Supplementary materials

Lumley et al. A systematic review and meta-analysis of the risk of hepatitis B virus (HBV) genotypic resistance in people treated with entecavir or tenofovir

CONTENTS:

Supplementary tables

- Supplementary table 1: PRISMA checklist
- Supplementary table 2: Resistance criteria for tenofovir papers
- Supplementary table 3: Characteristics of studies included in the systematic review
- Supplementary table 4: Sensitivity analyses

Supplementary figures

- Supplementary figure 1: Summary of risk of bias scores for included studies
- Supplementary figure 2: Data flow to determine risk of clinical and genotypic resistance
- Supplementary figure 3: Relationship between clinical and methodological sources of heterogeneity
- Supplementary figure 4: Funnel plots to investigate publication bias

Supplementary text

- Supplementary text 1: Methods Search strategies
- Supplementary text 2: Methods Screening and data extraction
- Supplementary text 3: Results: Sensitivity and outlier analysis

Supplementary references

Supplementary table 1: PRISMA checklist¹

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Title
ABSTRACT	I		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Intro
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Intro
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Methods
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Supplement
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Supplement
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Supplement
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Methods/Suppl ement
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Methods/Suppl ement
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Supplement
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Methods/Suppl ement
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Methods
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Methods
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Methods
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Methods
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Methods
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Methods
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Methods
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Methods
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Methods

RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Discussion
Study characteristics	17	Cite each included study and present its characteristics.	Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Table 1
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Results figures
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Results
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Results
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Results and Supplement
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Results
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Results
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Discussion
	23b	Discuss any limitations of the evidence included in the review.	Discussion
	23c	Discuss any limitations of the review processes used.	Discussion
	23d	Discuss implications of the results for practice, policy, and future research.	Discussion
OTHER INFORMATION	N		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Methods
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Methods
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Methods
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Funding
Competing interests	26	Declare any competing interests of review authors.	Competing interests
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Data via supplementary file

Supplementary table 2: Resistance criteria for TFV papers

Study ID		AMs in EASL guideline N236T) (Table 1A)	'Putative' RAM com	binations (Table 1B)
Study ID	Identified	Classified as resistant	Identified	Classified as resistant
Both established and/or ព	outative RAMs classified as resi	stant	•	
Bakhshizadeh 2015	Ν	Y	Ν	Y (A194T)
Hongthanakorn 2011	N	Y	N	Y (A194T)
Patterson 2011	Y	Y	NS	NS
Tan 2008	Y	Y	NS	NS
Liang 2019	Ν	Y	L180M+M204I/V +V173L	Ν
DeFrancesco 2015	N	N	1) A194T, 2)L180M+M204I/V +V173L	1) Y (A194T), 2) N
Neither established nor p	utative RAMs classified as resi	stant		
Corsa 2014	Y	N	A194A/P	Ν
Hou 2015	Y	N	(V173L/V/L180M/L/M204V/ M/S213T)	N
Boyd 2014	N	N (Geno2pheno*)	L180M+M204I/V +V173L	N (Geno2pheno*)
Snow-Lampart 2011	N	N	L180M+M204V +V173L	N
Stephan 2005	NS	N	L180M+M204V +V173L	N
Boyd 2015	N	NS	L180M+M204I/V +V173L	N
Singla 2015	N	N (Geno2pheno*)	N	N (Geno2pheno*)
Established RAMs not cla	assified as resistant, putative no	ot reported		
Cathcart 2018	Y	N	N	NS
Lim 2016 (2)	Y (all A181V/T and/or N236T at baseline)	N	N	NS
Yang 2015	Y at baseline	N	NS	NS
Berg 2014	Y	N	NS	NS
Liu 2017	Y	N	NS	NS
RAM criteria not specified	d, RAM details not reported			
Lim 2016 (1)	Y (individuals excluded if identified at baseline)	NS	Ν	NS
Fung 2017	N	NS	N	NS
Marcellin 2008	NS	NS	NS	NS
Pan 2014	NS	NS	NS	NS
Chan 2023	NS	NS	NS	NS
Srivastava 2016	NS	NS	NS	NS
Buti 2015	NS	NS	NS	NS
Cho 2015	NS	NS	NS	NS

*NB HBV geno2pheno does not list any TFV RAMs

Supplementary table 3: Characteristics of 62 studies included in the systematic review. Where multiple subgroups of individuals are reported in the study, only subgroups meeting inclusion criteria are detailed in the table.

Abbreviations: ART = antiretroviral therapy, eAg- = HBeAg negative, eAg+ = HBeAg positive, EE = NA experienced on Entecavir, ET = NA experienced on tenofovir, GR = genotypic resistance, NA = nucleoside analogue, NE = NA naive on Entecavir, NT = NA naive on tenofovir, OD = once a day, Prosp = prospective, Retro = retrospective, TAF = tenofovir alafenamide, TDF = tenofovir disoproxil. VBT = virological breakthrough, * RAM identified for any NA

	Stu	ıdy		Interv	ention		Population				Outcome		Bias
Study	Study design	WHO region	Study size and group	Drug/ Dose	Duration (m)	Prior NA exposure	Baseline GR*	Age group	HBeAg status	HIV co- infection	Seq. criteria	GR risk (%)	Risk of bias (1 = high, 5 = low)
Bakhshizad eh 2015 ²	Cohort/cross sectional; Prosp.	EMR	93 NT	TDF 300mg OD	mean 21.10 (R 6-36)	Naïve	NA	Adults	eAg+ and eAg-	No	All	0.0	5
Berg 2014 ³	Clinical trial; Prospective	AMR, EMR	53 ET	TDF 300mg OD	EP 38.00	Experience d	All	Adults	eAg+ and eAg-	Not reported	VBT only	0.0	2
Boyd 2014⁴	Cohort/cross sectional; Prosp.	EUR	24 ET	TDF (as ART)	med 74.70 (IQR 33.4-94.7)	Experience d	Not reported	Adults	eAg+ and eAg-	Yes	Unclear	0.0	4
Boyd 2015⁵	Cohort/cross sectional; Prosp.	AFR	86 NT	TDF (as ART)	med 24.30 (IQR 17.6-30.8)	Naïve	NA	Adults	eAg+ and eAg-	Yes	All	0.0	5
Buti 2015 ⁶	Clinical trial; Prospective	AMR, EUR, WPR	585 NT	TDF 300mg OD	EP 77.3	Naïve	NA	Adults	eAg+ and eAg-	Not reported	All	0.0	3
Cathcart 2018 ⁷	Clinical trial; Prospective	AMR, SEAR, EUR, WPR	1002 NT 296 ET	TAF 25mg, TDF 300mg	EP 22.09	Naïve and experience d	Mix	Adults	eAg+ and eAg-	No	All	0.0 NT 0.0 ET	5
Chan 2023 ⁸	Clinical trial; Prospective	AMR, SEAR, EUR, EMR, WPR	993 NT 305 ET	TAF 25mg, TDF 300mg	EP 55.2	Naïve and experience d	Not reported	Adults	eAg+ and eAg-	No	All	0.0 NT 0.0 ET	4
Chang 2005 ⁹	Clinical trial; Prospective	AMR, EUR, EMR, WPR	39 EE	ETV 1mg OD	EP 11.04	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0	4
Chang 2006 ¹⁰	Clinical trial; Prospective	AMR, SEAR, EUR, WPR	344 NE 10 EE	ETV 0.5 mg OD	EP 11.96	Naïve and experience d	NA	Adults	eAg+ and eAg-	No	All	0.0 NE 0.0 EE	4
Chang 2009 ¹¹	Clinical trial; Prospective	AMR, SEAR, EUR, WPR	243 NE	ETV 0.5 mg OD	EP 24.00	Naïve	NA	Adults	all eAg+	No	All	0.0	4
Chen 2011 ¹²	Cohort/cross sectional; Prosp.	WPR	48 NE	ETV 0.5 mg OD	EP 24.00	Naïve	NA	Adults	eAg+ and eAg-	No	VBT only	0.0	5
Cho 2015 ¹³	Cohort or cross sectional; Retros	WPR	146 EE 56 ET	ETV 0.5/1mg OD. TDF 300mg OD	med 37.70 (IQR 23.4-74.5)	Experience d	No	Adults	eAg+ and eAg-	No	All	8.9 EE 0.0 ET	4
Cho 2017 ¹⁴	Cohort/cross sectional; Prosp.	WPR	1009 NE	ETV 0.5 mg OD	med 26.50 (R 6-77.4)	Naïve	NA	Adults	eAg+ and eAg-	No	Unclear	1.2	4
Corsa 2014 ¹⁵	Clinical trial; Prospective	AMR, EUR, WPR	280 ET	TDF 300mg OD	EP 22.09	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0	5
DeFrancesc o 2015 ¹⁶	Cohort or cross sectional; Retrospective	EUR	11 ET	TDF 300mg OD	EP 24.00	Experience d	All	Adults	eAg+ and eAg-	Not reported	VBT only	9.1	3
Deng 2013 ¹⁷	Cohort/cross sectional; Prosp.	WPR	21 EE	ETV 1mg OD	EP 33.14	Experience d	All	Adults	all eAg+	Not reported	All	23.4	3
Fung 2014 ¹⁸	Clinical trial; Prospective	AMR, EUR, WPR	141 ET	TDF 300mg OD	EP 22.09	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0	5
Fung 2017 ¹⁹	Clinical trial; Prospective	amr, eur, Wpr	141 ET	TDF 300mg OD	EP 55.23	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0	5

