The number of significant loci for 138 

the multivariate stream compared to the univariate stream adds further support that the genetic signal is 139 

distributed across the brain functional connectome, allowing us to capitalize on the shared signal for loci 140 

discovery. 141 
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Figure 2. Heritability across edges and nodes. (A) SNP-based heritability (h2) for the 210 edges based on 

N=30,701 individuals. Upper half and lower halves of the figure are identical. Dark green indicates lowest 

heritability, bright yellow indicates highest heritability. Sizes reflect the standard error. Edges that did not survive 

heritability threshold are greyed out. Edges for which heritability could not be calculated are marked with a cross. 

(B) Point estimate of h2 (± SE) for the 21 nodes. Color scheme follows panel A. Data from N=30,701 subjects was 

used for estimates, error bars reflect the standard error 

 142 

Genetic overlap between connectome and psychiatric disorders 143 

Next, using conjunctional FDR analysis35, we tested for overlap between the two MOSTest-derived 144 

genetic profiles (functional connectivity and node variance) with eight major psychiatric disorders, 145 

specifically Attention-Deficit Hyperactivity Disorder (ADHD)36, anorexia nervosa (AN)37, anxiety 146 

disorder (ANX)38, autism spectrum disorder (ASD)39, bipolar disorder (BIP)40, major depression (MD)41, 147 

Post-Traumatic Stress Disorder (PTSD)42, and schizophrenia (SCZ)43. Conjunctional FDR leverages 148 

pleiotropic enrichment (statistical pleiotropy44) between two phenotypes to identify genetic loci jointly 149 

associated with them. As shown in Figure 3, we found shared loci for seven of the eight disorders, namely 150 

for ADHD, AN, ANX, ASD, MDD, BIP and SCZ. By far the largest number of shared loci was 151 

implicated for SCZ (43 for FC, 22 for node variance). We found 6 loci for FC and 1 locus for node 152 

variance in ADHD, 9 loci for FC and 2 loci for node variance in BIP, and 4 loci for FC and 3 loci for node 153 

variance in ASD. Additionally, we found 1 shared locus between FC and MDD, 1 shared locus between 154 

FC and AN, and 1 shared locus between node variance and ANX. We did not find any shared loci between 155 

either FC or node variance and PTSD. Supplementary Figure 4 depicts quantile-quantile plots for all 156 

genetic overlap analyses. Additional sensitivity analyses using a more stringent FDR threshold confirmed 157 
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largest overlap for SCZ with FC among the traits (Suppl. Table 4). Analysis with a negative control trait 158 

(vitamin D levels: N = 79,366)45 yielded no significant overlap for node variance and two loci for 159 

connectivity (Suppl. Fig. 5). Finally, re-analysis with the ROI-based pipeline confirmed genetic overlap 160 

identified in the ICA-based analysis, again with most loci implicated for SCZ (Suppl. Fig. 6). 161 
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Figure 3. Manhattan plots illustrating genetic overlap between disorders and the multivariate functional brain 

phenotypes. Each panel (A-H) shows the association each psychiatric condition. for Association strength per locus 

is depicted as q-value from the conjunctional FDR analysis46. Values for FC and node variance are shown in the 

same figure with separate colors. 

 162 

Using Functional Mapping and Annotation of GWAS (FUMA)47, we mapped the loci shared 163 

between the connectome and the psychiatric disorders to 180 genes, listed in Suppl. Table 5 (for 164 

comparison to ROI-based analysis, see Suppl. Table 6). We tested for enrichment for biological processes 165 

(GO) and identified 125 significant associations, many of which are relevant to neural system 166 

development and functioning (Suppl. Fig. 7). Using SynGO48, we linked 23 of the 180 genes to synapse 167 

functioning (Suppl. Table 7). For example, one of the loci shared between SCZ and FC was mapped to 168 

BDNF, which is a major regulator of synaptic transmission and synaptic plasticity49. Another example is 169 

NRXN1, found also for SCZ and FC, which is known for its role in the formation of synaptic contacts50. 170 

