ABCA4-Related Retinopathies in Lebanon: a novel mutation and significant heterogeneity

Mariam Ibrahim ^{4,5}, Lama Jaffal ²
Hassan Rammal Research Labora
Nabatieh, Lebanon.
ent of Biological and Chemical So
Beirut, Lebanon. , Alexandre Assi
story, PhyToxE Re
ciences, School of , Charles Helou
search Group, Fa
Arts and Science , Said El Shamieh⁻
aculty of Sciences,
es, Lebanese Inter 1 Rammal Hassan Rammal Research Labor, PhyToxE Research Group, Passan, Prosences, Lemmer, 2014
1 Repartment of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International
1 Retinal Service, Beirut

2 Department of Biological and
University, Beirut, Lebanon.
3 Beirut Eye Clinic, Beirut, Leban
4 Retinal Service, Beirut Eye & E
5 Medical Testing Laboratory, D
Sciences, Beirut Arab University

3 Beirut Eye Clinic, Beirut, Le
4 Retinal Service, Beirut Eye
5 Medical Testing Laboratory
Sciences, Beirut Arab Univer

4 Retinal Service, Beirut Eye & ENT S
5 Medical Testing Laboratory, Depar
Sciences, Beirut Arab University, Bei

2 Department of Department of Department of Nedical Arts and Chemical Seirut Eye Clinic, Beirut, Lebanon.
2 Beirut Eye Clinic, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon.
5 Medical Testing Laboratory, Department 4 Andrew Constitution Construction Service, Andren Sciences, Beirut Arab University, Beirut, Lebanon.
Sciences, Beirut Arab University, Beirut, Lebanon.
*Correspondence:

5 Medical Testing Laboratory, Department of Medical Laboratory, Technology, Faculty of Medical
Sciences, Beirut Arab University, Beirut, Lebanon
*Correspondence:
Said El Shamieh PhD. s.elshamieh@bau.edu.lb

*Correspondence:

Sciences, Beitart Arab University, Beitarten
*Correspondence:
Said El Shamieh PhD. <u>s.elshamieh@bau.edu.lb</u> Said El Shamieh PhD. s.elshamieh@bau.edu.lb

Abstract

inherited retinal diseases (IRDs) besides the classically defined Stargardt disease (STGD), known as
ABCA4 retinopathies. ABCA4 is a sizeable locus harboring 50 exons; thus, its analysis has revealed a rich
area of genetic ABCA4 retinopathies. ABCA4 is a sizeable locus harboring 50 exons; thus, its analysis has revealed a rich
area of genetic information comprising at least 1,200 disease-causing mutations of varied severity and
types. Due to ABCA4 retinopation comprising at least 1,200 disease-causing mutations of varied severity and
types. Due to the clinical and genetic heterogeneity, diagnosing ABCA4 retinopathies is challenging. To
date, no ABCA4-retinopat types. Due to the clinical and genetic heterogeneity, diagnosing *ABCA4* retinopathies is challenging. To
date, no *ABCA4*-retinopathy has been detected in Lebanon. Using next-generation sequencing, we
sought to pinpoint t the clinical and and general and general and general process. The clinical and the clinical and sequencing, we
sought to pinpoint the mutation spectrum in seven families with different forms of IRDs: STGD, rod-cone
and con date, no ABCA4-retinopathy has been detected in Lebanon Lebanon and generation sequencing, increased and cone-rod dystrophies (RCD and CRD, respectively). Eight *ABCA4* mutations were found, including one novel; c.4330G>C; source in the mutations (RCD and CRD, respectively). Eight *ABCA4* mutations were found, including
one novel; c.4330G>C; p.(Trp1408Cys). Three families were diagnosed with CRD, two with STGD, and
two others with RCD. In co one novel; c.4330G>C; p.(Trp1408Cys). Three families were diagnosed with CRD, two with STGD, and
two others with RCD. In conclusion, our study revealed a novel ABCA4 mutation and showed significant
genotypic and phenotypic one novel is not the none in the summer that any the state with the state with RCD. In conclusion, our study revealed a novel ABCA4 mutation and showed significant genotypic and phenotypic heterogeneity in Lebanon.
Keyword two others with RCD. In conclusion, our study revealed a novel ABC mutation and showed a novel ABCA4 mutations
Reywords: ABCA4, inherited retinal dystrophies, retinopathies, Lebanon, mutations.

Keywords: *ABCA4*, inherited retinal dystrophies, retin
Keywords: *ABCA4*, inherited retinal dystrophies, retin \overline{a} Keywords: ABCA4, inherited retinal dystrophies, retinopathies, Lebanon, mutations.

Introduction

Interaction or impairment [1, 2]. These diseases are well defined by a high degree of clinical and
genetic variation, with over 270 genes implicated [1]. Interestingly, the age of onset, the progression
rate, manifestation genetic variation, with over 270 genes implicated [1]. Interestingly, the age of onset, the progression
rate, manifestation with extra-ocular symptoms, and the etiological gene may assist in classifying IRDs
into more than general channels, that then are generally properties (a). There ends, the progressiving IRDs
into more than 20 distinct phenotypes [3, 4]. The most prevalent form of IRDs is rod-cone dystrophy
(RCD; MIM 613862), which affe rate, many of the most prevalent form of IRDs is rod-cone dystrophy
(RCD; MIM 613862), which affects over one million individuals worldwide and is defined by the primary
death of rods subsequently accompanied by secondary INCO; MIM 613862), which affects over one million individuals worldwide and is defined by the primary
death of rods subsequently accompanied by secondary deterioration of cone photoreceptors [3, 5].
When cone photoreceptor (RCD) MIM 613862), MIM 613862, MIM 6138762, MIM 611771, MIM 611771, MIM 611777), represented by rod dysfunction in later stages, this is called cone-rod dystrophy (CRD; MIM 601777), represented by progressive degeneration When cone photoreceptor degeneration occurs initially, followed by rod dysfunction in later stages, this
is called cone-rod dystrophy (CRD; MIM 601777), represented by progressive degeneration and loss of
the central retin Is called cone-rod dystrophy (CRD; MIM 601777), represented by progressive degeneration and loss of
the central retina [6, 7]. Other aspects of IRDs that appear with central vision loss include macular
dystrophies (MD) tha is cance the contract cone-part of the yranger of IRDs that appear with central vision loss include macular dystrophies (MD) that affect mainly the macula [3, 7]. With an incidence rate of 1 in 8,000–10,000 individuals, St dystrophies (MD) that affect mainly the macula [3, 7]. With an incidence rate of 1 in 8,000–10,000
individuals, Stargardt disease (STGD; MIM 248200) emerges as the prevailing aspect of MD with an
autosomal recessive mode o diminity of the matrice of STGD; MIM 248200) emerges as the prevailing aspect of MD with an
autosomal recessive mode of inheritance affiliated with etiological mutations in the ATP-binding
cassette transporter type A4 (ABC

autosomal recessive mode of inheritance affiliated with etiological mutations in the ATP-binding
cassette transporter type A4 (ABCA4) [8].
Since the 1997 identification of the ABCA4 gene by Allikmets and colleagues, more t cassette transporter type A4 (*ABCA4*) [8].
Since the 1997 identification of the *ABCA4* gene by Allikmets and colleagues, more than 1,200 distinct
disease-causing mutations of varying severity have been reported [9-11]. Since the 1997 identification of the *ABCA*
disease-causing mutations of varying sev
associated with phenotypes other t
flavimaculatus, age-related MD, and so
significant disparities in disease-causing
mutations in differe ؟
C
f
r Since the 1997 in the 1997 in the 1997 in the 1997 in the ABCA4 variations have been
disease-causing mutations of varying severity have been reported [9-11]. ABCA4 variations have been
associated with phenotypes other than diseased with phenotypes other than the commonly recognized STGD, including fundus
flavimaculatus, age-related MD, and some forms of CRD and RCD [9, 10]. The ABCA4 locus shows
significant disparities in disease-causing all Flavimaculatus, age-related MD, and some forms of CRD and RCD [9, 10]. The *ABCA4* locus shows
significant disparities in disease-causing alleles across racial and ethnic groups and exhibits founder
mutations in different significant disparities in disease-causing alleles across racial and ethnic groups and exhibits founder
mutations in different populations [11]. Considering the massive clinical and genetic heterogeneity, an
accurate and t significant disparition in different populations [11]. Considering the massive clinical and genetic heterogeneity, an
accurate and thorough molecular diagnosis of *ABCA4*-associated retinopathies is critical [12]. However, mutations in anti-care populations (11). Contracting the interior antitial and generations cliental, and
accurate and thorough molecular diagnosis of ABCA4-associated retinopathies is critical [12]. However,
the allelic he ²

accurate and these gene-associated IRDs very

challenging [13]. Direct Sanger sequencing of all *ABCA4* exons (50 exons) has uncovered between 60%-

80% of the pathogenic alleles [12]. Notably, next-generation sequenc challenging [13]. Direct Sanger sequencing of all *ABCA4* exons (50 exons) has uncovered between 60%-
80% of the pathogenic alleles [12]. Notably, next-generation sequencing (NGS) platforms have proven to
find novel *ABCA4* 80% of the pathogenic alleles [12]. Notably, next-generation sequencing (NGS) platforms have proven to find novel ABCA4 mutations, demonstrating their ability as more comprehensive approaches for systematic genetic screeni Find novel *ABCA4* mutations, demonstrating their ability as more comprehensive approaches for systematic genetic screening of large cohorts [14, 15]. Presently, NGS is critical for obtaining a prompt and precise genetic d find the comprehensive and flarge cohorts [14, 15]. Presently, NGS is critical for obtaining a prompt
and precise genetic diagnosis, which is required to provide patients and their families with the
appropriate genetic cou systematic generations of large control [14, 15]. Presently, NGS is intital for large appropriate genetic diagnosis, which is required to provide patients and their families with the appropriate genetic counseling [1, 16]. appropriate genetic counseling [1, 16]. The relevance of genetic diagnosis through the implementation
of comprehensive and affordable sequencing technologies lies in identifying the disease-causing
3 appropriate and affordable sequencing technologies lies in identifying the disease-causing $\frac{3}{3}$ of comprehensive and affordable sequencing technologies lies in identifying the distribution of a
a
causing the disease-causing technologies lies in identifying the distribution of a

interpretation of the pathophysiological mechanisms, and tailoring the approach of personalized
therapy [5]. Many *ABCA4* mutations associated with different forms of IRDs have been reported
worldwide, but none in Lebanon. therapy [5]. Many *ABCA4* mutations associated with different forms of IRDs have been reported worldwide, but none in Lebanon. Herein, the aim was to detect causative *ABCA4* mutations in Lebanese patients from seven famil worldwide, but none in Lebanon. Herein, the aim was to detect causative $ABCAA$ mutations in Lebanese
patients from seven families diagnosed with varying forms of IRDs.
 $\frac{1}{2}$ patients from seven families diagnosed with varying forms of IRDs.

Alternative ABCA4 mutations in Lebanon. Herein, the aim was to detect causative ABCA4 mutations in Lebanese A

The aim was to detect causations in Lebanes patients from seven families diagnosed with varying forms of IRDs.