Gish 200720	Clinical trial; Prospective	AMR	243 NE	ETV 0.5 mg OD	EP 22.09	Naïve	NA	Adults	all eAg+	Not reported	All	0.0	5
Gwak 2013 ²¹	Cohort or cross sectional; Prospective	WPR	58 NE	ETV 0.5 mg OD	EP 24.00	Naïve	NA	Adults	eAg+ and eAg-	No	VBT only	0.0	5
Ha 2011 ²²	Cohort or cross sectional; Retros	AMR	107 NE	ETV 0.5 mg OD	EP 48.00	Naïve	NA	Adults	all eAg-	No	VBT only	0.0	5
Heathcote 2011 ²³	Clinical trial; Prospective	AMR, EUR, WPR	196 ET	TDF 300mg OD	EP 22.09	Experience d	No	Adults	eAg+ and eAg-	No	All	0.0	5
Heo 2012 ²⁴	Clinical trial; Prospective	WPR	34 EE	ETV 1mg OD	EP 22.09	Experience d	No	Adults	all eAg+	No	All	2.9	5
Hongthanak orn 2011 ²⁵	Cohort or cross sectional; Retros	AMR	15 ET 43 NE 13 EE	ETV, TDF, dose NS	mean 37.50 ET 37.50 NE 37.5 EE (R 12-102)	Naïve and experience d	Not reported	Adults	eAg+ and eAg-	No	VBT only	0.0 ET 2.3 NE 38.5 EE	4
Hou 2015 ²⁶	Clinical trial; Prospective	WPR	244 NT 11 ET	TDF 300mg OD	EP 11.04	Naïve and experience d	Mix	Adults	eAg+ and eAg-	No	All	0.4 NT 0.0 ET	4
Jonas 2016 ²⁷	Clinical trial; Prospective	AMR, SEAR, EUR	120 NE	ETV 0.015 mg/kg OD, max 0.5 mg	22.09	Naïve	NA	Children	all eAg+	No	All	3.3	4
Kamezaki 2011 ²⁸	Cohort or cross sectional; Retro	WPR	81 NE	ETV 0.5 mg OD	mean 27.00	Naïve	NA	Adults	eAg+ and eAg-	No	VBT only	2.5	5
Kamezaki 2013 ²⁹	Cohort or cross sectional; Retro	WPR	135 NE	ETV 0.5 mg OD	26.90 (SD +/- 321.6)	Naïve	NA	Adults	eAg+ and eAg-	No	Unclear	1.5	5
Karino 2010 ³⁰	Cohort or cross sectional; Prosp	WPR	42 EE	ETV 1mg OD	EP 34.06	Experience d	All	Adults	eAg+ and eAg-	No	All	30.9	3
Kim 2010 (1) ³¹	Cohort or cross sectional; Retro	WPR	73 NE	ETV 0.5 mg OD	mean 18.40 (SD +/- 3.8)	Naïve	NA	Adults	eAg+ and eAg-	No	VBT only	0.0	4
Kim 2010 (2) ³²	Cohort or cross sectional; Retro	WPR	24 EE	ETV 1mg OD	EP 24.00	Experience d	All	Adults	eAg+ and eAg-	No	VBT only	25.0	5
Kim 2017 ³³	Cohort or cross sectional; Retro	WPR	202 NE 56 EE	ETV 0.5 mg OD	median 59 NE/ EE (R9-101)	Naïve and experience d	No	Adults	eAg+ and eAg-	No	VBT only	3.0 NE 3.6 EE	4
Kitrinos 2014 ³⁴	Clinical trial; Prospective	AMR, EUR, WPR	389 ET	TDF 300mg OD	EP 72.00	Experience d	Mix	Adults	eAg+ and eAg-	No	All	0.0	3
Liang 2019 ³⁵	Clinical trial; Prospective	WPR	257 NT	TDF 300mg OD	EP 55.00	Naive	NA	Adults	eAg+ and eAg-	No	All	0.0	5
Lim 2016 (1) ³⁶	Clinical trial; Prospective	WPR	44 ET	TDF 300mg OD	EP 11.09	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0	5
Lim 2016 (2) ³⁷	Clinical trial; Prospective	WPR	50 ET	TDF 300mg OD	EP 22.09	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0	5
Liu 2016 ³⁸	Cohort/cross sectional; Prosp.	WPR	33 NE 56 EE	ETV 0.5mg naive, 1mg experienced	69.00 NE (R 60-75), 57.00 EE (R12-75)	Naïve and experience d	Mix	Adults	eAg+ and eAg-	No	VBT only	0.0 NE 16.1 EE	5
Liu 2017 ³⁹	Clinical trial; Prospective	AMR, EUR, WPR	426 ET	TDF 300mg OD	EP 96.00	Experience d	Mix	Adults	eAg+ and eAg-	No	All	0.0	4
Lok 201240	Clinical trial; Prospective	ARF, AMR, EUR, SEAR, WPR	182NE	ETV 0.5 mg OD	EP 23.01	Naïve	NA	Adults; Children	eAg+ and eAg-	Not reported	All	0.0	3
Marcellin 2008 ⁴¹	Clinical trial; Prospective	amr, eur, Wpr	375 NT 51 ET	TDF 300mg OD	EP 11.04	Naïve and experience d	Not reported	Adults	eAg+ and eAg-	No	All	0.0 NT 0.0 ET	4
Pan 2014 ⁴²	Clinical trial; Prospective	AMR	87 NT	TDF 300mg OD	EP 11.04	Naïve	NA	Adults	eAg+ and eAg-	Not reported	All	0.0	5
Park 201143	Cohort or cross sectional; Prospective	WPR	55 EE	ETV 1mg OD	median 24.0 (12-47)	Experience d	All	Adults	eAg+ and eAg-	No	VBT only	36.4	5
Patterson 2011 ⁴⁴	Clinical trial; Prospective	WPR	38 ET	TDF 300mg OD	EP 22.09	Experience d	All	Adults	eAg+ and eAg-	No	VBT only	7.9	5
Sherman 2006 ⁴⁵	Clinical trial; Prospective	AMR, SEAR, EUR, EMR, WPR	141 ET	ETV 1mg OD	EP 11.05	Experience d	All	Adults	all eAg+	No	All	1.4	4