Utilizing the pathway browser on the identified gene sets51, we also found that the mapped genes were 171 

involved in cell signaling and signal transduction, more specifically protein-protein interactions at the 172 

synapses, WNT and NTRK signaling, but also a number of other biological processes such as 173 

chromosome maintenance and mitosis (Suppl. Fig. 8 and Suppl. Table 8).  174 

In addition to the conjunctional FDR analyses, we also calculated genetic correlation between 175 

each connection or node surviving our pre-defined threshold of 1.96 times its SE and the eight psychiatric 176 

disorders, allowing us to compare the multivariate findings to results from a univariate approach. Figure 177 

4A illustrates that genetic correlation was generally low for the connectome and only one connection 178 

survived after correcting for all eight disorders and all connections, specifically a connection between the 179 

right ventral (network 21) and the prefrontal network (network 16) was significantly associated with BIP 180 

(rg = -0.25, pBONF = 0.0006). When only correcting for the number of connections but not for the number 181 

of disorders, we found an additional significant association, which was the link between the auditory 182 

(network 17) and the subcortical (network 18) node which correlated with SCZ (rg = 0.25, pBONF = 183 

0.0137). For node variance, we found two significant associations when correcting for all disorders and 184 

nodes. Specifically, variance in the temporo-parietal network (network 9) was significantly correlated with 185 

both, SCZ (rg = 0.22, pBONF = 3.9e-6) and BIP (rg = 0.17, pBONF = 0.03). 186 
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Figure 4. Genetic correlation between the connectome and psychiatric disorders. (A) The tiles show the genetic 

correlations between each edge of the whole brain network and a given psychiatric disorder. Size of the tile 
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represents the standard error. Edges with a heritability below 1.96 its standard error were not considered in the 

analysis and marked with a black cross. Among all disorders, only one edge marked with a black border was 

significant for SCZ after correcting for the number of edges (210), whereas none was significant when correcting for 

the number of edges and the number of disorders. Upper and lower half of each matrix are identical. Sample sizes 

underlying the summary statistics used for genetic correlation analysis are provided in Supplementary Table 1. (B) 

Genetic correlation (± SE) analysis at the node level. Significant genetic correlations within a psychiatric disorder are 

indicated with a white asterisk when correcting for the number of nodes, whereas a green asterisk indicates 

significance when correcting for both, the number of nodes and the number of disorders. The error bars reflect the 

standard error. The latter stringent correction was surpassed for variance of the temporo-parietal node and SCZ. 

 187 

Discussion 188 

Taken together, our study provided insight into the shared genetic architecture between measures of the 189 

brain functional connectome and common psychiatric disorders. Deploying multivariate genetic analyses 190 

of fMRI data from more than 30,000 individuals allowed us to capitalize on the distributed nature of 191 

genetic variation across the interconnected whole brain network to discover novel connectome-associated 192 

variants beyond what can be discovered using standard univariate approaches. Our analyses pinpointed a 193 

number of gene variants overlapping between the connectome and psychiatric disorders, where several of 194 

the corresponding mapped genes are known for their involvement with synapse formation and 195 

functioning.  196 

We used two measures of the brain functional connectome – the 210 correlations of brain signal from 197 

21 nodes as measures of functional brain connectivity as well as signal variation across time of these 21 198 

network nodes. Given the interconnectedness of the connectome, we hypothesized that many connections 199 

or nodes would have overlapping genetic signatures. Indeed, our results illustrate that the genetic 200 

architecture of brain function is distributed across the brain. Our deployed multivariate approach 201 

successfully leveraged this pleiotropy for discovery, revealing a variety of genetic effects that would not 202 

have been discovered with the standard univariate GWAS approach, including the commonly used min-p 203 

approach, which identifies the minimum p-value across univariate GWASs. We observed that the 204 

significant lead SNPs from MOSTest were often not significantly associated with the univariate measure. 205 

This demonstrates that using multivariate genetic analysis can be valuable to complement the univariate 206 

approach in settings like brain imaging where the signal is largely distributed.  207 

From our multivariate signatures of the connectome, we were able to identify a number of shared loci 208 

with psychiatric disorders through conjunctional FDR analysis. The strongest overlap was implied for 209 

schizophrenia yet all other psychiatric disorders apart from PTSD showed some degree of overlap as well, 210 

in particular with connectivity. Identification of overlap to some degree depends on statistical power 211 

(overall heritability, sample size, quality of phenotyping, heterogeneity across contributing cohorts, among 212 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2021.06.15.21258954doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258954