Materials and Methods:

Ethical considerations and Clinical Examinations:

Institutional review board under the IRB number 2017 H-0030-HS-R-0208 granted ethical approval. All

our participants were recruited at Beirut Eye and ENT Specialist Hospital (Lebanon) where they received

carried out a cl Institutional review board and the IRB number 2017 in the IRB number board optical summington and provided (Lebanon) where they received
carried out a clinical ophthalmologic assessment and provided informed written consen carried out a clinical ophthalmologic assessment and provided informed written consent before
participation, as previously described [17].
Mutational Screening
All our participants gave whole blood samples. Genomic DNA ext

Mutational Screening

participation, as previously described [17].
participation, as previously described [17].
Mutational Screening
All our participants gave whole blood samples. Genomic DNA extraction was done by Qiagen's QlAamp
DNA Mini Kit participation, as previously decembed [17].
Mutational Screening
All our participants gave whole blood sam
DNA Mini Kit (Hilden, Germany). Whole e
samples of all the indexes except F3:13 a
previously [15]. Common polymorph 「ノ」 にっぽん しょうしょう こうしょう こうしゃ しんりょう しょうしょう しょうしょう しょうしゃ しょうしゃ All our participants gave whole blood samples. Genomic DNA extraction was done by Qiagen's QlAamp
DNA Mini Kit (Hilden, Germany). Whole exome sequencing (WES) was executed to inspect the DNA
samples of all the indexes exce Samples of all the indexes except F3:13 and F9:19.1, sequenced through targeted NGS as described
previously [15]. Common polymorphisms that had a minor allele frequency (MAF) greater than 0.01
were all omitted using variou previously [15]. Common polymorphisms that had a minor allele frequency (MAF) greater than 0.01
were all omitted using various public databases, including GnomAD
(https://gnomad.broadinstitute.org/) [18]. This step was fol previously and the minority of the minority (https://gnomad.broadinstitute.org/) [18]. This step was followed by annotation type-based filtrat were were removed in-frame Indels, intronic mutations, synonymous mutations, and variations in
untranslated regions. Contrariwise, priority was given to mutations in exons or splice sites that resulted
in nonsense, missens (a) the constraints of the constant of the Candidate Mutations, synonymous mutations, and variations in
untranslated regions. Contrariwise, priority was given to mutations in exons or splice sites that resulted
in nonsense untranslated regions. Contrariwise, priority was given to mutations in exons or splice sites that resulted
in nonsense, missense variations, or frameshift Indels. Next, we checked whether the candidate
mutations were repor untranslated regions of translations, or frameshift Indels. Next, we checked whether the candidate
in nonsense, missense variations, or frameshift Indels. Next, we checked whether the candidate
mutations were reported as h

Pathogenicity assessment of the Candidate Mutations

in nonsense, missense variations, or ministense variations, or misses means when the candidate
mutations were reported as homozygous in GnomAD.
The conservation of substituted amino acids in various species, such as primat Pathogenicity assessment of the Candidate Mutation:
The conservation of substituted amino acids in vario
mammals, was checked using the University of Califo
Information regarding the details was previously desc
substitutio The conservation of substitution amino and the conservation of substitution regarding the details was previously described [20]. The possible effect of the amino acid substitution was assessed by scale-invariant feature tr Information regarding the details was previously described [20]. The possible effect of the amino acid
substitution was assessed by scale-invariant feature transform (SIFT) [21], Polymorphism Phenotyping
v2 (PolyPhen-2) [2 Information was assessed by scale-invariant feature transform (SIFT) [21], Polymorphism Phenotyping

V2 (PolyPhen-2) [22], and MutationTaster2 [23]. Several public databases were utilized to determine if

the candidate mut substitution was assessed by Several public databases were utilized to determine if
the candidate mutation causing IRD was previously known [24], [25].
Segregation Analysis
The candidate mutations detected by NGS were ampl

Segregation Analysis

value of the candidate mutation causing IRD was previously known [24], [25].
 Segregation Analysis

The candidate mutations detected by NGS were amplified by conventional polymerase chain reaction

(T100, Biorad, Kaki Bu Segregation Analysis
The candidate mutations detected by NGS were amplified by convert
T100, Biorad, Kaki Bukit, Singapore) and then validated (Applied E The candidated (Applied Biosystems 3730xl DNA Sequencer,
The capacity of Applied Biosystems 3730xl DNA Sequencer,
5 (110) Biorad, Andrew Singapore) and then validated (Applied Biosystems 3730xl DNA Sequencer, $\frac{1}{2}$

purpose, unidirectional Sanger sequencing was applied to all available family members' DNA.
purpose, unidirectional Sanger sequencing was applied to all available family members' DNA. purpose, unidirectional Sanger sequencing was applied to all available family members' DNA.

Results

Ophthalmic data

The current study in the current study in the current study in the current study in the posterior

studies (Figure 1). Color fundus photographs of F3:13 revealed mild pigmentary changes in the posterior

pole and outside t 2, induction and outside the vascular arcades (Figure 2a). Fluorescein angiography showed granular hyperfluorescence in the posterior pole with focal hyperfluorescence at the macula (Figure 2b).
Additionally, optical coher pole and outside the vascular arcades (Figure 2a). Fluorescein angiography showed granular
hyperfluorescence in the posterior pole with focal hyperfluorescence at the macula (Figure 2b).
Additionally, optical coherence tom pore and outside the vascular arcades (Figure 2a). And the vascular angiography continuate the vascular physodenesis
Additionally, optical coherence tomography (OCT) exhibited diffuse thinning of the retinal layers (Figure Additionally, optical coherence tomography (OCT) exhibited diffuse thinning of the retinal layers (Figure 2c).
2c). Electrooculogram (EOG) demonstrated no light rise and a subnormal Arden ratio of 1.68 on the right
eye and 2c). Electrooculogram (EOG) demonstrated no light rise and a subnormal Arden ratio of 1.68 on the right
eye and a reduced Arden ratio of 1.51 on the left eye, which are below the normal value (>1.8);
electroretinogram (ER 2c). Electrooculogram (EOG) demonstrated no light rise and a subnormal Arden ratio of 1.68 on the right
eye and a reduced Arden ratio of 1.51 on the left eye, which are below the normal value (>1.8);
electroretinogram (ERG

electroretinogram (ERG) revealed reduced scotopic and photopic responses (data not shown).
The index of family 9 does not have any previous cases in her family. In her 20s, she received a diagnosis
of CRD, and her OCT reve electroreting. The index of family 9 does not have any previous cases in her family. In her 20s, she received a
of CRD, and her OCT revealed thinning of the retinal layers at the macula in both eyes (Figure
demonstrated no ן
ג
t The independent of CRD, and her OCT revealed thinning of the retinal layers at the macula in both eyes (Figure 2c). ERG
demonstrated normal photopic and very reduced scotopic responses (data not shown). Moreover, EOG
displ of CRD, and the responses (data not shown). Moreover, EOG
displayed a normal Arden ratio of 2 on the right eye and a significantly subnormal Arden ratio of 1.6 on
the left eye.
F31:131, diagnosed with RCD in their 20s with

displayed a normal Arden ratio of 2 on the right eye and a significantly subnormal Arden ratio of 1.6 on
the left eye.
F31:l31, diagnosed with RCD in their 20s with no known family history. Color fundus photography of this displayed a normal Arthleticky.
F31:131, diagnosed with RCD in their 20s with no known family history. Color fundus photography of this
patient showed mild pigmentary changes in the posterior pole and outside the vascular the left eye. F31:I31 exhibited reduced photopic and subside the vascular arcades (Figure 2a). His autofluorescence examination showed increased hyperfluorescence at the macula (Figure 2d).
Besides, the ERG of this individual demonstrat patient showed increased hyperfluorescence at the macula (Figure 2d).

Besides, the ERG of this individual demonstrated reduced photopic and significantly reduced scotopic

responses. Additionally, F31:131 exhibited reduce 24). His antitude examination in the macula (Figure 2014) at the macula (Figure 2d).
Besides, the ERG of this individual demonstrated reduced photopic and significantly reduced scotopic
responses. Additionally, F31:131 exh

Besides, the ERG of this patient individual demonstrated reduced EOG with an Arden ratio of 1.29 on the right eye and
1.25 on the left eye (data not shown).
Index F37:137, issued from a consanguineous marriage, and was dia responses. And the left eye (data not shown).

Index F37:I37, issued from a consanguineous marriage, and was diagnosed with CRD in their 30s. Clinical

findings of this patient indicated reduced photopic and scotopic ERG r Index F37:137, issued from a consangu

findings of this patient indicated redu

this patient exhibited a reduced Arde

(data not shown). Color photographs r

2a). OCT scans showed thinning of th |
|
|
| Indings of this patient indicated reduced photopic and scotopic ERG responses. Moreover, the EOG of this patient exhibited a reduced Arden ratio of 1.25 and 1.24 on the right and left eyes, respectively (data not shown). C findings of this patient indicated reduced photopic indicated reduced and the response of this patient exhibited a reduced Arden ratio of 1.25 and 1.24 on the right and left eyes, respectively (data not shown). Color photo this patient and the reduced Arden ratio of 1.25 and 1.24 on the right and left eyes, respectively
(data not shown). Color photographs revealed optic disc parlor and atrophy in the posterior pole (Figure
2a). OCT scans sho (data). OCT scans showed thinning of the retinal layers and hyper-reflectivity at the level of the choroid
(Figure 2c). 2. Oct scans showed the retinal layers and hyper-reflectivity at the reflectivity at the choroid of th $\sum_{i=1}^{n}$

|
|
|
| Family 12 eminions entrologinally particles parents in intertional constant of exhibited pigmentary changes in
has an affected descendant, F41:141. Color fundus examination showed marked pigmentary changes in
the posterior the posterior pole with marked vascular attenuation and optic disc pallor (Figure 2a). Additionally, OCT
demonstrated diffuse thinning of the retinal layers with cystic changes and focal scarring (Figure 2c). The
ERG displ

the monstrated diffuse thinning of the retinal layers with cystic changes and focal scarring (Figure 2c). The
ERG displayed a diminished photopic and scotopic responses. The clinical findings indicated a CRD.
Parents in fa demonstrated animished photopic and scotopic responses. The clinical findings indicated a CRD.
Parents in family 56 are phenotypically normal but have an affected descendant, F56:156, diagnosed
with STGD in their 20s. Her Parents in family 56 are phenotypically normal but have an affected descendant, F56:156, diag
with STGD in their 20s. Her color photograph showed an abnormal reflex at the macula (Figure
Besides, fluorescein angiography re |
|
|
|
| Parents in family 56 are phenotypically normal but have an abnormal reflex at the macula (Figure 2a).

Besides, fluorescein angiography revealed increased hyperfluorescence at the macula (Figure 2b).

Clinical diagnosis of Besides, fluorescein angiography revealed increased hyperfluorescence at the macula (Figure 2b).
Clinical diagnosis of F56:156 revealed macular dystrophy with relative preservation of macular
function. ERG of this patient Clinical diagnosis of F56:156 revealed macular dystrophy with relative preservation of macular
function. ERG of this patient demonstrated slightly reduced photopic and scotopic responses (data not
shown). Additionally, vis

Enneth angles of this patient demonstrated slightly reduced photopic and scotopic responses (data not
shown). Additionally, visual evoked potentials (VEP) was reduced for a small pattern.
Index F58:I58 has phenotypically n function. Additionally, visual evoked potentials (VEP) was reduced for a small pattern.