Shin 201146	Cohort or cross sectional; Retro	WPR	61 NE	ETV 0.5mg OD	EP 11.05	Naïve	NA	Adults	eAg+ and eAg-	No	VBT only	0.0 NE	4
Singla 2015 ⁴⁷	Cohort/cross sectional; Prosp.	SEAR	30 NT 39 NE	TDF 300mg OD ETV 0.5mg OD	EP 12.00	Naïve	NA	Adults	eAg+ and eAg-	Not reported	All	0.0 NT 0.0 NE	3
Snow-Lamp art 2011 ⁴⁸	Clinical trial; Prospective	AMR, EUR, WPR	196 TE	TDF 300mg OD	EP 22.09	Experience d	Mix	Adults	eAg+ and eAg-	No	All	0.0	4
Srivastava 2016 ⁴⁹	Cohort/cross sectional; Prosp.	SEAR	26 NT 25 NE	ETV 0.5mg OD TDF 300mg OD	EP 24.00	Naïve	NA	Adults; Children	eAg+ and eAg-	No	All	0.0 NT 0.0 NE	4
Stephan 2005 ⁵⁰	Cohort or cross sectional; Retro	EUR	24 ET	TDF (as ART)	EP 11.05	Experience d	Not reported	Adults	eAg+ and eAg-	Yes	All	0.0	5
Suzuki 2008⁵¹	Clinical trial; Prospective	WPR	84 EE	ETV 0.5mg, 1mg OD	EP 12.00	Experience d	All	Adults	eAg+ and eAg-	No	VBT only	0.0	3
Suzuki 2010 ⁵²	Cohort or cross sectional; Retro	WPR	130 EE	ETV 0.5 mg OD	EP 12.00	Experience d	All	Adults	eAg+ and eAg-	Not reported	Unclear	0.8	5
Suzuki 2019 ⁵³	Cohort or cross sectional; Retro	WPR	1094 NE	ETV 0.5mg	median 66.00 (R 12 - 120)	Naïve	NA	Adults	eAg+ and eAg-	No	VBT only	0.7	5
Tan 200854	Cohort or cross sectional; Retro	AMR	10 ET	TDF 300mg OD	EP 20.50	Experience d	Mix	Adults	eAg+ and eAg-	Not reported	All	10.0	3
Tenney 2007 ⁵⁵	Cohort/cross sectional; Prosp.	AMR, EUR, WPR	192 EE	ETV 1mg OD	EP 24.00	Experience d	All	Adults	eAg+ and eAg-	Not reported	All	12.0	2
Tenney 2009 ⁵⁶	Clinical trial; Prospective	AMR, SEAR, EUR, WPR	108 NE 33 EE	ETV 0.5mg naive, 1mg exp	EP 60.00	Naïve and experience d	All	Adults	eAg+ and eAg-	Not reported	All	8.3 NE 42.4 EE	4
Tsai 2012 ⁵⁷	Cohort/cross sectional; Prosp.	WPR	98 NE	ETV 0.5 mg OD	EP 11.05	Naïve	NA	Adults	eAg+ and eAg-	Not reported	VBT only	0.0 NE	4
Wang 2013 ⁵⁸	Cohort/cross sectional; Prosp.	WPR	25 EE	ETV 0.5 mg OD	EP 12.00	Experience d	No	Adults	all eAg+	No	All	4.0	3
Xu 2022 ⁵⁹	Clinical trial; Prospective	WPR	208 NE 18 EE	ETV 0.5mg OD	EP 44.00	Naïve and experience d	Mix	Adults	eAg+ and eAg-	Not reported	All	1.4 NE 22.2 EE	5
Yang 201560	Cohort or cross sectional; Retro	WPR	28 ET	TDF 300mg OD	EP 11.05	Experience d	All	Adults	eAg+ and eAg-	No	All	0.0 ET	5
Yokosuka 2010 ⁶¹	Clinical trial; Prospective	WPR	66 NE	ETV 0.01, 0.1, 0.5mg then 0.5mg rollover	EP 27.6	Naïve	NA	Adults	eAg+ and eAg-	No	All	1.5	5
Yuen 201562	Clinical trial; Prospective	WPR	30 NE	ETV 0.5 mg OD	EP 22.09	Naïve	NA	Adults	eAg+ and eAg-	No	All	0.0	5
Zhou 2017 ⁶³	Cohort/cross sectional; Prosp.	WPR	33 ET	TDF 300mg OD	EP 11.05	Experience d	All	Adults	eAg+ and eAg-	No	Unclear	0.0 ET	5
	-	-	-				-			-			

Supplementary table 4A: Sensitivity analysis for Experienced/Tenofovir (n=19)

Year group*	Number of studies remaining	Pooled risk estimate from random effects model*	95% CI lower	95% Cl upper	Heterogeneity (I ²)				
Baseline and	Baseline analysis								
2	8	0.000	0.000	0.006	66%				
Study size >	30								
2	6	0.000	0.000	0.005	56%				
Exclude stud	lies with high risk c	of bias							
2	8	0.000	0.000	0.006	66%				
Study desigr	n = clinical trial								
2	6	0.000	0.000	0.005	56%				
Sequencing	criteria = All seque	enced							
2	6	0.000	0.000	0.000	4%				
Baseline mu	tations - exclude th	nose where all individuals have	RAMs at baseline						
2	4	0.000	0.000	0.000	39%				

* Treatment duration (years)

** Or single study estimate if only 1 study remaining for analysis

Supplementary table 4B: Sensitivity analysis for Naive/Entecavir (n = 22)

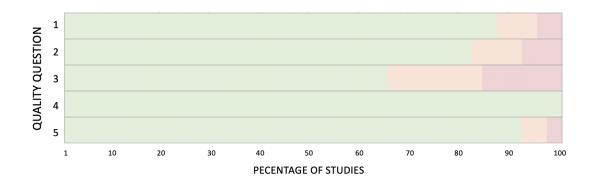
Year group	Number of studies remaining	Pooled risk estimate from random effects model*	95% CI lower	95% Cl upper	Heterogeneity (I ²)					
Baseline and	Baseline analysis									
2	13	0.003	0.000	0.009	41%					
4	2	0.006	0.000	0.027	47%					
≥5	4	0.009	0.001	0.023	49%					
Study size >	30									
2	11	0.004	0.000	0.011	51%					
4	2	0.006	0.000	0.027	47%					
≥5	4	0.009	0.001	0.023	49%					
Study desigr	n = clinical trial									
2	6	0.002	0.000	0.013	60%					
4	1	0.014	0.003	0.042	NA					
≥5	1	0.009	0.000	0.051	NA					
Sequencing	criteria = All seque	enced								
2	7	0.001	0.000	0.010	53%					
4	1	0.014	0.003	0.042	NA					
≥5	1	0.009	0.000	0.051	NA					
Baseline mu	tations - exclude th	nose where all individuals have	RAMs at baseline							
2	13	0.003	0.000	0.009	41%					
4	2	0.006	0.000	0.027	47%					
≥5	3	0.009	0.000	0.031	65%					