Roelfs et al. | Genetics of the brain functional connectome 

14 
 

others), which may for example explain the lack of findings for PTSD. It is important to note that sample 213 

size alone cannot explain the observed differences in overlapping loci. The bipolar disorder and 214 

schizophrenia GWASs have similar sample sizes yet we discovered many more loci for the latter. 215 

Likewise, our negative control analysis of a well powered trait yielded only two overlapping loci for 216 

connectivity and no significant locus for node variance. How the comparison between all disorders will 217 

look at similar sample size remains to be investigated.   218 

 Several synapse-related genes were among the overlapping genes, including some involved in the 219 

neurodevelopmental formation of synapses. This is particularly intriguing given that many psychiatric 220 

disorders are conceptualized as neurodevelopmental disorders even if they are typically diagnosed in 221 

adulthood. Further, many disorders are conceptualized as disorders of brain dysconnectivity, as initially 222 

proposed for schizophrenia52. This is now established across various disorders53 and our results provide 223 

further evidence from the genetics end. 224 

While multivariate analysis enabled us to boost discovery across the imaging phenotypes, its 225 

multivariate nature limits interpretation of single features, such as for example biological interpretation of 226 

specific brain networks. We thus complemented our multivariate analyses with univariate analyses and 227 

showed a map of genetic correlations between connectivity, node variance and psychiatric disorders. 228 

Univariate correlations were overall weak and only a few edges or nodes were significant after correcting 229 

for multiple testing. A particular pronounced univariate association was found for the temporo-parietal 230 

network, which was genetically correlated with schizophrenia (pBONF = 3.9e-6) and bipolar disorder (pBONF 231 

= 0.03). Strikingly, in a previous fMRI study this temporo-parietal network was found to be consistently 232 

altered in schizophrenia across five different fMRI tasks, with bipolar disorder clustering between 233 

schizophrenia and healthy controls in three out of five tasks54. Nonetheless, given the overall weak 234 

univariate associations and the large amount of univariate analyses performed, caution is warranted when 235 

interpreting potential disorder-specific patterns. Lack of genetic correlating does not necessarily indicate 236 

lack of polygenic overlap, as shown previously by multiple methods, including cross-trait MiXeR 237 

analysis55 and LAVA56. It is well possible that a variety of SNPs with opposing effect directions cancel 238 

each other out, which would result in low genetic correlation despite genetic overlap. The finding that 239 

genetic correlations from univariate analyses are relatively weak despite significant genetic overlap 240 

between our multivariate GWAS and several psychiatric disorders provides further evidence that 241 

multivariate analysis is an important method to dissect complex interactions in psychiatric genetics. 242 

We here provided results from analyses at the edge level (functional connectivity) and node level 243 

(node variance). The latter showed larger heritability and larger effect sizes than functional connectivity. 244 

This may be partly explained by the granularity of the connectivity measure, or a better representation of 245 

the nodes across individuals compared to the potentially highly individualized network configurations57,58. 246 

At the phenotypic level, node variance has been associated with psychiatric disorders, with effect sizes 247 
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comparable to connectivity33,59,60. Given that our genetic analyses often imply similar genes for node-level 248 

and connectivity-level, the underlying sources may align despite differences in current association effect 249 

sizes. 250 

Some aspects are relevant for interpreting the current findings. First, MOSTest is to some degree 251 

dependent on granularity as also previously shown61 which may explain why MOSTest identified more 252 

loci for functional connectivity than for node variance. More research using different approaches to 253 

network definition may yield further discoveries, however, our comparison of the genetic architecture of 254 

ICA-based and ROI-based networks also indicated large overlap, supporting robustness of the current 255 

findings. While the granularity of the ICA-based and ROI-based networks were kept similar in this 256 

analysis, there is still substantial difference in their derivation, and thus it is remarkable that we reproduce 257 

our ICA-based genetic findings with the ROI-based approach. Specifically, the spatial pattern of ICA-258 

based networks are data-driven, and connectivity is determined by means of regularized partial 259 

correlations. In contrast, ROI-based networks are spatially defined with an atlas and connectivity is 260 

estimated via full correlations. We here analysed large-scale brain networks. Technically, MOSTest is 261 

capable to scale to much large numbers of input features62 and thus analyses with more fine-grained 262 

parcellations or even at the vertex or voxel level might be possible. Such scaling would need to be 263 

performed under careful observation of noise structures in the functional imaging data to ensure that the 264 

potential benefit of more features is not diminished by added noise. Second, lack of effect directionality is 265 

a limitation of the multivariate analysis, which is why we provided univariate analyses alongside. 266 