Index F58:158 has phenotypically non-affected parents, but she was diagnosed clinically with RCD. ERG

revealed reduced photopic and Index F58:158 has phenotypically non-affected parents, but she was diagnosed clini
revealed reduced photopic and very reduced scotopic (data not shown). Color p
marked pigmentary changes in the posterior pole and outside t |
|
|
|
| Index F58:I58 has phenotypically non-affected parents, but she was diagnosed clinically with RCD. ERG marked pigmentary changes in the posterior pole and outside the vascular arcades with marked vascular
attenuation and optic disc pallor (Figure 2a). Fluorescein angiography demonstrated diffuse granular
hyperfluorescence i marked pigmentary of the state number of the posterior pole with decreased fluorescence at the macula (Figure 2b).
Additionally, OCT scan of the patient exhibited diffuse thinning of the retinal layers (Figure 2c).
Genetic attenuation and optic disc pairs in the posterior angle paper and optical the macula (Figure 2b).
Additionally, OCT scan of the patient exhibited diffuse thinning of the retinal layers (Figure 2c).
Genetic findings
We dete

Genetic findings

my extracted the posterior pole with decrease in the estimate fluorescence in the mass (Figure 2c).
Additionally, OCT scan of the patient exhibited diffuse thinning of the retinal layers (Figure 2c).
Genetic findings
We de Genetic findings
We detected eight mutations in the ABCA4 gene in seven Lebanese families (Table 2). For inde
family 3, we found a mutation in the ABCA4 gene in heterozygosity state. However, the second
allele remains miss ()
- f
ド Family 3, we found a mutations in the ABCA4 gene in seven Lebanese families (Trable 2). For index F3:I3 of family 3, we found a mutation in the ABCA4 gene in heterozygosity state. However, the second mutated allele remains Family 3, allele remains missing. The detected mono-allelic mutation is a missense mutation in exon 28 of
the ABCA4 gene: [M1]: c.4330G>C, p.(Trp1408Cys). M1 was not found in ExAC, gnomAD, or TopMed
populations; at the pro the *ABCA4* gene: [M1]: c.4330G>C, p.(Trp1408Cys). M1 was not found in ExAC, gnomAD, or TopMed
populations; at the protein level, it affects a conserved amino acid, Trp1408, with two exceptions. The
substitution was also p the ABCA4 generation, it affects a conserved amino acid, Trp1408, with two exceptions. The
substitution was also predicted to be damaging. Sanger sequencing validated the occurrence of M1 in a
heterozygous state in the pat substitution was also predicted to be damaging. Sanger sequencing validated the occurrence of M1 in a
heterozygous state in the patient F3:13 of this family (Figure S1 a). The mother was a heterozygous
carrier of M1, while substitution was also predicted to be damaging. Sanger sequencing validated the occurrence of M1, while the father carried the wild-type allele. M1 is novel and has not been reported before in literature databases. heterozygous state in the patient F3:I3 of this family (Figure S1 a). The mother was a heterozygous
carrier of M1, while the father carried the wild-type allele. M1 is novel and has not been reported
before in literature d carrier of M1, which we can also the factorization of M1 is not been reported the wild-type allegers are not been reported the wild-type allegers are not been reported to the wild-type allegers are not been reported to the

For Index F9:I9.1 of family 9, NGS revealed a compound heterozygous mutation in ABCA4; two missense mutations [M3] [17]: c.1936 and 13. According to population databases, M3 is a rare mutation
showing frequencies equal to 0.0006375, 0.0005517, and 0.00175 in ExAC, genomAD, and TOPMed
databases, respectively, and found ho p. (Vale)
showing frequencies equal to 0.0006375, 0.0005517, and 0.00175 in ExAC, genomAD, and TOPMed
databases, respectively, and found homozygous in several individuals in genomAD and TOPMed.
Referring to the UCSC genome databases, respectively, and found homozygous in several individuals in genomAD and TOPMed.
Referring to the UCSC genome browser, it has been observed that M3 mutation impacts an amino acid
residue (Ala192) that is conserv Referring to the UCSC genome browser, it has been observed that M3 mutation impacts an amino acid
residue (Ala192) that is conserved among multiple species, with the exception of four specific cases.
Furthermore, based on residue (Ala192) that is conserved among multiple species, with the exception of four specific cases.
Furthermore, based on PolyPhen-2 and MutationTaster algorithms, M3 is probably damaging and
disease-causing. In contrast Furthermore, based on PolyPhen-2 and MutationTaster algorithms, M3 is probably damaging and
disease-causing. In contrast, SIFT reported it as tolerated. On the other hand, the M4 mutation
appeared to be rare and homozygous Furthermore, and an entry thermore and multimerated on the other hand, the M4 mutation
appeared to be rare and homozygous in several individuals, as outlined in ExAC, GnomAD, and TOPMed
population databases with respective appeared to be rare and homozygous in several individuals, as outlined in ExAC, GnomAD, and TOPMed
population databases with respective frequencies of 0.001618, 0.001717, and 0.00554. M4 affects a
conserved amino acid (Val appeared to be reading to be reduced to b.001618, 0.001717, and 0.00554. M4 affects a conserved amino acid (Val643). Besides, based on the assessments of PolyPhen-2, SIFT, and MutationTaster, it was predicted that the M4 m conserved amino acid (Val643). Besides, based on the assessments of PolyPhen-2, SIFT, and
MutationTaster, it was predicted that the M4 mutation is probably damaging, damaging and disease-
causing, respectively. M3 [27-29] conserved amino acid (Valeta). Besides the anti-time accessions of PolyPhen-2, SiPT, and
MutationTaster, it was predicted that the M4 mutation is probably damaging, damaging and disease-
causing, respectively. M3 [27-29] a

 $ABCA4$ gene. This mutation is well-known in exon 42, [M5]: c.5882G>A; p.(Gly1961Glu), rs1800553. M5 mutations was verified by Sanger sequencing in F9:19.1. The father and the mother of family 9 were
heterozygous carriers of M4 and M3, respectively, confirming an adequate co-segregation (Figure S1 b).
The index of family heterozygous carriers of M4 and M3, respectively, confirming an adequate co-segregation (Figure S1 b).
The index of family 31, F31:I31, carries a homozygous missense mutation within exon 42 of the
ABCA4 gene. This mutation The index of family 31, F31:l31, carries a homozygous missense mutation within exon 42 of the
ABCA4 gene. This mutation is well-known in exon 42, [M5]: c.5882G>A; p.(Gly1961Glu), rs1800553. M5
exhibited a rare occurrence a ן
}}
}} The index of family 31, The index of the index of the index of a homocygous in some individual from ExAC, gnomAD, and TOPmed population databases (respective frequencies= 0.005054, 0.004564, and 0.00284). This mutation aff Resonant and the measure is the measure of the proposition is exongene. This mutation is a parameter and was observed to be homozygous in some individual from ExAC, gnomAD, and TOPmed population databases (respective frequ exhibited a rare occurrences and TOPmed population databases (respective frequencies= 0.005054, 0.004564, and

0.00284). This mutation affects a conserved residue (Gly1961) in different species, except for one.

Furthermor 0.00284). This mutation affects a conserved residue (Gly1961) in different species, except for one.
Furthermore, according to the predictions made by PolyPhen-2, SIFT, and MutationTaster, the M5
mutation was determined to Furthermore, according to the predictions made by PolyPhen-2, SIFT, and MutationTaster, the M5
mutation was determined to be probably damaging, damaging, and disease-causing respectively. Sanger
sequencing analysis validat Furthermore, according to the predictions made by PolyPhen-2, and, and mutations mutations made mutation was determined to be probably damaging, damaging, and disease-causing respectively. Sanger sequencing analysis valida

mutation analysis validated the presence of this homozygous mutation in F31:131 (Figure S1 c). The
father of the affected patient was deceased; however, the mother was found homozygous WT.
The index F37:137 of family 37 ha Father of the affected patient was deceased; however, the mother was found homozygous WT.
The index F37:I37 of family 37 had a homozygous nonsense mutation in the exon 44 of ABCA4. This
substitution mutation that resulted The index F37:137 of family 37 had a homozygous nonsense mutation in the exon 44 of AB
substitution mutation that resulted in the appearance of a stop codon is [M6]: c.
p.(Arg2030Ter), rs61751383. According to population d |
|
|
| The index F37:I383. According to population databases, M6 is a rare and heterozygous
p.(Arg2030Ter), rs61751383. According to population databases, M6 is a rare and heterozygous
mutation with frequencies equal to 0.0000247 substitution mutation mutation mutation mutation mutation with frequencies equal to 0.00002471, 0.00002784, and 0.00000756 in ExAC, genomAD and TOPMed, respectively, affecting a conserved amino acid with one exception base p. (Arg. 2030)
mutation with frequencies equal to 0.00002471, 0.00002784, and 0.00000756 in ExAC, genomAD and
TOPMed, respectively, affecting a conserved amino acid with one exception based on UCSC genome
g mutation with frequencies exception based on UCSC genome
general to 0.0002471, and 0.0002784, and 0.0000756
Frequencies exception based on UCSC genome
g TOPMed, respectively, affecting a conserved amino acid with one exception based on UCSC genome

browser. Furthermore, MC is predicted to be an encoded to be an entirely and among the disease of M6 (Figure S1 d). Referring to literature databases, M6 is not a novel mutation [32].
[32].
Index F41:141 presented a homozy

This mutation may cannote by Sanger sequencing in Factor Interactory process, Me is not a novel mutation
Theterozygous carriers of M6 (Figure S1 d). Referring to literature databases, M6 is not a novel mutation
The same fo heterozygous mutation [M7]: c.970T>C; p.(Cys324Arg) in exon 8. The parents
were heterozygous for M7 (Figure S1 e), which was extremely rare and absent in online databases.
Prediction tools revealed it as disease-causing. B .
Index
were
Predi
amin
repor |
|
|
|
| Independent and absent in online databases.

Index F41: In the parameter and absent in online databases.