* Treatment duration (years)

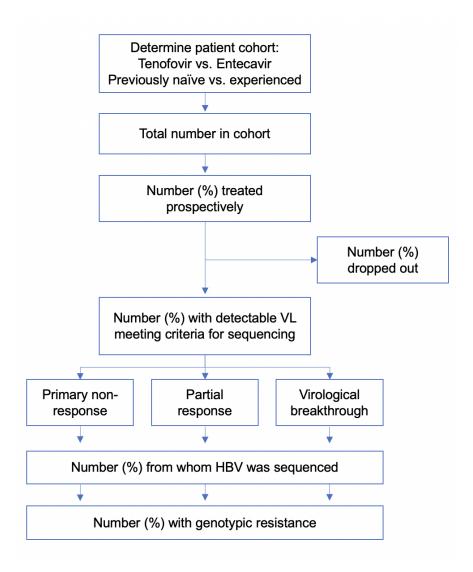
** Or single study estimate if only 1 study remaining for analysis

Supplementary table 4C: Sensitivity analysis for Experienced/Entecavir (n = 18)

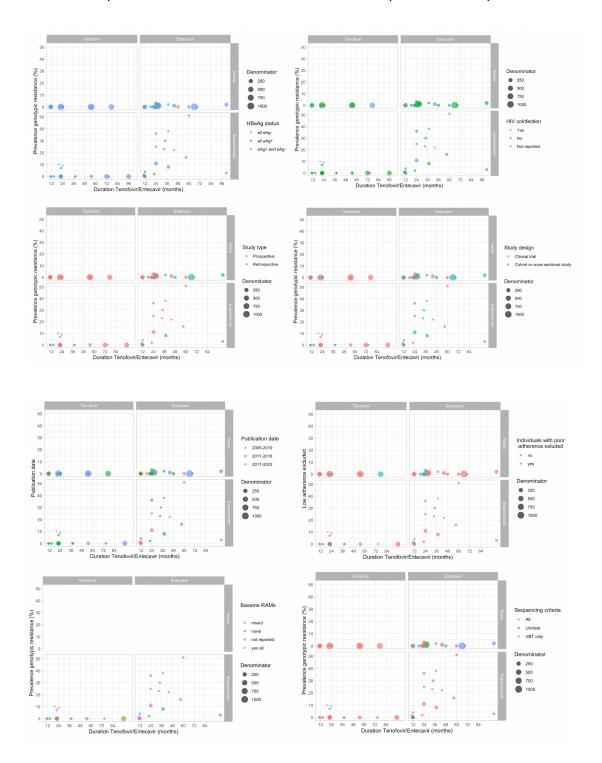
Year group	Number of studies remaining	Pooled risk estimate from random effects model*	95% CI lower	95% Cl upper	Heterogeneity (I ²)					
Baseline and	Baseline analysis									
2	4	0.170	0.054	0.329	87%					
3	4	0.226	0.082	0.410	82%					
≥5	2	0.201	0.016	0.501	93%					
Study size >	30									
2	3	0.151	0.026	0.342	90%					
3	2	0.180	0.020	0.439	91%					
≥5	3	0.201	0.016	0.501	93%					
Exclude stud	dies with high risk o	of bias								
2	3	0.193	0.023	0.454	88%					
3	4	0.226	0.082	0.410	82%					
≥5	3	0.201	0.016	0.501	93%					
Sequencing	criteria = All seque	enced								
2	2	0.181	0.017	0.179	62%					
3	3	0.193	0.064	0.476	84%					
≥5	1	0.515	0.335	0.692	NA					
Baseline mu	tations - exclude th	nose where all individuals have	RAMs at baseline							
2	1	0.029	0.001	0.153	NA					
3	2	0.193	0.000	0.545	85%					
≥5	2	0.089	0.005	0.244	80%					

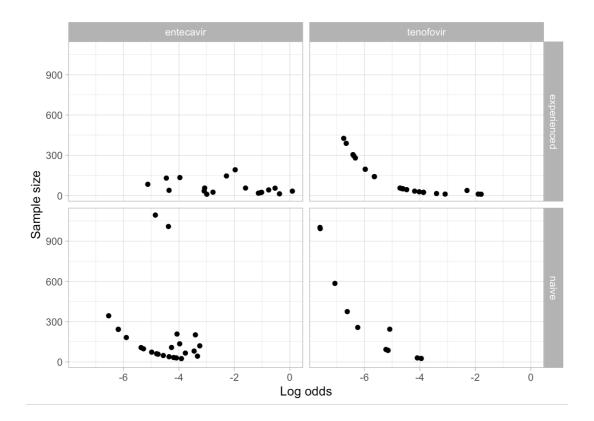

* Treatment duration (years)

** Or single study estimate if only 1 study remaining for analysis


Supplementary figure 1: Summary of risk of bias scores for included studies.

Percentage of studies rated as "yes" (green), "unclear" (orange) or "no" (red) to five quality Joanna Briggs Institute bias scoring questions:


- Q1. Were the criteria for inclusion in the study clearly defined?
- Q2. Were the study subjects and the setting described in detail?
- Q3. Was the exposure (drug treatment) measured in a valid and reliable way?
- Q4. Were objective, standard criteria used for measurement of the condition (ie. chronic HBV)?
- Q5. Were the outcomes measured in a valid and reliable way?


Supplementary figure 2: Gold standard data flow to determine risk of clinical and genotypic resistance.

Supplementary figure 3: Relationship between clinical and methodological sources of heterogeneity (publication date, HBeAg status, HIV status, study type, publication date, exclusion of those with adherence issues, baseline resistance status and sequencing criteria) and the observed risk of genotypic resistance over time. All 62 studies are shown without deduplication of cohorts where the same data is published multiple times.

Supplementary text 1: Methods - Search strategies

PubMed

((((("Hepatitis B virus"[Mesh]) OR ("hepatitis b"[Title/Abstract] OR CHB[Title/Abstract] OR HPV[Title/Abstract])) AND ((("Entecavir" [Supplementary Concept]) OR "Tenofovir"[Mesh]) OR (Entecavir[Title/Abstract] OR Tenofovir[Title/Abstract] OR Viread[Title/Abstract])))) AND (("Drug Resistance"[Mesh]) OR (resistan*[Title/Abstract] OR "drug mutat*"[Title/Abstract] OR DRMs[Title/Abstract] OR escap*[Title/Abstract] OR mutat*[Title/Abstract]))) AND (chronic*)

Filters applied: English.