Furthermore, several post-GWAS analyses such as for example the conjunctional FDR framework do not 267 

require effect direction and can thus be performed with the resulting multivariate statistics. We believe the 268 

strengths of the multivariate approach outweigh the limitations, and a tandem approach with both 269 

multivariate and univariate methods optimizes utility of this method. Finally, with conjunctional FDR 270 

analysis it can happen that some discoveries are novel, meaning they are missed by standard GWAS due 271 

to lack of power or excessive burden of multiple testing. However, it is expected that conjunctional FDR 272 

loci will be discovered by these standard GWAS methodology once sample sizes increase further. For 273 

example, two loci recently discovered in a GWAS on ADHD36 where already discovered earlier using a 274 

conjunctional FDR analysis with educational attainment63. 275 

In conclusion, we here revealed a distributed nature of genetic effects on brain function and 276 

integration, and identified a number of genetic loci associated with key properties of the brain functional 277 

connectome. Further, we revealed a large degree of genetic overlap between multivariate measures of the 278 

brain functional connectome and a number of psychiatric disorders with genes pointing at synaptic 279 

plasticity. This may help further disentangle the complex biological underpinnings of psychiatric disorders 280 

and provide a bridge between functional connectivity alterations and genetic variations in patients. There 281 
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is a need for follow-up experimental studies building on the discovered loci to disentangle the biological 282 

mechanisms. 283 

 284 

Methods 285 

Sample and Exclusion Criteria 286 

We accessed resting state fMRI data from the UK Biobank64, a large-scale resource of imaging, genetics, 287 

and other biological and psychological data (access with permission no. 27412). All participants provided 288 

signed informed consent before inclusion in the study. The UK Biobank was approved by the National 289 

Health Service National Research Ethics Service (ref. 11/NW/0382).We selected data from individuals 290 

with White British ancestry, identified based on the genetic clustering performed by the UK Biobank 291 

team65. Data of all eligible participants were included for the main analysis in November 2020 and we did 292 

not exclude individuals based on a diagnosis. The resulting sample comprised data of 30,701 individuals 293 

with a mean age of 64.24 years (SD: 7.50, range: 45-82; 52.8% females). In total 2654 individuals 294 

(8.62%) had a neurological or psychiatric diagnosis (excluding encephalitis). Additional data became 295 

available afterwards and was partly used for replication (see Replication section). 296 

 297 

Image Acquisition and Preprocessing  298 

Data had been acquired by the UK Biobank study team64. The fMRI images were collected on four 299 

identical 3T Siemens Magnetom Skyra scanners in the UK with a 32 channel head coil (Siemens 300 

Healthcare GmbH, Erlangen, Germany). Data was recorded using a gradient-echo echo planar imaging 301 

sequence with x8 multislice acceleration (TR: 0.735s, TE: 39ms, FOV: 88x88x64 matrix, FA: 52°) with a 302 

voxel size of 2.4x2.4x2.4mm. One fMRI sequence took approximately 6 minutes. The protocol further 303 

included T1 imaging, acquired using a MPRAGE sequence with in-plane acceleration (iPAT) of 2 304 

(resolution: 1mm3, FOV: 208x256x256 matrix).  305 

 Data had been preprocessed by the UK Biobank study team as described in Alfaro-Almagro et al.66. 306 

Briefly, their preprocessing used the FSL pipeline67,68, which included motion correction using MC-307 

FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), grand-mean intensity normalization, high-pass 308 

filtering through Gaussian-weighted least-squares straight line fitting, EPI unwarping and GDC 309 

unwarping. Structured artifacts were removed using ICA and FIX69,70, where the FIX classifier was hand-310 

trained on 40 UK Biobank datasets. According to Alfaro-Almagro et al. only 1% of variance in a scan is 311 

due to head motion following motion correction and FIX66. The final step was a group ICA using 312 