Prediction tools revealed it as disease-causing. Based on the UCSC genome browser, the impacted

In action accomposi Prediction tools revealed it as disease-causing. Based on the UCSC genome browser, the impacted
amino acid (Cys324) is conserved with two variations in two species. This mutation was previously
reported in a Chinese popula

Prediction to the security of an interact causing. There is an isome browser, this mutation was previously
reported in a Chinese population [33].
In family 56, F56:156 harbors a compound heterozygous mutation. The first is reported in a Chinese population [33].
In family 56, F56:156 harbors a compound heterozygous mutation. The first is the missense substitution
in exon 42 [M5], while the second is a nonsense mutation in exon 30 [M8]: c.4383 In family 56, F56:156 harbors a comport
in exon 42 [M5], while the second is a
affecting a highly conserved amino ac
shown in any population dataset, indi
disease-causing on MutationTaster and |
|
| a
| In exon 42 [M5], while the second is a nonsense mutation in exon 30 [M8]: c.4383G>A; p.(Trp1461Ter)
affecting a highly conserved amino acid. Notably, M8 was reported in the literature [34]. M8 was not
shown in any populati affecting a highly conserved amino acid. Notably, M8 was reported in the literature [34]. M8 was not
shown in any population dataset, indicating that it is extremely rare. Moreover, M8 was shown to be
disease-causing on Mu shown in any population dataset, indicating that it is extremely rare. Moreover, M8 was shown to be
disease-causing on MutationTaster and damaging on SIFT. Sanger sequencing validated the presence of
M5 and M8 in F56:156. disease-causing on MutationTaster and damaging on SIFT. Sanger sequencing validated the presence of
M5 and M8 in F56:156. Besides, it revealed that the disease co-segregated within the family, where the
father was found he

M5 and M8 in F56:156. Besides, it revealed that the disease co-segregated within the family, where the
father was found heterozygous for M8 and the mother was heterozygous for M5 (Figure S1 f).
Mutational analysis in index Father was found heterozygous for M8 and the mother was heterozygous for M5 (Figure S1 f).
Mutational analysis in index F58:I58 revealed a homozygous missense mutation [M9] in exon 22. M9:
c.3259G>A; p.(Glu1087Lys), rs6175 matrical analysis in index F58:158 revealed a homozygous missense mutation [M9] in exones.
C.3259G>A; p.(Glu1087Lys), rs61751398 is rare and never homozygous with an allele fre
0.00003296 in ExAC, 0.00001193 in genomAD and |
|
|} C.3259G>A; p.(Glu1087Lys), rs61751398 is rare and never homozygous with an allele frequency of
0.00003296 in ExAC, 0.00001193 in genomAD and 0.0000227 in TOPMed. M9 is likely damaging on
PolyPhen-2, damaging on SIFT, and d C.00003296 in ExAC, 0.00001193 in genomAD and 0.0000227 in TOPMed. M9 is likely damaging on
PolyPhen-2, damaging on SIFT, and disease-causing on MutationTaster. The affected amino acid
(Gly1087) is also highly conserved, a PolyPhen-2, damaging on SIFT, and disease-causing on MutationTaster. The affected amino acid (Gly1087) is also highly conserved, as found in the UCSC genome browser. The zygosity of the M9 mutation was verified through San (Gly1087) is also highly conserved, as found in the UCSC genome browser. The zygosity of the M9 mutation was verified through Sanger sequencing in the index patient. In contrast, M9 was heterozygous in the mother (Figure (Glynn) was verified through Sanger sequencing in the index patient. In contrast, M9 was heterozygous in the mother (Figure S1 g). This finding confirms the co-segregation of the mutation with the disease. The literature heterozygous in the mother (Figure S1 g). This finding confirms the co-segregation of the mutation with
the disease. The literature search showed M9 as a known variation [32]. the disease. The literature search showed M9 as a known variation [32]. the disease. The literature search showed M9 as a known variation [32].

Discussion

mutations underlying IRDs of different severity and manifestations [11]. We found eight mutations in
the ABCA4 gene in a small Lebanese group, seven of which had been identified before in different
populations, and one is the *ABCA4* gene in a small Lebanese group, seven of which had been identified before in different
populations, and one is novel, [M1]; c.4330G>C; p.(Trp1408Cys). The eight identified mutations were
associated with varying

populations, and one is novel, [M1]; c.4330G>C; p.(Trp1408Cys). The eight identified mutations were
associated with varying forms of IRDs. Sanger sequencing verified all putatively pathogenic mutations,
revealing their coassociated with varying forms of IRDs. Sanger sequencing verified all putatively pathogenic mutations,
revealing their co-segregation with the associated phenotypes.
ABCA4 is localized in 1p21–p22.1 on chromosome 1, consis associated with varying forms of IRDs. Interesting contractor in putation, providing their co-segregation with the associated phenotypes.
ABCA4 is localized in 1p21-p22.1 on chromosome 1, consisting of 50 exons that encode RECA4 is localized in 1p21-p22.1 on chromosome 1, consisting
ATP-binding cassette transporter protein of 2,273 amino acid
situated at the outer segments of rod and cone photoreceptor
retinal and toxic substances from the d ノノミ にん ATP-binding cassette transporter protein of 2,273 amino acids with a molecular weight of ~250 kDa
situated at the outer segments of rod and cone photoreceptors [9, 35]. ABCA4 protein moves all trans-
retinal and toxic sub Situated at the outer segments of rod and cone photoreceptors [9, 35]. ABCA4 protein moves all trans-
retinal and toxic substances from the disc lumen to the photoreceptors' cytoplasm. These by-products
are transported to retinal and toxic substances from the disc lumen to the photoreceptors' cytoplasm. These by-products
are transported to the retinal pigment epithelium (RPE) [36]. The association of bi-allelic mutations in
ABCA4 with diffe

Determining the biallelic mutations may be challenging due to the ABCA4's large size, the wide range of ABCA4 with different forms of IRDS comprises a loss-of-function component and photoreceptor stress
due to faulty localization and folding of protein [35].
Determining the biallelic mutations may be challenging due to the A due to faulty localization and folding of protein [35].
Determining the biallelic mutations may be challenging due to the *ABCA4's* large size, the wide range of
pathogenic variations it exhibits such as hypomorphic mutati Determining the biallelic mutations may be challeng
pathogenic variations it exhibits such as hypomorp
and lately, deep-intronic mutations [37]. In line with
patient in family 3 revealed only one mutant allel
rendering the [
|}
|}
|} Determining the biallelic mutations may be challenging due to the *ABCA4*'s large size, the wide range of pathogenic variations it exhibits such as hypomorphic mutations, non-canonical splice site mutations, and lately, de pathogenic variations in antitions [37]. In line with previous literature [38], targeted sequencing of the patient in family 3 revealed only one mutant allele, while the second mutation is still missing, thus rendering the patient in family 3 revealed only one mutant allele, while the second mutation is still missing, thus
rendering the case of family 3 genetically unsolved. According to Nassisi et al., there are two basic
explanations for t patient in family 3 genetically unsolved. According to Nassisi et al., there are two basic
explanations for this performance's relative poorness: (1) because the whole gene was not scanned, the
second allele may be located rendering the case of family 3 generative process: (1) because the whole gene was not scanned, the
second allele may be located in the gene's promoter, untranslated regions (UTRs), or another deep
intronic region. Addition explanations for this performance's relative poorness: (1) because the whole gene was not scanned, the
second allele may be located in the gene's promoter, untranslated regions (UTRs), or another deep
intronic region. Addi second allele may be located in the gene's promoter, untranslated regions (UTRs), or another deep
intronic region. Additionally, the phenotype may be caused by unrecognized copy number variations
(CNVs) in exonic or intron interestigate of the patient of the phenocopies associated with STGD, it may be necessary to examine
case [37]. (2) As there are multiple phenocopies associated with STGD, it may be necessary to examine
the exome or genome (CNVs) in example provides associated with STGD, it may be necessary to examine
the exome or genome of the patient to identify the existence of pathogenic mutations in other genes,
possibly additional genes not previously case the exome or genome of the patient to identify the existence of pathogenic mutations in other genes,
possibly additional genes not previously linked with IRDs [37].
The ABCA4 locus provides insight into a multitude of

the exome or genome or genome or previously linked with IRDs [37].
The ABCA4 locus provides insight into a multitude of founder alleles in a particular geographical region.
What makes the ABCA4 locus particularly intriguin possibly additional generatopy online, minimized with IRDs.
The ABCA4 locus provides insight into a multitude of founder
What makes the ABCA4 locus particularly intriguing is; (1) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ What makes the ABCA4 locus particularly intriguing is; (1) almost every population has its intrinsic 11 W_{max} locus particularly intriguing is; (1) almost every population has its intrinsic.

mutations, (2) the most prevalent disease-causing mutation in the *ABCA4* gene, namely c.5882G>A;
p. (Gly1961Glu), exhibits a likely origin in Eastern Africa, with frequencies ranging from approximately 8%
to 10% in popula ethnic origins [11]. The most previous tend of the most prevalent distributed in popposimately 8% to 10% in populations hailing from Somalia, Kenya, and Ethiopia. [11, 40]. The dispersal of c.5882G>A;
p. (Gly1961Glu) world p.(Gly1961Glu) worldwide can be attributed to the migratory movement of populations across different
p.(Gly1961Glu) worldwide can be attributed to the migratory movement of populations across different
regions. Yet, the al to 10% p. (Gly1961Glu) worldwide can be attributed to the migratory movement of populations across different
regions. Yet, the allele frequency has declined substantially with evolution, reaching about 0.4% in
European nat

programs. Yet, the allele frequency has declined substantially with evolution, reaching about 0.4% in
European nations, implying that the variation is causative across almost all populations [11].
Herein, we report the fir European nations, implying that the variation is causative across almost all populations [11].
Herein, we report the first detection of the mutation c.5882G>A p.(Gly1961Glu) in the Lebanese
population. The presence of the European nations, implying that the variables can
determine in perfections. The presence of the Gly1961Glu allele (homozygous or compound heter
associated with markedly different phenotypes [11]. In this study, Gly1961Glu ト ミニート population. The presence of the Gly1961Glu allele (homozygous or compound heterozygous) is
associated with markedly different phenotypes [11]. In this study, Gly1961Glu was detected in about
30% of our group (2 patients ou populated with markedly different phenotypes [11]. In this study, Gly1961Glu was detected in about
30% of our group (2 patients out of 7) in both homozygosity and compound heterozygosity states.
Mutational analysis reveale associated with markedly and test phenotypes [11]. In this study, experience into acternational analysis revealed p. Gly1961Glu in a homozygous state in the index of family 31 diagnosed with RCD, while it was in compound h 30% of our group (2 patients out of 7) in a term in the group of the index of family 31 diagnosed
with RCD, while it was in compound heterozygous state along with c.4383G>A; p.(Trp1461Ter) in the
patient of family 56. Init with RCD, while it was in compound heterozygous state along with c.4383G>A; p.(Trp1461Ter) in the
patient of family 56. Initially, it was thought that Gly1961Glu was not likely to be pathogenic, mainly
when found in the ho patient of family 56. Initially, it was thought that Gly1961Glu was not likely to be pathogenic, mainly
when found in the homozygous state [41]. A homozygous c.5882G>A; p.(Gly1961Glu) mutation was
described in an asymptoma when found in the homozygous state [41]. A homozygous c.5882G>A; p.(Gly1961Glu) mutation was
described in an asymptomatic 25 years old Somali male with normal vision assessment [40, 41].
However, this was justified by a st described in an asymptomatic 25 years old Somali male with normal vision assessment [40, 41].
However, this was justified by a study in which patients homozygous for c.5882G>A; p.(Gly1961Glu)
were reported to have later di However, this was justified by a study in which patients homozygous for c.5882G>A; p.(Gly1961Glu)
were reported to have later disease onset (>25 years old) than would be seen in STGD in typical cases
[40]. Hence, it is lik However reported to have later disease onset (>25 years old) than would be seen in STGD in typical cases
[40]. Hence, it is likely to find an individual with normal vision assessment at 25 but may develop
symptoms in later [40]. Hence, it is likely to find an individual with normal vision assessment at 25 but may develop
symptoms in later life stages [40]. A prior investigation found an association between the c.5882G>A;
p.(Gly1961Glu) muta symptoms in later life stages [40]. A prior investigation found an association between the c.5882G>A;
p.(Gly1961Glu) mutation, with the development of bull's eye maculopathy and early disruption of
central photoreceptors, p. (Gly1961Glu) mutation, with the development of bull's eye maculopathy and early disruption of
central photoreceptors, supporting the notion that this mutant allele has a disease-causing effect [42].
The missense mutatio p.(Gly1961Glu) mutation, with the development of bull's eye maculopathy and early disruption of
central photoreceptors, supporting the notion that this mutant allele has a disease-causing effect [42].
The missense mutation The missense mutation allele c.5882G>A; p.(Gly1961Glu) has been observed to be linked with retinal
impairment that is localized to the macula, without being widespread [42]. This glycine-to-glutamine
substitution mutation Impairment that is localized to the macula, without being widespread [42]. This glycine-to-glutamine
substitution mutation in exon 42 was envisioned to be outside the functional domains of ABCA4 [43].
c.5882G>A; p.(Gly1961 substitution mutation in exon 42 was envisioned to be outside the functional domains of ABCA4 [43].
c.5882G>A; p.(Gly1961Glu) is expected to affect protein function by reducing ATP binding and ATPase
activity, as shown by c.5882G>A; p.(Gly1961Glu) is expected to affect protein function by reducing ATP binding and ATPase
activity, as shown by indirect functional testing [44, 45]. Generally, c.5882G>A; p.(Gly1961Glu) was
reported to be cause activity, as shown by indirect functional testing [44, 45]. Generally, c.5882G>A; p.(Gly1961Glu) was
reported to be cause milder phenotypes. However, it may associate with phenotypes of varying severity
[42]. Its actual cl reported to be cause milder phenotypes. However, it may associate with phenotypes of varying severity [42]. Its actual clinical manifestation may rely on the severity of the other paired mutant allele, as revealed by previ [42]. Its actual clinical manifestation may rely on the severity of the other paired mutant allele, as
revealed by previous genotype-phenotype investigations [42, 46]. Hence, the type of the
combined ABCA4 mutant alleles revealed by previous genotype-phenotype investigations [42, 46]. Hence, the type of the combined ABCA4 mutant alleles in compound heterozygosity determines the phenotype severity,
12 combined ABCA4 mutant alleles in compound heterozygosity determines the phenotype severity,
12 combined ABCA4 mutant alleles in compound the phenotype severity, $\frac{1}{2}$