Link	to	search	history
https://ovidsp.ovid.cc	m/ovidweb.cgi?T=JS&NEW	/S=N&PAGE=main&SHAREDSEARC	HID=4n05jJsL1ji4F
<u>TF87qkNYBsZHPU9</u>	nRUTS2dvJ0VY0eGxMFI8	_bocaxjpUQAhZZhHX	
Search Strategy:			
1 exp Hepatitis B vir	us/ (62830)		
2 ("hepatitis b" or CH	HB or HBV).ti,ab. (149344)		
3 1 or 2 (158457)			
4 Entecavir/ (11052)			
5 Tenofovir/ (21517)			
6 (Entecavir or Teno	fovir or Viread).ti,ab. (20044	1)	
7 4 or 5 or 6 (35130))		
8 exp drug resistand	e/ (374437)		
9 (resistan* or "drug	mutat*" or DRMs or escap*	or mutat*).ti,ab. (2570076)	
10 8 or 9 (2642215)			
11 exp chronic viral	hepatitis/ (32355)		
12 chronic*.ti,ab,kw.	(2067571)		
13 11 or 12 (207243	7)		
14 3 and 7 and 10 a	nd 13 (2870)		
15 limit 14 to english	language (2649)		

Database: Global Health <1973 to 2023 Week 21>

Link	to	search	history:
https://ovidsp.ovid.com/ovidwe	b.cgi?T=JS&NEWS=N&PAGE	main&SHAREDSEARCHID=4oiBk	<u>IUIItcJfu</u>
J4tgWl6jFpYipaXpXfRQ03vmL	JTgnLPITNDPCMrv6Kg3xNZr>	<u>(6Kp</u>	
Search Strategy:			
1 exp hepatitis b virus/ (39525	·)		
2 ("hepatitis b" or CHB or HBV	/).ti,ab. (42432)		
3 1 or 2 (43954)			
4 Entecavir/ (1174)			
5 Tenofovir/ (3980)			
6 (Entecavir or Tenofovir or Vi	read).ti,ab. (5825)		
7 4 or 5 or 6 (6014)			
8 exp drug resistance/ (13929	1)		
9 (resistan* or "drug mutat*" o	r DRMs or escap* or mutat*).ti,	ab. (347385)	
10 8 or 9 (355161)			
11 chronic infections/ (23637)			
12 chronic*.ti,ab. (222202)			
13 11 or 12 (222679)			
14 3 and 7 and 10 and 13 (61	5)		
15 limit 14 to english language	e (539)		

Scopus

(TITLE-ABS-KEY ("hepatitis b" OR chb OR hbv) AND TITLE-ABS-KEY (Entecavir OR Tenofovir OR viread) AND TITLE-ABS-KEY (resistan* OR "drug mutat*" OR drms OR escap* OR mutat*) AND TITLE-ABS-KEY (chronic*)) AND (LIMIT-TO (LANGUAGE, "English"))

Cochrane Central Register of Controlled Trials

Issue 6 of 12, June 2023

- #1 ("hepatitis b" or CHB or HBV):ti,ab,kw 10780
- #2 (Entecavir or Tenofovir or Viread):ti,ab,kw 4649
- #3 (resistan* or "drug mutat*" or DRMs or escap* or mutat*):ti,ab,kw 103427
- #4 chronic*:ti,ab,kw 178032
- #5 #1 and #2 and #3 and #4 425

Clinicaltrials.gov

Condition or disease: Hepatitis B, Chronic Other terms: Entecavir

Condition or disease: Hepatitis B, Chronic Other terms: Tenofovir

ISRTCN Registry

Condition: chronic hepatitis b Interventions: Entecavir https://www.isrctn.com/search?q=&filters=condition%3Achronic+hepatitis+b%2Cintervention%3AEntecavi [

Condition: chronic hepatitis b Interventions: Tenofovir https://www.isrctn.com/search?q=&filters=condition%3Achronic+hepatitis+b%2Cintervention%3ATenofovir

WHO International Clinical Trials Registry Platform

https://trialsearch.who.int/AdvSearch.aspx

Title: resistance Condition: chronic hepatitis b Intervention: Entecavir ALL trials

Title: resistance Condition: chronic hepatitis b Intervention: Tenofovir ALL trials

Supplementary text 2: Methods

Screening and data extraction

Our team first undertook screening of titles and abstracts, then full text review for data extraction, with at least two reviewers independently screening at each stage. In cases where consensus could not be achieved, a third reviewer was asked for consensus. In the case of uncertainty, final decisions on eligibility and extraction were taken by the first and senior author to provide consistency. Reviewers had access to the full paper and were therefore not blind to the author or journal information.

Two review authors independently extracted information for each of the eligible studies after training and piloting the Covidence data extraction tool before use. All individual characteristics (e.g. age, HIV status, HBeAg status) were reported at baseline (ie. on initiation of TFV/ETV). Missing or unclear data recorded as 'unclear', 'missing' or 'other'. Data fields collected were:

- Study ID
- Title of paper
- Digital online identifier
- WHO region
- Study design (clinical trial, or cohort/cross-sectional)
- Study type (prospective or retrospective)
- Population description
- Adults or children
- Study setting
- Antiviral regimen including dosage
- Prior antiviral exposure and evidence of phenotypic/genotypic resistance
- Criteria for resistance testing
- Reported incomplete adherence
- HIV coinfection
- HBeAg status at baseline
- Cohort size (denominator on an intention to treat basis)
- Demographics: age, sex
- Duration of treatment (trial endpoint, or mean/median treatment duration for cohorts/cross-sectional studies)

- Sequencing method
- Genotypes reported
- Details of individual RAMs detected
- Prior publication of cohort

The key outcome measure sought was the number of individuals developing genotypic resistance. We also collected data on the number of individuals with clinical resistance and the number successfully sequenced (Supplementary figure 2, supplementary text 2). All included studies looked for genotypic resistance in individuals with VBT. Some studies looked for genotypic resistance in dividuals (ie. individuals with VBT, primary non-response and partial response). The impact of sequencing criteria on risk estimates was explored in the sensitivity analysis.

Where resistance risk was reported at multiple time points within one paper, the latest time point was collected. If genotypic resistance risk was not reported for naive and experienced individuals separately for the entire trial duration, data from the latest time point at which naive/experienced individuals were reported separately was used. Where multiple doses of NA were compared, data for the cohort receiving the current licensed dose was extracted (typically 300mg/day of TDF, 25mg TAF, 0.5mg ETV (if NA naive) or 1mg ETV (in the setting of LAM resistance). Where outcomes were not described for each dose regimen separately, the pooled results were extracted and regimen noted. Where TAF and TDF were being compared, risk of resistance was pooled. Where study details were not available in the full text or supplementary materials, we reviewed previously published reports of the same study cohort to complete the metadata.

Risk of bias was assessed independently by two reviewers using a modified five question Joanna Briggs Institute quality assessment tool. An answer of "Yes" to all 5 questions equated to a high quality study with low risk of bias. Papers scoring 4 or 3 "Yes" answers ranked as moderate quality/moderate risk of bias and 2 "Yes" as low quality/high risk of bias. Papers scoring only 1 "Yes" were considered very low quality/ high risk of bias and were excluded. Risk of publication bias was alleviated by a comprehensive search strategy.

We analysed our data in four groups determined a priori. In order to decide which studies were eligible for each synthesis, the study population (naive vs. experienced) and NA (ETV vs. TFV) were compared against the planned groups for each synthesis.

Software

We exported all references to EndNote 20 (Thomson Reuters, New York, NY) and uploaded to Covidence.org. We removed duplicates automatically through Covidence.org and manually if we identified any further duplicates. We used Covidence software for study selection and data extraction.