MELODIC71 which decomposed the data using independent component analysis into 25 components. The 313 

spatial profiles of the components can be reviewed in a navigable visualization tool available at 314 

https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25.html.  315 
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 We retrieved individual level time series data for each subject and component (output from dual 316 

regression at model order 25). We computed functional brain networks using the FSLNets toolbox72. First, 317 

we regressed the time series of four noise components from the time series of the remaining 21 318 

components and subsequently removed those four components. Suppl. Fig. 9 depicts maps for each of the 319 

21 components. We estimated functional connectivity (FC) as the regularized partial correlations of the 320 

component time series, implementing an approach developed by Ledoit & Wolf (2012) which performs an 321 

automated adjustment of the shrinkage parameter lambda, as implemented in our earlier work54. As the 322 

last step, we regressed age, age2, sex, scanner, motion, signal-to-noise ratio (SNR), and the first 20 genetic 323 

principal components from the individual connection strengths, residualizing each edge (210 in total) of 324 

the partial correlation matrix. In addition to functional brain connectivity, we also performed an analysis 325 

of the variance in signal amplitude of the 21 components67, and performed the same residualisation in this 326 

node-level analysis as described above for the edge level. 327 

 To test if our results were largely dependent on the pipelines used to define brain networks, we 328 

complemented our main data-driven ICA approach with a region-of-interest (ROI) approach using the 329 

Schaefer parcellation with 1000 parcels. For this pipeline we accessed FEAT73 processed folders from the 330 

UK Biobank and registered all images to standard MNI space. For each Schaefer-defined ROI there exists 331 

a mapping to the 17 large-scale brain networks defined by Yeo et al (2011). To achieve comparability to 332 

our main ICA-based analysis which comprises 21 network nodes, we averaged the time series of all 333 

Schaefer-defined ROIs corresponding to each Yeo-defined network, yielding ROI-based networks with 17 334 

nodes. Following the standard procedure for ROI-based brain networks, we defined these as the Pearson 335 

correlation of the 17 nodal time series. Furthermore, we derived node variance of these 17 nodes. The 336 

resulting functional brain connectivity as well as node variances went into the same genetic analyses as 337 

performed in the main ICA-based analysis workflow. 338 

 339 

Genetic data and QC 340 

We accessed UKB v3 imputed data64. The data acquisition and preprocessing pipeline is described in 341 

Bycroft et al.64. We applied standard quality control procedures to this data and removed SNPs with a 342 

minor allele frequency below 0.001, SNPs missing in more than 5% of individuals, SNPs with an 343 

imputation quality below 0.5, and SNPs failing the Hardy-Weinberg equilibrium test at P<1e-9. 344 

 345 

Univariate and Multivariate Genome-Wide Analysis 346 

We performed multivariate and univariate GWAS using the Multivariate Omnibus Statistical Test 347 

(MOSTest)30. MOSTest takes as input all univariate test statistics (z-scores) for each SNP, as obtained 348 

through standard association testing with each pre-residualized phenotype, and compares this to test 349 

statistics obtained following a single random permutation of the genotype vector. A multivariate test 350 
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statistic is then calculated from this comparison as the Mahalonobis norm, with the probability of the 351 

observed test-statistic being derived from a Chi-square distribution. Further details of the method are 352 

described in Van der Meer et al.30. MOSTest returns a multivariate test statistic, where in contrast to 353 

classical univariate GWAS that link a given SNP with a single phenotype, for each SNP the multivariate 354 

association across all included phenotypes is provided. This allowed us to retrieve one multivariate 355 

summary statistic for functional brain connectivity (edge level), and one for node variance (node level). In 356 

addition, we retrieved classical univariate summary statistics for follow-up analyses. 357 

  358 

Summary Statistics for Psychiatric Disorders 359 

We accessed publicly available summary statistics for Attention-Deficit Hyperactivity Disorder 360 

(ADHD)36, anorexia nervosa (AN)37, anxiety disorder (ANX)38, autism spectrum disorder (ASD)39, bipolar 361 

disorder (BIP)40, major depression (MD)41, Post-Traumatic Stress Disorder (PTSD)42, and schizophrenia 362 

(SCZ)43. For details, see Suppl. Table 1. We used vitamin D45 as a negative control phenotype because it is 363 

well powered (N = 79,366), has heritability comparable to psychiatric disorders (h2twin~0.6) and is not 364 

genetically correlated with the included psychiatric disorders (all P>.05). We performed a GWAS using 365 

plink 2.074 on 79,366 participants in the UK Biobank not included in the main analysis.  366 