external environmental factors that are still unknown [42, 43]. Our index F31:l31 demonstrated a RCD
disease pattern, similar to what Burke et al. reported in a Somali patient with a homozygous
p.Gly1961Glu mutation, showi external environmental factors that are still unitarity (e.g., e.g.) of and a Somali patient with a homozygous
p.Gly1961Glu mutation, showing the diversity of phenotypes caused by ABCA4 mutations [40].
Interestingly, Burke p. Gly1961Glu mutation, showing the diversity of phenotypes caused by ABCA4 mutations [40].
Interestingly, Burke et al. have examined 12 individuals with homozygous p. Gly1961Glu and found that
all of them have ABCA4 retin

p. Therestingly, Burke et al. have examined 12 individuals with homozygous p.Gly1961Glu and found that
all of them have *ABCA4* retinopathies, with severe phenotypes consistent with the existence of
additional (modifier) Interestingly, Burke et al. have entimated to interest and interesting prespect provided into the existence of
In dividual (modifier) ABCA4 mutations [40].
In family 56, the mutation M8: c.4383G>A; p.(Trp1461Ter) found wit additional (modifier) *ABCA4* mutations [40].

In family 56, the mutation M8: c.4383G>A; p.(Trp1461Ter) found with p.(Gly1961Glu) was confirmed

through co-segregation analyses: the index presented it in a compound heteroz In family 56, the mutation M8: c.4383G>A;
through co-segregation analyses: the index
unaffected parents, F56:M56 and F56:F56, w
finding provides confirmation of the autosor
mutation was found before along with anoth
M3: c. ו
ז
ז In family 1991. The mutation co-segregation analyses: the index presented it in a compound heterozygous state, while the
unaffected parents, F56:M56 and F56:F56, were heterozygous carriers of M5 and M8, respectively. This
 unaffected parents, F56:M56 and F56:F56, were heterozygous carriers of M5 and M8, respectively. This
finding provides confirmation of the autosomal recessive inheritance pattern observed in F56:I56. This
mutation was found

manizon paramigram in the autosomal recessive inheritance pattern observed in F56:156. This
finding provides confirmation of the autosomal recessive inheritance pattern observed in F56:156. This
mutation was found before a mutation was found before along with another allele in a patient diagnosed with CRD [34].
M3: c.574G>A; p.(Ala192Thr) and M4: c.1927G>A; p.(Val643Met) detected by NGS in patient F9:I9.1 of
family 9 as compound heterozygous mutation was found before all the mutation was found that in a matism of the standing of as compound heterozygous were further confirmed by Sanger sequencing. This
diagnosed with CRD. Co-segregation analysis was establishe r
f
c
i
t Mamily 9 as compound heterozygous were further confirmed by Sanger sequencing. This patient was
diagnosed with CRD. Co-segregation analysis was established where M3 and M4 were affirmed by
Sanger sequencing in the mother a family 9 as composed with CRD. Co-segregation analysis was established where M3 and M4 were affirmed by
Sanger sequencing in the mother and the father, respectively, validating the autosomal recessive
inheritance fashion o Sanger sequencing in the mother and the father, respectively, validating the autosomal recessive
inheritance fashion of CRD in F9:19.1. Consistent with our results, M3: c.574G>A causing alanine to
threonine p.(Ala192Thr) s Sanger sequencing in the motion and the father, respectively, remaining the antiexant recession in
inheritance fashion of CRD in F9:19.1. Consistent with our results, M3: c.574G>A causing alanine to
threonine p.(Ala192Thr) Inheritance fashion of CRD is a strategistic factor of the CRD in a subject with CRD [27].

Moreover, Webster et al. have also found this mutation in an individual clinically diagnosed with STGD

[48]. Both CRD and STGD ha Moreover, Webster et al. have also found this mutation in an individual clinically diagnosed with STGD
[48]. Both CRD and STGD have clinical features in common, such as age of onset, macula involvement,
and a progressive d The 148]. Both CRD and STGD have clinical features in common, such as age of onset, macula involvement,
and a progressive decline in visual acuity while retaining relatively preserved night vision [27]. However,
unlike STG and a progressive decline in visual acuity while retaining relatively preserved night vision [27]. However, unlike STGD, which is restricted to the posterior pole, CRD generally affects the whole retina [27]. The observati and a progressive decline in visual acuity manchestance, preserved in governed progressive (27]. The observation of such a common mutation between CRD and STGD shows overlapping between these two disorders [27]. STGD patie unlike STGD shows overlapping between these two
disorders [27]. STGD patients can develop substantial, widespread pigmentary degenerative
impairments that are comparable to those seen in CRD patients [27]. Additionally, th disorders [27]. STGD patients can develop substantial, widespread pigmentary degenerative
impairments that are comparable to those seen in CRD patients [27]. Additionally, the other mutation
M4: c.1927G>A; p.(Val643Met) ha impairments that are comparable to those seen in CRD patients [27]. Additionally, the other mutation
M4: c.1927G>A; p.(Val643Met) has also been reported previously by Briggs et al. as a heterozygous
mutation with another a impair in the c.1927G>A; p.(Val643Met) has also been reported previously by Briggs et al. as a heterozygous
mutation with another allele and found to cause STGD [30]. Maugeri et al. have suggested a genotype-
phenotype cor MHTHELT BEA; p.(Fincentry the line of severic previously between the American, by Bridge and Theorem and Theorem multion with another allele and found to cause STGD [30]. Maugeri et al. have suggested a genotype-
phenotype phenotivity and the level of severity of the IRD [49]. According to this model, compound heterozygosity for
two severe (null) *ABCA4* mutations cause RCD, the most severe phenotype [49]. Whereas, in case of
13 two severe (null) $ABCA4$ mutations cause RCD, the most severe phenotype [49]. Whereas, in case of 13 t_{max} (null) ABCA4 mutations cause $\frac{1}{2}$ mutations cause $\frac{1}{2}$. Whereas, in case of $\frac{1}{2}$

partial retention of ABCA4 mutation, while STGD macular degeneration will appear if a severe mutation is
inherited along with a mild *ABCA4* mutation [49].
Family 37 presented a consanguinity case with a child diagnosed wi moderately severe mutation, mine streshmental degeneration into appear in a severe mutation is
inherited along with a mild ABCA4 mutation [49].
Family 37 presented a consanguinity case with a child diagnosed with CRD. The Family 37 presented a consanguinity case with a
mutation revealed in the index of family 37, M7: d
destabilize the messenger RNA by the nonsens
expressed because the affected arginine residue
binding domain of ABCA4 protei F
r
c
c Family 37, M7: c.6088C>T, causing a stop codon at Arg2030, is likely to
mutation revealed in the index of family 37, M7: c.6088C>T, causing a stop codon at Arg2030, is likely to
destabilize the messenger RNA by the nonsens destabilize the messenger RNA by the nonsense-mediated decay mechanism in case the protein is
expressed because the affected arginine residue at position 2030 is situated in the second nucleotide-
binding domain of ABCA4 p expressed because the affected arginine residue at position 2030 is situated in the second nucleotide-
binding domain of ABCA4 protein [50, 51]. This mutation has been identified before in heterozygous and
compound heteroz [33]. Similarly, a homozygous missense mutation in exon 22 of $ABCA4$: c.3259G>A; p.(Glu1087Lys) was binding domain of ABCA4 proteins and associated with STGD or CRD [43, 52, 53]. The patient of family 41,
F41:141, whose parents were relatives, was diagnosed with CRD and was shown to harbor the
homozygous missense mutatio F41:141, whose parents were relatives, was diagnosed with CRD and was shown to harbor the
homozygous missense mutation c.970T>C; p.(Cys324Arg). Interestingly, this mutation was only seen
once in a compound heterozygous st F41:I41, MELE parameter relatives, was angles to hard the late the metric menter in the metric of the homozygous missense mutation c.4316G>T; p.(Gly1439Val) in a Chinese patient with STGD [33]. Similarly, a homozygous miss homozygous missense mutation in example. The USANG and Mathematical and the USA once in a compound heterozygous state with c.4316G>T; p.(Gly1439Val) in a Chinese patient with STGD
[33]. Similarly, a homozygous missense mut once in a compound heterozygous missense mutation in exon 22 of *ABCA4*: c.3259G>A; p.(Glu1087Lys) was
associated with RCD in the index patient of family 58. This mutation was previously found in the
compound heterozygous

Exercised with RCD in the index patient of family 58. This mutation was previously found in the
compound heterozygous state associated with STGD and CRD [54, 55].
In conclusion, eight mutations in the ABCA4 gene were detec compound heterozygous state associated with STGD and CRD [54, 55].
In conclusion, eight mutations in the ABCA4 gene were detected in seven Lebanese patients diagnosed
with different forms of related retinopathies. One muta In conclusion, eight mutations in the ABCA4 gene were detected in se
with different forms of related retinopathies. One mutation turned o
p.(Trp1408Cys). When Combined with the phenotypic data, our fin
heterogeneity of the |
|
|}
| נ In contribution, eight mutation in the ABCA4 gene interaction turned out to be novel; [M1]; c.4330G>C;
p.(Trp1408Cys). When Combined with the phenotypic data, our findings show the significant allelic
heterogeneity of the p.(Trp1408Cys). When Combined with the phenotypic data, our findings show the significant allelic
heterogeneity of *the ABCA4* gene. The expanded capabilities of genetic screening, assisted by the
utilization of high-resol p. The terogeneity of the ABCA4 gene. The expanded capabilities of genetic screening, assisted by the utilization of high-resolution diagnostic imaging technologies, have enlarged the phenotypic expression spectrum of ABCA utilization of high-resolution diagnostic imaging technologies, have enlarged the phenotypic expression
spectrum of *ABCA4-associated* diseases. A thorough understanding of the *ABCA4* mutations and its
correlations with t spectrum of *ABCA4-associated* diseases. A thorough understanding of the *ABCA4* mutations and its correlations with the phenotype are indispensable to comprehend its association with different forms of IRDs. spectrum of ABCA4-association of ABCA4-association of the ABCA4-association with different forms of IRDs.
IRDs. correlations with the phenotype are indispensable to comprehend its association with different forms of α association with different forms of α association with different forms of α association with different form

Acknowledgments

Merticipating in this study. Additionally, we extend our appreciation to 3billion® (Seoul, Korea) for
generously providing free whole-exome sequencing to the index patients F37:137 and F56:156.
Author Contributions
SES fra

Author Contributions

generously providing free whole-exome sequencing to the index patients F37:137 and F56:156.

