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Abstract 
The ability to quantify motor symptom progression in Parkinson’s disease (PD) patients is crucial for 
assessing disease progression and for optimizing therapeutic interventions, such as dopaminergic 
medications and deep brain stimulation. Cumulative and heuristic clinical experience has identified 
various clinical signs associated with PD severity but these are neither objectively quantifiable or robustly 
validated. Video-based objective symptom quantification enabled by machine learning (ML) introduces a 
potential solution. However, video-based diagnostic tools often have implementation challenges due to 
expensive and inaccessible technology, often requiring multi-camera setups, pristine video collection 
protocols, or additional sensors that are impractical for conventional use. Additionally, typical “black-box” 
ML implementations are not tailored to be clinically interpretable, either due to complex and unintuitive 
algorithms or a lack of analysis on feature stability and optimality. Here, we address these needs by 
releasing a comprehensive kinematic dataset and developing a novel interpretable video-based 
framework that accurately predicts high versus low PD motor symptom severity according to MDS-
UPDRS Part III metrics. This data driven approach validated and robustly quantified canonical movement 
features and identified new clinical insights, not previously appreciated as related to clinical severity. Our 
framework is enabled by retrospective, single-view, seconds-long videos recorded on consumer-grade 
devices such as smartphones, tablets, and digital cameras, thereby eliminating the requirement for 
specialized equipment. Following interpretable ML principles, our framework enforces robustness and 
interpretability by integrating (1) automatic, data-driven kinematic metric evaluation guided by pre-defined 
digital features of movement, (2) combination of bi-domain (body and hand) kinematic features, and (3) 
sparsity-inducing and stability-driven ML analysis with simple-to-interpret models. These elements in our 
design ensure that the proposed framework quantifies clinically meaningful motor features useful for both 
ML predictions and clinical analysis. 

 

Introduction 
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by progressive motor 
symptoms (e.g., bradykinesia, rest tremor, rigidity, postural instability) that can be disabling and 
significantly impair quality of life1–3. The ability to quantify motor symptom progression in PD patients is 
crucial for assessing and optimizing therapeutic interventions, such as dopaminergic medications and 
deep brain stimulation (DBS)4. Such quantification requires accurate and continual monitoring of motor 
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symptom severity and fluctuations. Currently this objective is only partially satisfied by the status quo 
strategy of intermittent motor assessments assessed at one time point by a single clinician using the 
Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS)5. Clinical signs such as finger tapping slowness and decrement (bradykinesia) within the MDS-
UPDRS have been discovered by clinical heuristics and codified by expert consensus, precluding well-
validated, objective, data-driven and quantifiable assessment of patients. Day-to-day fluctuation of 
symptoms relies on subjective recall from patients often captured by motor diaries6. These approaches 
are limited by high assessment variance, imperfect recall, and recency bias7. To overcome these 
limitations, the field needs more reliable and objective tracking of PD clinical states. 

Technology-based objective symptom quantification, such as those supported by wearable tracking 
devices and their ability to record kinematic (movement) data, introduces a potential solution8–10. 
Unfortunately, due to device expenses and technical limitations, embodiments of these quantification 
systems have yet to be regularly adopted into clinical practice for PD assessment11–13. More recently, 
advancements in machine learning (ML) and computer vision have yielded accessible solutions for 
extracting kinematic information at key anatomical positions from video data without the need for physical 
marker systems14–17. These computer vision solutions have the potential to address the shortcomings of 
existing methods, significantly enhance diagnostic accuracy, and open new avenues for optimizing 
personalized medical therapy in PD18–22. However, to date, many video-based diagnostic tools have 
implementation challenges of expensive and inaccessible technology, often requiring multi-camera 
setups, pristine video collection protocols, or additional sensors that are infeasible for conventional use. 
Additionally, typical “black-box” ML implementations are not tailored to be clinically interpretable, either 
due to complex and unintuitive algorithms or a lack of analysis on feature stability and optimality. 
Therefore, they are generally ineffective in generating novel clinical insights and are challenging to 
integrate into current clinical care or critically, to develop clinical oversight for. Finally, these tools often 
focus on prolonged videos from a formal clinical examination or features from a single motor modality, 
increasing the burden of video acquisition and missing the opportunity to integrate different domains 
(e.g., body posture, hand movement, facial expression), which has the potential to significantly increase 
the accuracy and robustness of ML predictions23–26. They also typically only predict metrics directly 
corresponding to a single modality (i.e., predict only MDS-UPDRS finger tapping score) 22,27. A truly 
valuable video-based solution for tracking PD motor symptom progression would need to be affordable, 
accessible, automated, transparent, and able to obtain rich and clinically relevant metrics for holistic 
evaluation of PD symptoms28,29. 