 367 

Pleiotropy-Informed Conjunctional False Discovery Rate 368 

Due to the complex and polygenic architecture of our brain phenotypes, we utilized pleiotropy-informed 369 

conjunctional false discovery rate  as implemented in the pleioFDR toolbox46. The conjunctional FDR 370 

analysis identifies shared genomic loci between two traits regardless of effect directionality and effect 371 

size, making it ideally suited to compare a multivariate summary statistic from MOSTest (here: FC and 372 

variance) against the summary statistics of a given disorder (here: SCZ, BD, MDD, ASD, ADHD, ANX, 373 

PTSD, AN).  374 

 375 

Linkage Disequilibrium Score Regression 376 

For the univariate summary statistics, we estimated partitioned heritability75 and genetic correlation with 377 

LD-score regression using the LDSC tool76.  We also estimated genetic correlation between each edge and 378 

variance across time in each node with the eight psychiatric disorders using cross-trait LDSC76–78. Of note, 379 

genetic correlations require effect directions and are thus not applicable to the multivariate summary 380 

statistics derived from MOSTest. We therefore used genetic correlations in connection with univariate 381 

statistics as a complement to the multivariate pipeline.  382 

 383 

Gene Mapping and Annotation 384 
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We used the Functional Mapping and Annotation (FUMA version v1.3.6a) tool to map loci derived 385 

through conjunctional FDR analyses to genes and tested for significant enrichment of biological 386 

processes47. We then fed the genes identified through FUMA into the SynGO (v1.1) toolbox to map 387 

synaptic genes48, and the reactome (v78) toolbox to map the genes to a range of biological processes51. 388 

 389 

Statistics and Reproducibility 390 

No statistical test was used to predetermine sample size. To validate the discovered loci of the functional 391 

brain measures, we performed a replication analysis of our two main MOSTest analyses on a dataset 392 

containing all subjects with available data (including those with non-White British ancestry) as well as a 393 

new batch of data (including White British) that arrived after we performed the main analyses. This 394 

resulted in a dataset containing 8954 individuals (mean age: 65.20 years, SD: 8.25, range: 45-83; 53.0% 395 

females). Of these, 5155 individuals were of non-White British ancestry and 3799 individuals were of 396 

White British ancestry. The replication sample included 1024 individuals (11.4%) with a diagnosed 397 

neurological or psychiatric diagnosis (excluding encephalitis). We processed this dataset in the same way 398 

as the data from the discovery sample. Multivariate discoveries require a special replication procedure to 399 

ensure that a locus in question is not only showing an association in an independent sample, but also that 400 

the multivariate pattern of that association is consistent between the discovery and the replication samples. 401 

Such procedure has been established in Loughnan et al.79 For a given SNP in the discovery set, the 402 

procedure provides a composite score (one value for each individual in the validation set) obtained as a 403 

weighted sum of individuals’ phenotypes, with weights derived from mass-univariate z-statistics from the 404 

discovery set. If a SNP association represents a real signal in the discovery set, we expect its composite 405 

score to be associated with the genotype in the replication sample at a nominal one-sided P<0.05, and to 406 

have a consistent effect direction. Mathematical formulation of the approach is provided in Loughnan et 407 

al.79 408 

 409 

Inclusion & Ethics 410 

The samples used in this study comprised samples of varying ethnic backgrounds. While the main 411 

analyses unfortunately still incorporate only individuals with a White British ancestry, we used a more 412 

diverse sample to validate our in the replication analyses, to provide insights to make them relevant for 413 

application beyond this well-studied group of White British individuals. Given the limited availability of 414 

data from non-White individuals, the current work cannot rule out ethnicity biases, and replication in 415 

larger and more diverse samples is needed to further assess replication. 416 

 417 

Data Availability 418 
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Data used in this study are part of the publicly available UK Biobank initiative 419 

(https://www.ukbiobank.ac.uk/). Summary statistics for the disorders are publicly available through their 420 

respective consortia (Suppl. Table 1). The summary statistics for the multivariate analyses will be shared 421 

on GitHub (https://www.github.com/norment/open-science) upon acceptance. 422 

 423 

Code Availability 424 

Code will be made publicly available via GitHub (https://www.github.com/norment/open-science) upon 425 

acceptance of the manuscript. 426 
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