Author Contributions

SES framed the methodology. AA, CH, and SES conducted the formal analysis. LJ, SES, HA, and MI, LJ and

SES Author Contributions
SES framed the methodology. AA, CH, and SES conducted the formal analysis. LJ, SES, HA, and
SES investigated. AA, CH, and LJ collected resources. MI and LJ wrote the original draft prepar
wrote the rev ノミート SES investigated. AA, CH, and LJ collected resources. MI and LJ wrote the original draft preparation. SES
wrote the review and editing. SES administered the project. AA and SES funded the acquisition.
Data Availability
All SES investigated. Any only and LI content resources in the LI and DI and Dignitically preparation.
Wrote the review and editing. SES administered the project. AA and SES funded the acquisition.
Data Availability
All our da

$\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$ Data Availability

Data Availability
All our data is shared in the manuscript and the supplementary Figure.
Confidentiality
The patient and the family IDs are not known to anyone outside the PI: SES.

$\frac{1}{\sqrt{2}}$ Confidentiality

Confidentiality
The patient and the family IDs are not known to anyone outside the PI:
The patient and the family IDs are not known to anyone outside the PI: The patient and the family IDs are not known to anyone outside the PI: SES.

References

-
-
- 1. Front Cell Dev Biol, 2021. 9: p. 645600.

2. Liu, X., et al., Molecular diagnosis based on comprehensive genetic testing in 800 Chinese

families with non-syndromic inherited retinal dystrophies. Clin Exp Ophthalmol, 20 Front Cell Dev Biol, 2021. 3: p. 043600.
Liu, X., et al., *Molecular diagnosis based
families with non-syndromic inherited re*
46-59.
Perea-Romero, I., et al., *Genetic landsco
Spain and their therapeutic and extende*
11(1 Families with non-syndromic inherited retinal dystrophies. Clin Exp Ophthalmol, 2021. 49(

46-59.

Perea-Romero, I., et al., *Genetic landscape of 6089 inherited retinal dystrophies affected of*

Spain and their therapeuti Families with non-syndromic inherited retinal dystrophies. Clin Exp Ophthalmol, 2021: 49(1): p.
Perea-Romero, I., et al., Genetic landscape of 6089 inherited retinal dystrophies affected cases
Spain and their therapeutic a Perea-l
S*pain a*
S*pain a*
11(1): IChen, 1
Taiwan
Salmar
pigmer
Gill, J.S Spain and their therapeutic and extended epidemiological implications. Scientific Reports, 2021.

11(1): p. 1526.

Chen, T.-C., et al., Genetic characteristics and epidemiology of inherited retinal degeneration in

Taiwan.
- 11(1): p. 1526.
Chen, T.-C., et al., *Genetic characteristics and epidemiology of inherited retinal degeneration in*
Taiwan. npj Genomic Medicine, 2021. 6(1): p. 16.
Salmaninejad, A., et al., *Next-generation sequencing an* **11(1): p. 1526.**
Chen, T.-C., et a
Taiwan. npj Ge
Salmaninejad, *l*
pigmentosa. O_l
Gill, J.S., et al., and prospects f
Birtel, J., et al.,
cone/cone-rod
Tanna, P., et al.
-
- Form in the all the arguments of ABCA4 and Its Role in the Visual Cycle and prospects for therapy. Br J Ophthalmol, 2019. 103(5): p. 711-20.

Sill, J.S., et al., Progressive cone and cone-rod dystrophies: clinical features
-
- Falmaninejad, A., et al., *Next-generation sequenci*
pigmentosa. Ophthalmic Genet, 2019. 40(5): p. 39
Gill, J.S., et al., *Progressive cone and cone-rod dyst*
and prospects for therapy. Br J Ophthalmol, 2019.
Birtel, J., e pigmentosa. Ophthalmic Genet, 2013. 40(5): p. 333-402.
Gill, J.S., et al., *Progressive cone and cone-rod dystrophies*
and prospects for therapy. Br J Ophthalmol, 2019. **103**(5)
Birtel, J., et al., *Clinical and genetic ch*
- Taiwan. npj Genomic Medicine, 2021. 6(1): p. 16.

5. Salmaninejad, A., et al., Next-generation sequencing and its application in diagnosis of retinitis

pigmentosa. Ophthalmic Genet, 2019. 40(5): p. 393-402.

6. Gill, J.S
-
- and prospects for therapy. Br J Ophthalmol, 2019. 103(5): p. 711-20.

7. Birtel, J., et al., *Clinical and genetic characteristics of 251 consecutive patients with macular and*
 cone/cone-rod dystrophy. Sci Rep, 2018. **8** and prospects for therapy. Br 3 Ophthalmol, 2019. 103(5): p. 711-20.
Birtel, J., et al., *Clinical and genetic characteristics of 251 consecutive*
cone/cone-rod dystrophy. Sci Rep, 2018. **8(1)**: p. 4824.
Tanna, P., et al., *Cone-rod dystrophy.* Sci Rep, 2018. **8(1)**: p. 4824.
 8. Tanna, P., et al., Stargardt disease: clinical features, molecular genetics, animal models and
 therapeutic options. Br J Ophthalmol, 2017. **101**(1): p. 25-30.
 cone/cone-rod dystrophy. Sci Rep, 2018. 8(1): p. 4824.
Tanna, P., et al., *Stargardt disease: clinical features, matherapeutic options.* Br J Ophthalmol, 2017. **101**(1): p. *i*
Molday, R.S., *Insights into the Molecular Pr* therapeutic options. Br J Ophthalmol, 2017. **101**(1): p. 25-30.

9. Molday, R.S., Insights into the Molecular Properties of ABCA4 and Its Role in the Visual Cycle

Stargardt Disease. Prog Mol Biol Transl Sci, 2015. **134**: Encrupeutic options. Br 3 Ophthalmol, 2017. 101(1): p. 25-30.

Molday, R.S., Insights into the Molecular Properties of ABCA4

Stargardt Disease. Prog Mol Biol Transl Sci, 2015. 134: p. 415-

Koenekoop, R.K., The gene for S Stargardt Disease. Prog Mol Biol Transl Sci, 2015. 134: p. 415-31.

10. Koenekoop, R.K., *The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review.*

0phthalmic Genet, 2003. 24(2): p. 75-80.

11. Creme Stargardt Disease. Frog Mol Biol Transl Sci, 2013. 134: p. 415-51.
Koenekoop, R.K., *The gene for Stargardt disease, ABCA4, is a majo*
Ophthalmic Genet, 2003. 24(2): p. 75-80.
Cremers, F.P.M., et al., *Clinical spectrum, g* Ophthalmic Genet, 2003. 24(2): p. 75-80.
Cremers, F.P.M., et al., *Clinical spectrum,*
retinal disease caused by ABCA4 mutation
100861.
Zernant, J., et al., *Analysis of the ABCA4 g*.
Vis Sci, 2011. **52**(11): p. 8479-87.
F
-
-
- 10. Koenekoop, R.K., The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. retinal disease caused by ABCA4 mutations. Progress in Retinal and Eye Research, 2020. 79: p. 100861.

12. Zernant, J., et al., Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalm Vis Sci, 2011. 52(1 retinal disease caused by ABCA4 mutations. Progress in Retinal and Eye Research, 2020: 79: p.
200861.
Zernant, J., et al., *Analysis of the ABCA4 gene by next-generation sequencing.* Invest Ophthalm
Vis Sci, 2011. 52(11): -
Zernant,
Vis Sci, 2
Fujinami
Invest Op
Boulange
Underlyii
20(19).
Smirnov,
CLN3 Pat Vis Sci, 2011. 52(11): p. 8479-87.

13. Fujinami, K., et al., ABCA4 gene screening by next-generation sequencing in a British cohort.

Invest Ophthalmol Vis Sci, 2013. 54(10): p. 6662-74.

14. Boulanger-Scemama, E., et al. Vis Sci, 2011. 32(11): p. 6479-87.
Fujinami, K., et al., *ABCA4 gene selnvest Ophthalmol Vis Sci, 2013. 1*
Boulanger-Scemama, E., et al., *Ph.
Underlying Genetic Defects: Appli*
20(19).
Smirnov, V.M., et al., *Retinal Phe.* Invest Ophthalmol Vis Sci, 2013. 54(10): p. 6662-74.

14. Boulanger-Scemama, E., et al., *Phenotype Analysis of Retinal Dystrophies in Light of the*

14. Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrop Invest Ophthalmol Vis Sci, 2013. 34(10): p. 6662-74.
Boulanger-Scemama, E., et al., *Phenotype Analysis of*
Dnderlying Genetic Defects: Application to Cone and
20(19).
Smirnov, V.M., et al., *Retinal Phenotype of Patie*
- Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. Int J Mol Sci

20(19).

15. Smirnov, V.M., et al., Retinal Phenotype of Patients With Isolated Retinal Degeneration

16. CLN3 Pathogenic Variants in 20(19).

Smirnov, V.M., et al., *Retinal Phenotype of Patients With Isolated Retinal Degeneration Due to*

CLN3 Pathogenic Variants in a French Retinitis Pigmentosa Cohort. JAMA Ophthalmol, 2021.

139(3): p. 278-291.

Nash 20(19).
Smirnov
CLN3 Pc
139(3):
Nash, B
therapy
Jaffal, L.
Karczew
*K*arczew
- 139(3): p. 278-291.
Nash, B.M., et al., *R*
therapy. Transl Pedi
Jaffal, L., et al., *Nove
Lebanese Patients.* (
Karczewski, K.J., et al., *Th*
Fl Shamieh, S., et al.
Thel Shamieh, S., et al.
relatively common d
-
-
-
- CLN3 Pathogenic Variants in a French Retinitis Pigmentosa Cohort. JAMA Ophthalmol, 2021.

139(3): p. 278-291.

16. Nash, B.M., et al., *Retinal dystrophies, genomic applications in diagnosis and prospects for*

therapy. T 139(3): p. 278-291.

Nash, B.M., et al., *Retinal dystrophies, genomic applications in diagnosis and prospects for*
 therapy. Transl Pediatr, 2015. 4(2): p. 139-63.

Jaffal, L., et al., *Novel Missense Mutations in BEST1* 16. Instanting the may applicate the may be therapy. Transl Pediatr, 2015. 4(2): p. 139-63.