Supplementary text 3: Results: Sensitivity and outlier analysis

We explored study heterogeneity arising from clinical and methodological diversity by performing sensitivity analyses where heterogeneity in the primary analysis was present (ie. where pooled estimate was generated and $I^2 \neq 0\%$). We also performed a qualitative assessment of outliers.

i) Naive/Tenofovir

In NA naive individuals on TFV, heterogeneity (I²) was 0% at all time points, therefore sensitivity analyses were not performed. Only one individual in one study²⁶ was reported to have genotypic TFV resistance. This individual was reported as nucleos(t)ide naive, but the HBV sequence harboured V173L/V, L180M/L, M204V/M and S213T at baseline, which persisted at week 48 on treatment (putative TFV RAMs Table 2, Supplementary table 3).

ii) Experienced/Tenofovir

In NA experienced individuals treated with TFV, heterogeneity was only seen at the 2 year time point ($I^2 = 66\%$). Restricting studies to those where all individuals were sequenced led to the largest reduction in heterogeneity to 4%, restricting by study size reduced I^2 to 56%, by study design to 56% and by excluding those where all had baseline RAMs to other NAs to 39%, implying multiple factors impacted on heterogeneity (Supplementary table 3A).

One study ⁴⁴ was classified as an outlier, with its 95% CI not overlapping with the CI of the pooled estimate. It was a small study performed in Australia 2006-2008, 3/38 individuals developed evidence of genotypic resistance, two individuals had N236T mutation at baseline which persisted on TDF treatment, one individual developed A181T and N236T on treatment (accepted TFV RAMs (Table 1A), Supplementary table 2A)⁴⁴.

Reported TFV resistance was a rare event, therefore the remaining studies reporting resistance (2/20) were investigated as potential outliers. On qualitative analysis both studies were small (n=10,11) with prior adefovir +/- lamivudine exposure. A cohort study in the USA performed between 1999-2007 ⁵⁴, classified 1/10 individuals as having genotypic resistance to TFV. The individual had received prior treatment with adefovir and lamivudine and had adefovir resistance at baseline (A181V on direct sequencing and N236T on clonal analysis) which persisted during

TDF treatment (accepted TFV RAMs, Supplementary table 2A). In a retrospective study performed in 2012 in Italy¹⁶, 1/11 individuals were classified as having genotypic resistance to TFV. This individual did not respond to prior lamivudine and adefovir treatment however did not have lamivudine or adefovir RAMs at baseline. They developed an A194T mutation on TFV (putative TFV RAM (Table 1B), Supplementary table 2B). Individuals with incomplete adherence were not excluded from any of these two studies.

In order to establish whether heterogeneity in the estimate for risk of TFV resistance could have been influenced by variations in thresholds for calling TFV RAMs, we compared the resistance criteria across papers (Supplementary figure 2C). Among the 26 papers included in the primary analysis for TFV (irrespective of whether previously naive or treatment experienced), only five classified mutations A181T/V and N236T known to be linked to reduced TFV sensitivity as RAMs (Supplementary table 2A, 2C), seven papers identified these mutations but did not classify them as resistant. Three of the 26 papers reported one or more of the putative mutations listed in Supplementary table 2B as RAMs, an additional 8 papers identified one or more of these combinations of mutations but did not report the individual as resistant.

iii) Naive/Entecavir

In previously NA-naive individuals prospectively followed up after starting ETV, heterogeneity was seen at years 2, 4 and \geq 5 time points. None of the sensitivity analyses performed reduced the heterogeneity (Supplementary table 3B).

On qualitative analysis of heterogeneity of studies at year 2, the highest resistance risk estimate at 3.3% was a multi-centre clinical trial of HBeAg positive children, all individuals developed M204M/V, L180M, S202G mutations (the only other study recruiting children ⁴⁹ was also in the same subgroup with a resistance risk of 0.0%). At years 4 and \geq 5, both papers reporting no resistance used more stringent criteria for sequencing, only investigating individuals meeting the criteria for VBT, rather than all those with detectable viraemia. This may lead to an under-estimation of primary non-response to ETV in naive individuals. A retrospective cohort study in Korea³³ reported the highest risk of 3% at \geq 5 years. The duration of follow up was longer here than the other trials in the same time bracket (101 vs 60-70 months) which may explain the higher proportion of resistance observed (however the same study also reported on previously NA experienced individuals, and a relatively low risk of resistance was identified).

iv) Experienced/Entecavir

In previously NA experienced individuals on ETV, heterogeneity was seen at 2, 3 and 5+ year timepoints. Sensitivity analysis only showed a reduction in heterogeneity when restricting based on sequencing criteria at year 2 (reducing heterogeneity from 97% to 62%) and presence of baseline RAMs at year 5, reducing heterogeneity from 93% to 80%. Supplementary figure 3 shows the impact of baseline RAMs across all papers, those studies excluding RAMs reported a lower risk of ETV resistance (<10%) than those where some or all individuals had RAMs at baseline (up to 51.5% resistance).

On qualitative analysis of the highest/lowest risk at each time point, at 2 years, the study with the lowest resistance risk, a clinical trial in Korea (2.9% resistance) excluded those with baseline RAMs but sequenced all individuals with detectable VL²⁴. The study with the highest estimate of 36.4% studied individuals all of whom had genotypic resistance to lamivudine at baseline and were also refractory to adefovir⁴³. The difference in baseline populations may contribute to heterogeneity here due to the influence of cross-resistance (Table 2).

At 3 years, the lowest estimate of 8.9% was a retrospective study of 146 individuals without baseline mutations¹³. The highest estimate (38.5%) came from a retrospective cohort of 13 individuals with detectable VL on treatment²⁵. Details of prior NA exposure was not reported for this subgroup and baseline RAMs were not reported; only those with VBT were sequenced, however a line probe assay was used in addition to sequencing to determine genotypic resistance, and it is not clear whether the results presented are from sequencing alone, or the line probe assay.

The lowest estimate of resistance risk at \geq 5 years was a retrospective cohort study in Korea³³ (3.6% ETV resistance), which excluded individuals with any RAMs at baseline and only performed sequencing on individuals with VBT. In contrast, in the study with the highest estimate (51.5% ETV resistance) all individuals had RAMs to other NAs at baseline and on follow up sequenced all individuals with a detectable viral load⁵⁶.

Four studies ^{10,33,52,58} used a lower dose of ETV (0.5mg OD) than the 1.0mg dose currently licensed for cases of resistance (where studies used multiple doses, data from the 1mg OD group was extracted). However it was not possible to assess the impact of dosing on

heterogeneity as the majority of these studies were in a year group where no heterogeneity was observed. All studies except one⁵⁸ included individuals with prior LAM experience, so it was not possible to determine whether prior LAM (vs. other NA) was a particular risk factor for ETV resistance.