16. Institute Lebanese Patients. Genes (Basel), 2019. 10(2).

18. Karczewski, K.J., et al., The mutational constraint spectrum qu therapy. Hansi Pediatr, 2013: 4(2): p. 139-63.
Jaffal, L., et al., *Novel Missense Mutations in B*
Lebanese Patients. Genes (Basel), 2019. **10**(2).
Karczewski, K.J., et al., *The mutational constra
humans. Nature, 2020.* Lebanese Patients. Genes (Basel), 2019. **10**(2).

18. Karczewski, K.J., et al., *The mutational constraint spectrum quantified from variation in 141,45*

humans. Nature, 2020. **581**(7809): p. 434-443.

19. Kent, W.J., et a Lebanese Patients. Genes (Basel), 2019. 10(2).
Karczewski, K.J., et al., *The mutational constrationals.* Nature, 2020. **581**(7809): p. 434-443.
Kent, W.J., et al., *The human genome browser*
El Shamieh, S., et al., *Targe* 18. Kart, W.J., et al., The human genome browser at UCSC. Genome Res, 2002. 12(6): p. 996-1006.

19. Kent, W.J., et al., The human genome browser at UCSC. Genome Res, 2002. 12(6): p. 996-1006.

19. El Shamieh, S., et al., humans. Nature, 2020. **361**(7805). p. 434-443.
Kent, W.J., et al., *The human genome browser (El Shamieh, S., et al., Targeted next generation relatively common cause of autosomal recessiv*
2015: p. 485624. 19. Kent, W.J., et al., *The human genome browser at Oese*. Genome Res, 2002. 12(6): p. 950-1000.
20. El Shamieh, S., et al., *Targeted next generation sequencing identifies novel mutations in RP1 as*
2015: p. 485624.
2015 2015: p. 485624.
2015: p. 485624.
2015: p. 485624. $\begin{array}{c} \textbf{2015: p. } \textbf{485624.} \end{array}$ $2015. p. 485624.$

-
-
-
-
- protein function using the SIFT algorithm. Nature Protocols, 2009. 4(7): p. 1073-1081.

22. Adzhubei, I.A., et al., *A* method and server for predicting damaging missense mutations. Nature

Methods, 2010. **7(4**): p. 248-24 protein function using the SiFT algorithm. Nature Protocols, 2009. 4(7): p. 1075-1001.
Adzhubei, I.A., et al., *A method and server for predicting damaging missense mutation*
Methods, 2010. **7(**4): p. 248-249.
Schwarz, J.M Methods, 2010. **7(4)**: p. 248-249.

23. Schwarz, J.M., et al., *MutationTaster2: mutation prediction for the deep-sequencing age.* Nat

Methods, 2014. **11(**4): p. 361-2.

24. Stenson, P.D., et al., *The Human Gene Mutation* Methods, 2010. 7(4): p. 248-249.
Schwarz, J.M., et al., *MutationTas*
Methods, 2014. **11**(4): p. 361-2.
Stenson, P.D., et al., *The Human Crepository for clinical and molecul
medicine. Hum Genet, 2014. 133
Fokkema, I.F.,* Methods, 2014. 11(4): p. 361-2.

24. Stenson, P.D., et al., The Human Gene Mutation Database: building a comprehensive mutatio

repository for clinical and molecular genetics, diagnostic testing and personalized genomic

m Methods, 2014. 11(4). p. 301-2.
Stenson, P.D., et al., *The Human
repository for clinical and molecu*
medicine. Hum Genet, 2014. 133
Fokkema, I.F., J.T. den Dunnen, a
sequence variation database usi.
8.
Koressaar, T. and repository for clinical and molecular genetics, diagnostic testing and personalized genomic

medicine. Hum Genet, 2014. 133(1): p. 1-9.

25. Fokkema, I.F., J.T. den Dunnen, and P.E. Taschner, *LOVD: easy creation of a locu* medicine. Hum Genet, 2014. 133(1): p. 1-9.
Fokkema, I.F., J.T. den Dunnen, and P.E. Taschner, *LOVD: easy creation of a locus-specific*
sequence variation database using an "LSDB-in-a-box" approach. Hum Mutat, 2005. 26(2): medicine. Hum Genet, 2014. 133(1): p. 1-9.
Fokkema, I.F., J.T. den Dunnen, and P.E. Tas
sequence variation database using an "LSDE
8.
Koressaar, T. and M. Remm, Enhancements
Primer3. Bioinformatics, 2007. 23(10): p. 12
Bir sequence variation database using an "LSDB-in-a-box" approach. Hum Mutat, 2005. 26(2)

26. Koressaar, T. and M. Remm, *Enhancements and modifications of primer design program*

Primer3. Bioinformatics, 2007. 23(10): p. 128
-
-
- sequence variation database using an "LSDB-in-a-box" approach. Hum Mutat, 2005. 20(2): p. 63-8.

Roressaar, T. and M. Remm, Enhancements and modifications of primer design program

Primer3. Bioinformatics, 2007. 23(10): p. - Ko
Pri
Bim
Gc
th
Cid
Hu
Br Primer3. Bioinformatics, 2007. 23(10): p. 1289-91.

27. Birch, D.G., et al., *Visual function in patients with cone-rod dystrophy (CRD) associated w*
 mutations in the ABCA4(ABCR) gene. Exp Eye Res, 2001. 73(6): p. 877-8 Frimers. Biomnomiatics, 2007. 23(10). p. 1209-91.
Birch, D.G., et al., *Visual function in patients with c*
mutations in the ABCA4(ABCR) gene. Exp Eye Res, *i*
Goetz, K.E., et al., *Genetic testing for inherited eye*
the e mutations in the ABCA4(ABCR) gene. Exp Eye Res, 2001. 73(6): p. 877-86.

28. Goetz, K.E., et al., Genetic testing for inherited eye conditions in over 6,000 individuals throu

the eyeGENE network. Am J Med Genet C Semin Me mutations in the ABCA4(ABCN) gene. Lxp Lye Res, 2001. 73(6): p. 877-86.
Goetz, K.E., et al., *Genetic testing for inherited eye conditions in over 6,00*
the eyeGENE network. Am J Med Genet C Semin Med Genet, 2020. 184(3)
C
-
-
-
- 28. Communication and a proposed strategy for gene therapy.

29. Cideciyan, A.V., et al., ABCA4 disease progression and a proposed strategy for gene therapy.

29. Cideciyan, A.V., et al., ABCA4 disease progression and a pr the eyear. Increases and disease progression and a proposed strategy for gene their
Cideciyan, A.V., et al., ABCA4 idsease progression and a proposed strategy for gene their
Hum Mol Genet, 2009. 18(5): p. 931-41.
Briggs, C Hum Mol Genet, 2009. 18(5): p. 531-41.
Briggs, C.E., et al., *Mutations in ABCR (AE*
or cone-rod degeneration. Invest Ophtha
Del Pozo-Valero, M., et al., *Genotype-Phi*
With Biallelic ABCA4 Pathogenic Variants
Fujinami, K.
-
- Hum Mol Genet, 2009. 18(5): p. 931-41.

29. Briggs, C.E., et al., Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration

29. Crease processor and a proposed strategy for the strategy for gene to the Bia or cone-rod degeneration. Invest Ophthalmol Vis Sci, 2001. 42(10): p. 2229-36.

31. Del Pozo-Valero, M., et al., *Genotype-Phenotype Correlations in a Spanish Cohort of 506 Familie

With Biallelic ABCA4 Pathogenic Variants* or cone-rod degeneration. Invest Ophthalmor vis Sci, 2001. 42(10): p. 2223-36.
Del Pozo-Valero, M., et al., *Genotype-Phenotype Correlations in a Spanish Coho*
With Biallelic ABCA4 Pathogenic Variants. Am J Ophthalmol, 202 With Biallelic ABCA4 Pathogenic Variants. Am J Ophthalmol, 2020. 219: p. 195-204.

32. Fujinami, K., et al., Detailed genetic characteristics of an international large cohort of patients

with Stargardt disease: ProgStar s With Biallelic ABCA4 Pathogenic Variants. Am J Ophthalmol, 2020. 219. p. 133-204.
Fujinami, K., et al., *Detailed genetic characteristics of an international large cohort of* with Stargardt disease: *ProgStar study report* with Stargardt disease: ProgStar study report 8. Br J Ophthalmol, 2019. 103(3): p. 390-397.

33. Hu, F.Y., et al., ABCA4 Gene Screening in a Chinese Cohort With Stargardt Disease: Identificatio

of 37 Novel Variants. Front MHT Stargardt disease: ProgStar stady report 8. Br 3 Ophthalmol, 2015. 103(3): p. 390-397.
Hu, F.Y., et al., ABCA4 Gene Screening in a Chinese Cohort With Stargardt Disease: Identifice
Alapati, A., et al., Molecular Diagno of 37 Novel Variants. Front Genet, 2019. 10: p. 773.

34. Alapati, A., et al., Molecular Diagnostic Testing by eyeGENE: Analysis of Patients With Hereditary

Retinal Dystrophy Phenotypes Involving Central Vision Loss. Inve by 37 Nover Vanams. Front Genet, 2013. 10: p. 773.
Alapati, A., et al., *Molecular Diagnostic Testing by ey*
Retinal Dystrophy Phenotypes Involving Central Visic
Visual Science, 2014. **55**(9): p. 5510-5521.
Tsybovsky, Y.,
- Stetinal Dystrophy Phenotypes Involving Central Vision Loss. Investigative Ophthalmology &

Visual Science, 2014. 55(9): p. 5510-5521.

35. Tsybovsky, Y., R.S. Molday, and K. Palczewski, The ATP-binding cassette transporte Visual Science, 2014. 55(9): p. 5510-5521.
Tsybovsky, Y., R.S. Molday, and K. Palczewski, *The ATP-binding cassette transporter ABCA4:*
structural and functional properties and role in retinal disease. Adv Exp Med Biol, Visual Science, 2014. 33(3): p. 3310-3321.
Tsybovsky, Y., R.S. Molday, and K. Palczew
structural and functional properties and ro
105-25.
Han, Z., S.M. Conley, and M.I. Naash, Gene
gene. Adv Exp Med Biol, 2014. 801: p. 719
-
-
- Structural and functional properties and role in retinal disease. Adv Exp Med Biol, 2010. 703

35. Han, Z., S.M. Conley, and M.l. Naash, Gene therapy for Stargardt disease associated with AB

36. Han, Z., S.M. Conley, and structural and functional properties and role in retinal disease. Adv Exp Med Biol, 2010. 703: p.
105-25.
Han, Z., S.M. Conley, and M.I. Naash, Gene therapy for Stargardt disease associated with ABCA4
gene. Adv Exp Med Bio ---
Han, Z.,
gene. Ac
Massisi, Unsolvee
Nassisi, I
19(8).
Boulang
cone-roo gene. Adv Exp Med Biol, 2014. **801**: p. 719-24.

37. Nassisi, M., et al., Prevalence of ABCA4 Deep-Intronic Variants and Related Phenotype in An

Unsolved "One-Hit" Cohort with Stargardt Disease. Int J Mol Sci, 2019. **20**(gene. Adv Exp Med Biol, 2014: 001: p. 719-24.
Nassisi, M., et al., *Prevalence of ABCA4 Deep-Ir*
Unsolved "One-Hit" Cohort with Stargardt Dise
Nassisi, M., et al., *Expanding the Mutation Spe*
Variants and Their Associated Unsolved "One-Hit" Cohort with Stargardt Disease. Int J Mol Sci, 2019. **20**(20).