References

- 1. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71.
- 2. Bakhshizadeh F, Hekmat S, Keshvari M, et al. Efficacy of tenofovir disoproxil fumarate therapy in nucleoside-analogue naive Iranian patients treated for chronic hepatitis B. *Hepat Mon*. 2015;15(5):e25749.
- 3. Berg T, Zoulim F, Moeller B, et al. Long-term efficacy and safety of emtricitabine plus tenofovir DF vs. tenofovir DF monotherapy in adefovir-experienced chronic hepatitis B patients. *J Hepatol*. 2014;60(4):715-722.
- 4. Boyd A, Gozlan J, Maylin S, et al. Persistent viremia in human immunodeficiency virus/hepatitis B coinfected patients undergoing long-term tenofovir: virological and clinical implications. *Hepatology*. 2014;60(2):497-507.
- 5. Boyd A, Moh R, Gabillard D, et al. Low risk of lamivudine-resistant HBV and hepatic flares in treated HIV-HBV-coinfected patients from Côte d'Ivoire. *Antivir Ther.* 2015;20(6):643-654.
- Buti M, Tsai N, Petersen J, et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. *Dig Dis Sci*. 2015;60(5):1457-1464.
- 7. Cathcart AL, Chan HLY, Bhardwaj N, et al. No Resistance to Tenofovir Alafenamide Detected through 96 Weeks of Treatment in Patients with Chronic Hepatitis B Infection. *Antimicrob Agents Chemother*. 2018;62(10). doi:10.1128/AAC.01064-18
- Chan HLY, Buti M, Lim YS, et al. Long-term Treatment With Tenofovir Alafenamide for Chronic Hepatitis B Results in High Rates of Viral Suppression and Favorable Renal and Bone Safety. *Am J Gastroenterol*. Published online August 10, 2023. doi:10.14309/ajg.00000000002468
- 9. Chang TT, Gish RG, Hadziyannis SJ, et al. A dose-ranging study of the efficacy and tolerability of entecavir in Lamivudine-refractory chronic hepatitis B patients. *Gastroenterology*. 2005;129(4):1198-1209.
- 10. Chang TT, Gish RG, de Man R, et al. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. *N Engl J Med*. 2006;354(10):1001-1010.
- 11. Chang TT, Chao YC, Gorbakov VV, et al. Results of up to 2 years of entecavir vs lamivudine therapy in nucleoside-naïve HBeAg-positive patients with chronic hepatitis B. *J Viral Hepat*. 2009;16(11):784-789.

- 12. Chen EQ, Zhou TY, Liu L, Liu C, Lei M, Tang H. A comparison of treatment with adefovir and entecavir for chronic hepatitis B in China: The 2-year results of a prospective study: Adefovir versus Entercavir for Chronic Hepatitis B. *Hepat Mon*. 2011;11(1):27-31.
- Cho EJ, Lee JH, Cho Y, et al. Comparison of the efficacy of entecavir and tenofovir in nucleos(T)ide analogue-experienced chronic hepatitis B patients. *PLoS One*. 2015;10(6):e0130392.
- 14. Cho JY, Sohn W, Sinn DH, et al. Long-term real-world entecavir therapy in treatment-naïve hepatitis B patients: base-line hepatitis B virus DNA and hepatitis B surface antigen levels predict virologic response. *Korean J Intern Med*. 2017;32(4):636-646.
- 15. Corsa AC, Liu Y, Flaherty JF, et al. No resistance to tenofovir disoproxil fumarate through 96 weeks of treatment in patients with lamivudine-resistant chronic hepatitis B. *Clin Gastroenterol Hepatol.* 2014;12(12):2106-2112.e1.
- De Francesco MA, Gargiulo F, Spinetti A, et al. Clinical course of chronic hepatitis B patients receiving nucleos(t)ide analogues after virological breakthrough during monotherapy with lamivudine. *New Microbiol*. 2015;38(1):29-37.
- 17. Deng XL, Li QL, Guo JJ. Dynamics of lamivudine-resistant hepatitis B virus strains in patients with entecavir rescue therapy. *Virus Genes*. 2013;47(1):1-9.
- 18. Fung S, Kwan P, Fabri M, et al. Randomized comparison of tenofovir disoproxil fumarate vs emtricitabine and tenofovir disoproxil fumarate in patients with lamivudine-resistant chronic hepatitis B. *Gastroenterology*. 2014;146(4):980-988.
- 19. Fung S, Kwan P, Fabri M, et al. Tenofovir disoproxil fumarate (TDF) vs. emtricitabine (FTC)/TDF in lamivudine resistant hepatitis B: A 5-year randomised study. *J Hepatol*. 2017;66(1):11-18.
- 20. Gish RG, Lok AS, Chang TT, et al. Entecavir therapy for up to 96 weeks in patients with HBeAg-positive chronic hepatitis B. *Gastroenterology*. 2007;133(5):1437-1444.
- 21. Gwak GY, Eo SJ, Shin SR, et al. A comparison of clevudine and entecavir for treatment-naïve patients with chronic hepatitis B: results after 2 years of treatment. *Hepatol Int*. 2013;7(1):106-110.
- 22. Ha NB, Ha NB, Garcia RT, et al. Medication nonadherence with long-term management of patients with hepatitis B e antigen-negative chronic hepatitis B. *Dig Dis Sci.* 2011;56(8):2423-2431.
- Heathcote EJ, Marcellin P, Buti M, et al. Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. *Gastroenterology*. 2011;140(1):132-143.
- 24. Heo J, Park JY, Lee HJ, et al. A 96-week randomized trial of switching to entecavir in chronic hepatitis B patients with a partial virological response to lamivudine. *Antivir Ther.* 2012;17(8):1563-1570.
- 25. Hongthanakorn C, Chotiyaputta W, Oberhelman K, et al. Virological breakthrough and resistance in patients with chronic hepatitis B receiving nucleos(t)ide analogues in clinical

practice. Hepatology. 2011;53(6):1854-1863.

- 26. Hou JL, Gao ZL, Xie Q, et al. Tenofovir disoproxil fumarate vs adefovir dipivoxil in Chinese patients with chronic hepatitis B after 48 weeks: a randomized controlled trial. *J Viral Hepat*. 2015;22(2):85-93.
- 27. Jonas MM, Chang MH, Sokal E, et al. Randomized, controlled trial of entecavir versus placebo in children with hepatitis B envelope antigen-positive chronic hepatitis B. *Hepatology*. 2016;63(2):377-387.
- 28. Kamezaki H, Kanda T, Wu S, et al. Emergence of entecavir-resistant mutations in nucleos(t)ide-naive Japanese patients infected with hepatitis B virus: virological breakthrough is also dependent on adherence to medication. *Scand J Gastroenterol*. 2011;46(9):1111-1117.
- 29. Kamezaki H, Kanda T, Arai M, et al. Adherence to medication is a more important contributor to viral breakthrough in chronic hepatitis B patients treated with entecavir than in those with Lamivudine. *Int J Med Sci.* 2013;10(5):567-574.
- 30. Karino Y, Toyota J, Kumada H, et al. Efficacy and resistance of entecavir following 3 years of treatment of Japanese patients with lamivudine-refractory chronic hepatitis B. *Hepatol Int*. 2010;4(1):414-422.
- 31. Kim HJ, Park DI, Park JH, et al. Comparison between clevudine and entecavir treatment for antiviral-naïve patients with chronic hepatitis B. *Liver Int*. 2010;30(6):834-840.
- 32. Kim HJ, Park JH, Park DI, et al. Rescue therapy for lamivudine-resistant chronic hepatitis B: comparison between entecavir 1.0 mg monotherapy, adefovir monotherapy and adefovir add-on lamivudine combination therapy. *J Gastroenterol Hepatol*. 2010;25(8):1374-1380.
- Kim HJ, Cho YK, Jeon WK, Kim BI. Clinical characteristics of patients with chronic hepatitis B who developed genotypic resistance to entecavir: Real-life experience. *Clin Mol Hepatol*. 2017;23(4):323-330.
- Kitrinos KM, Corsa A, Liu Y, et al. No detectable resistance to tenofovir disoproxil fumarate after 6 years of therapy in patients with chronic hepatitis B. *Hepatology*. 2014;59(2):434-442.
- 35. Liang X, Gao Z, Xie Q, et al. Long-term efficacy and safety of tenofovir disoproxil fumarate in Chinese patients with chronic hepatitis B: 5-year results. *Hepatol Int*. 2019;13(3):260-269.
- 36. Lim YS, Byun KS, Yoo BC, et al. Tenofovir monotherapy versus tenofovir and entecavir combination therapy in patients with entecavir-resistant chronic hepatitis B with multiple drug failure: results of a randomised trial. *Gut.* 2016;65(5):852-860.
- 37. Lim YS, Yoo BC, Byun KS, et al. Tenofovir monotherapy versus tenofovir and entecavir combination therapy in adefovir-resistant chronic hepatitis B patients with multiple drug failure: results of a randomised trial. *Gut.* 2016;65(6):1042-1051.
- 38. Liu K, Xiang X, Bao R, et al. A five years study of antiviral effect of entecavir in Chinese chronic hepatitis B patients. *Sci Rep.* 2016;6:28779.

- 39. Liu Y, Corsa AC, Buti M, et al. No detectable resistance to tenofovir disoproxil fumarate in HBeAg+ and HBeAg- patients with chronic hepatitis B after 8 years of treatment. *J Viral Hepat.* 2017;24(1):68-74.
- 40. Lok AS, Trinh H, Carosi G, et al. Efficacy of entecavir with or without tenofovir disoproxil fumarate for nucleos(t)ide-naïve patients with chronic hepatitis B. *Gastroenterology*. 2012;143(3):619-628.e1.
- 41. Marcellin P, Heathcote EJ, Buti M, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. *N Engl J Med*. 2008;359(23):2442-2455.
- Pan CQ, Trinh H, Yao A, et al. Efficacy and safety of tenofovir disoproxil fumarate in Asian-Americans with chronic hepatitis B in community settings. *PLoS One*. 2014;9(3):e89789.
- 43. Park JW, Kim HS, Seo DD, et al. Long-term efficacy of entecavir in adefovir-refractory chronic hepatitis B patients with prior lamivudine resistance. *J Viral Hepat*. 2011;18(10):e475-e481.
- 44. Patterson SJ, George J, Strasser SI, et al. Tenofovir disoproxil fumarate rescue therapy following failure of both lamivudine and adefovir dipivoxil in chronic hepatitis B. *Gut*. 2011;60(2):247-254.
- 45. Sherman M, Yurdaydin C, Sollano J, et al. Entecavir for treatment of lamivudine-refractory, HBeAg-positive chronic hepatitis B. *Gastroenterology*. 2006;130(7):2039-2049.
- 46. Shin SR, Yoo BC, Choi MS, et al. A comparison of 48-week treatment efficacy between clevudine and entecavir in treatment-naïve patients with chronic hepatitis B. *Hepatol Int*. 2011;5(2):664-670.
- 47. Singla B, Bhattacharyya R, Chakraborti A, et al. Response to potent anti-HBV agents in chronic hepatitis B and combined effect of HBV reverse transcriptase mutations. *Gene*. 2015;567(1):22-30.
- 48. Snow-Lampart A, Chappell B, Curtis M, et al. No resistance to tenofovir disoproxil fumarate detected after up to 144 weeks of therapy in patients monoinfected with chronic hepatitis B virus. *Hepatology*. 2011;53(3):763-773.
- 49. Srivastava M, Singh N, Dixit VK, Nath G, Jain AK. Comparative evaluation of long-term monotherapies & combination therapies in patients with chronic hepatitis B: A pilot study. *Indian J Med Res.* 2016;144(3):424-432.
- 50. Stephan C, Berger A, Carlebach A, et al. Impact of tenofovir-containing antiretroviral therapy on chronic hepatitis B in a cohort co-infected with human immunodeficiency virus. *J Antimicrob Chemother*. 2005;56(6):1087-1093.
- 51. Suzuki F, Toyoda J, Katano Y, et al. Efficacy and safety of entecavir in lamivudine-refractory patients with chronic hepatitis B: randomized controlled trial in Japanese patients. *J Gastroenterol Hepatol*. 2008;23(9):1320-1326.
- 52. Suzuki F, Akuta N, Suzuki Y, et al. Efficacy of switching to entecavir monotherapy in Japanese lamivudine-pretreated patients. *J Gastroenterol Hepatol*. 2010;25(5):892-898.

- 53. Suzuki F, Hosaka T, Suzuki Y, et al. Long-term outcome of entecavir treatment of nucleos(t)ide analogue-naïve chronic hepatitis B patients in Japan. *J Gastroenterol*. 2019;54(2):182-193.
- 54. Tan J, Degertekin B, Wong SN, Husain M, Oberhelman K, Lok ASF. Tenofovir monotherapy is effective in hepatitis B patients with antiviral treatment failure to adefovir in the absence of adefovir-resistant mutations. *J Hepatol*. 2008;48(3):391-398.
- 55. Tenney DJ, Rose RE, Baldick CJ, et al. Two-year assessment of entecavir resistance in Lamivudine-refractory hepatitis B virus patients reveals different clinical outcomes depending on the resistance substitutions present. *Antimicrob Agents Chemother*. 2007;51(3):902-911.
- 56. Tenney DJ, Rose RE, Baldick CJ, et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve patients is rare through 5 years of therapy. *Hepatology*. 2009;49(5):1503-1514.
- 57. Tsai MC, Lee CM, Chiu KW, et al. A comparison of telbivudine and entecavir for chronic hepatitis B in real-world clinical practice. *J Antimicrob Chemother*. 2012;67(3):696-699.
- 58. Wang JC, He LL, Chen Q. Comparison of re-treatment outcomes of lamivudine plus adefovir or entecavir in chronic hepatitis B patients with viral relapse after cessation of adefovir. *Eur Rev Med Pharmacol Sci.* 2013;17(9):1162-1166.
- 59. Xu JH, Wang S, Zhang DZ, et al. One hundred and ninety-two weeks treatment of entecavir maleate for Chinese chronic hepatitis B predominantly genotyped B or C. *World J Clin Cases*. 2022;10(28):10085-10096.
- 60. Yang DH, Xie YJ, Zhao NF, Pan HY, Li MW, Huang HJ. Tenofovir disoproxil fumarate is superior to lamivudine plus adefovir in lamivudine-resistant chronic hepatitis B patients. *World J Gastroenterol*. 2015;21(9):2746-2753.
- 61. Yokosuka O, Takaguchi K, Fujioka S, et al. Long-term use of entecavir in nucleoside-naïve Japanese patients with chronic hepatitis B infection. *J Hepatol*. 2010;52(6):791-799.
- 62. Yuen MF, Ahn SH, Lee KS, et al. Two-year treatment outcome of chronic hepatitis B infection treated with besifovir vs. entecavir: results from a multicentre study. *J Hepatol*. 2015;62(3):526-532.
- 63. Zhou J, Liu YY, Lian JS, Pan LF, Yang JL, Huang JR. Efficacy and Safety of Tenofovir Disoproxil Treatment for Chronic Hepatitis B Patients with Genotypic Resistance to Other Nucleoside Analogues: A Prospective Study. *Chin Med J*. 2017;130(8):914-919.