38. Nassisi, M., et al., Expanding the Mutation Spectrum in ABCA4: Sixty Novel Disease Causing

Variants and Their Associated Phenotype in a Drisolved One-Hit Cohort with Stargardt Disease. Into Sur, 2019. 20(20).
Nassisi, M., et al., *Expanding the Mutation Spectrum in ABCA4*: *Sixty Novel Diseariants and Their Associated Phenotype in a Large French Stargardt*
- Variants and Their Associated Phenotype in a Large French Stargardt Cohort. Int J Mol Sci, 2

19(8).

Boulanger-Scemama, E., et al., Next-generation sequencing applied to a large French cone

cone-rod dystrophy cohort: mut 19(8).
Boulanger-Scemama, E., et al., *Next-generation sequencing applied to a large French cone and*
cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation.
Orphanet J Rare Dis, 2015. 10: p. 8 19₍₉₎.
Boular
cone-r
Orpha
Burke,
ABCA4
Shanka
Investi 19. Bonder-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation.

2015. Burke, T.R., et al., Retinal phenotypes in patients homozygous for the G1961E mutation in the

2016. Burke, T.R., et al., Re
- Cometation Barry Controlling States (Complete Complete Complete Complete Complete Controlling Density, et al., Retinal phenotypes in patients homozygous for the G1961E mutation in ABCA4 gene. Invest Ophthalmol Vis Sci, 201 Orphanet J Rare Dis, 2015. **10**: p. 85.
Burke, T.R., et al., *Retinal phenotypes*
ABCA4 gene. Invest Ophthalmol Vis S
Shankar, S.P., et al., *ABCA4 Sequence*
Investigative Ophthalmology & Visua
- ABCA4 gene. Invest Ophthalmol Vis Sci, 2012. **53**(8): p. 4458-67.

Shankar, S.P., et al., ABCA4 Sequence Variations in Somali and North American Populations.

Investigative Ophthalmology & Visual Science, 2006. 47(13): p. ABCA4 gene. Invest Ophthalmol Vis Sci, 2012. 33(0): p. 4458-67.
Shankar, S.P., et al., *ABCA4 Sequence Variations in Somali and No*
Investigative Ophthalmology & Visual Science, 2006. 47(13): p. 1 Investigative Ophthalmology & Visual Science, 2006. 47(13): p. 1699-1699.

Somali and North American Populations in Somali and North American Populations.

The North American Populations in Somali and North American Popula Investigative Ophthalmology & Visual Science, 2006. 47(13): p. 1699-1699.
-
-
-
- Gella, W., et al., *G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull's eye*

maculopathy. Exp Eye Res, 2009. **89**(1): p. 16-24.

43. Lewis, R.A., et al., *Genotype/Phenotype analysis of a photoreceptor*macuropatriy. Exp Eye Res, 2009. 89(1): p. 16-24.
Lewis, R.A., et al., *Genotype/Phenotype analysis c*
transporter gene, ABCR, in Stargardt disease. Am
Sun, H., P.M. Smallwood, and J. Nathans, *Biochen*
associated with h transporter gene, ABCR, in Stargardt disease. Am J Hum Genet, 1999. $64(2)$: p. 422-34.

44. Sun, H., P.M. Smallwood, and J. Nathans, *Biochemical defects in ABCR protein variants*

associated with human retinopathies. Na transporter gene, ABCR, in Stargard ansease. Am Start and Creater, 1999. Star, H., P. 422-34.
Sun, H., P.M. Smallwood, and J. Nathans, Biochemical defects in ABCR protein variants
associated with human retinopathies. Nat G 44. Sun, H., P. P. P. Superinted with human retinopathies. Nat Genet, 2000. 26(2): p. 242-6.
45. Garces, F., et al., Correlating the Expression and Functional Activity of ABCA4 Disease V With the Phenotype of Patients With associated with human retinopatines. Nat Genet, 2000. 20(2): p. 242-6.
Garces, F., et al., *Correlating the Expression and Functional Activity of All*
With the Phenotype of Patients With Stargardt Disease. Invest Ophthaln

-
- With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci, 2018. 59(6)

p. 2305-2315.

46. Passerini, I., et al., Novel mutations in of the ABCR gene in Italian patients with Stargardt

disease. Eye With the Finctionary of Prainties With Stargardt Disease. Invest Ophthalmol Vis Sci, 2010. 39(6).

Passerini, I., et al., *Novel mutations in of the ABCR gene in Italian patients with Stargardt*

disease. Eye (Lond), 2010. Passerini, I., et
disease. Eye (L
Gerth, C., et al
with known AE
Clin Exp Ophth
Webster, A.R.,
2001. **42**(6): p.
Maugeri, A., et
recessive cone disease. Eye (Lond), 2010. 24(1): p. 158-64.
47. Gerth, C., et al., *Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus pair* with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Gra disease. Lye (Lond), 2010. 24(1): p. 158-04.
Gerth, C., et al., *Phenotypes of 16 Stargardt*
with known ABCA4 mutations and evaluatic
Clin Exp Ophthalmol, 2002. 240(8): p. 628-3
Webster, A.R., et al., An analysis of alleli
-
-
- with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Graefes Arch
Clin Exp Ophthalmol, 2002. 240(8): p. 628-38.
48. Webster, A.R., et al., An analysis of allelic variation in the ABCA4 gene. Invest Clin Exp Ophthalmol, 2002. 240(8): p. 628-38.

Webster, A.R., et al., *An analysis of allelic variation in the ABCA4 gene.* Invest Ophthalmol Vis Sc

2001. 42(6): p. 1179-89.

Maugeri, A., et al., *Mutations in the ABCA4 (* EMERAP Ophthalmol, 2002. 240(0): p. 028-30.
Webster, A.R., et al., An analysis of allelic varia
2001. 42(6): p. 1179-89.
Maugeri, A., et al., Mutations in the ABCA4 (Alerecessive cone-rod dystrophy. Am J Hum Gene
Bungert, 2001. 42(6): p. 1179-89.

49. Maugeri, A., et al., Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal

recessive cone-rod dystrophy. Am J Hum Genet, 2000. 67(4): p. 960-6.

50. Bungert, S., L.L. Molday, an 2001. 42(0): p. 1173-83.
Maugeri, A., et al., *Muta:*
recessive cone-rod dystro
Bungert, S., L.L. Molday,
transporter ABCR and its
linked glycosylation sites
Singh, H.P., et al., *Homoz*
recessive retinal dystropl
Papaioan Francessive cone-rod dystrophy. Am J Hum Genet, 2000. 67(4): p. 960-6.

50. Bungert, S., L.L. Molday, and R.S. Molday, *Membrane topology of the ATP binding cassette*

transporter ABCR and its relationship to ABC1 and rela recessive cone-rod dystrophy. Am J Hum Genet, 2000: 67(4): p. 960-6.
Bungert, S., L.L. Molday, and R.S. Molday, *Membrane topology of the Aransporter ABCR and its relationship to ABC1 and related ABCA transplinked glycosyl*
-
-
-
- transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification
linked glycosylation sites. J Biol Chem, 2001. 276(26): p. 23539-46.

Singh, H.P., et al., Homozygous null mutations in the ABCA4 miked giftersylation sites. J biol Chem, 2001. 270(20): p. 23333-46.
Singh, H.P., et al., *Homozygous null mutations in the ABCA4 gene in*
recessive retinal dystrophy. Am J Ophthalmol, 2006. 141(5): p. 906-
Papaioannou, M. Francessive retinal dystrophy. Am J Ophthalmol, 2006. 141(5): p. 906-13.

52. Papaioannou, M., et al., An analysis of ABCR mutations in British patients with recessive retinal

dystrophies. Invest Ophthalmol Vis Sci, 2000. recessive retinar aystrophy. Am J Ophthalmol, 2000. 141(5): p. 900-13.
Papaioannou, M., et al., An analysis of ABCR mutations in British patien
dystrophies. Invest Ophthalmol Vis Sci, 2000. 41(1): p. 16-9.
September, A.V., dystrophies. Invest Ophthalmol Vis Sci, 2000. 41(1): p. 16-9.

53. September, A.V., et al., Mutation spectrum and founder chromosomes for the ABCA4 gene in
 South African patients with Stargardt disease. Invest Ophthalmo dystropmes. Invest Ophthalmol Vis Sci, 2000. 41(1): p. 10-9.
September, A.V., et al., *Mutation spectrum and founder chrc*
South African patients with Stargardt disease. Invest Ophtha
Smaragda, K., et al., *Mutation Spectr* South African patients with Stargardt disease. Invest Ophthalmol Vis Sci, 2004. 45(6): p. 1705

54. Smaragda, K., et al., Mutation Spectrum of the ABCA4 Gene in a Greek Cohort with Stargardt

Disease: Identification of Nov South African patients with Stargardt assesse. Invest Ophthalmol Vis Sci, 2004. 45(6): p. 1705-11.
Smaragda, K., et al., Mutation Spectrum of the ABCA4 Gene in a Greek Cohort with Stargardt
Disease: Identification of Novel Disease: Identification of Novel Mutations and Evidence of Three Prevalent Mutated Alleles. J
Ophthalmol, 2018. 2018: p. 5706142.
55. Weisschuh, N., et al., Molecular and clinical analysis of 27 German patients with Leber

- congenital amaurosis. PLOS ONE, 2018. 13(12): p. e0205380. Ophthalmol, 2018. **2018**: p. 5706142.
Ophthalmol, 2018. **2018**: p. 5706142.
Weisschuh, N., et al., *Molecular and clinical analysis of 27 German patients with Leber*
congenital amaurosis. PLOS ONE, 2018. **13**(12): p. e0205 Ophthalmol, 2018. 2018. p. 5700142.
Weisschuh, N., et al., *Molecular and congenital amaurosis.* PLOS ONE, 2018. $\emph{congenital amaurusis. PLOS ONE, 2018.}$ **13**(12): $\emph{p.}$ e0205380. congenital amaurosis. PLOS ONE, 2018. 13(12): p. e0205380.
Professor

Figure 1. Pedigrees of seven families with mutations in ABCA4 gene. White symbols represent members who are unaffected. Symbols in black denote affected individuals. Males and females are represented by square and round symbols, respectively. Individuals who have died are denoted by a slash. Double horizontal lines represent consanguineous marriages. M: mutation.

Figure 2: Color fundus photographs (a), fluorescein angiography (b), optical coherence tomography (OCT) scans (c), and autofluorescence pictures (d) of patients F3:I3, F9:I9.1, F31:I31, F37:I37,F41:I41, F56:I56 and F58:I58. OD = oculus Dexter; OS: ocular sinister.

Table 1. Clinical results identified in eight Lebanese patients with inherited retinal disorders.

STGD: Stargardt disease; RCD: rod cone dystrophy; ERG: electroretinogram; OCT: optical
coherence tomography; EOG: Electrooculogram; NA: not available. Electrooculogram;

Table 2. ABCA4 mutations in seven Lebanese families with different forms of inherited retinal diseases.

STGD: stargardt diseases; CRD: cone rod dystrophy; RP: Retinitis pigmentosa; hom: homozygous; rs: reference SNP.