In this study, we address these needs by (1) publicly releasing a comprehensive kinematics dataset from 
31 patients all with parkinsonism, and (2) developing a novel video-based framework to automatically 
predict PD motor symptom high versus low severity according to the MDS-UPDRS Part III metrics (total 
score). Following interpretable ML principles30,31, our primary contribution is to enforce model robustness 
and interpretability by integrating (1) automatic, data-driven kinematic metric evaluation guided by pre-
defined digital features of movement, (2) combination of bi-domain (body and hand) kinematic features, 
and (3) sparsity-inducing and stability-inducing ML analysis with simple-to-interpret models. We perform 
a comprehensive kinematic feature stability analysis to identify conserved features across ensemble of 
models32–34 and feature contributions to model outputs via tree SHAP (SHapley Additive exPlanations) 
analysis35. These elements in our design ensure that the model quantifies clinically meaningful motor 
features providing new clinical insights for quantification of PD severity. Our framework is enabled by 
retrospective, single-view videos recorded on consumer-grade devices such as smartphones and digital 
cameras, thereby eliminating the requirement for specialized equipment. In addition, the framework has 
the advantage of being able to extract rich and meaningful features from just three to seven seconds of 
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video for efficient training and accurate prediction. Validation of features by ML models are enabled by a 
leave-one-subject-out cross-validation (CV) scheme, an approach mirrored in other PD studies to protect 
against data leakage and ensure unbiased results36,37.  

 

Results 
Clinical and demographic characteristics  
Clinical data were obtained from 31 participants all with parkinsonism and who were evaluated at UCSF 
as part of a multi-day deep phenotyping cohort study. The protocol included standardized video 
recordings taken in both “on” and “off” dopaminergic medication states while clinical rating scales were 
performed. Video kinematic data were retrospectively extracted from the individual subject’s clinical 
videos. These kinematic data is publicly released as part of this study. The video clips were collected 
with a single tablet camera in a clinical setting and not initially formalized or collected with optimized 
settings for a computer vision - ML pipeline. Disease severity was scored using the MDS-UPDRS at the 
time of assessment. All patients had Parkinsonian symptoms at the time of evaluation. Seven patients 
were later determined to have Progressive Supranuclear Palsy (PSP) and one patient did not meet clear 
diagnostic criteria and was classified as PUCS (Parkinsonism of uncertain clinical significance)38. Four 
participants were not taking dopaminergic medication and were only assessed in the “off” medication 
state.  

Patients were dichotomized into two groups associated with low and high Parkinsonian motor symptom 
severity based on the sample median MDS-UPDRS Part III (motor) score of 32, consistent with literature 
recommendations39. Table 1 summarizes the clinical and demographic characteristics of patients with 
low (n = 33) and high (n = 25) severity motor symptoms. 

The dichotomized groups demonstrated well-balanced characteristics with only age and cognitive profile 
(MoCA) also showing a difference between the high and the lower severity cohort. The group with high 
motor symptom severity included patients diagnosed as having PSP, a neurodegenerative disorder with 
similar Parkinsonian motor symptoms to PD but with more rapid progression40,41. Select patients could 
appear in both high and low severity groups if levodopa medication significantly altered their motor 
symptom severity to move them from high to low severity. The risks of dependency on hidden covariates 
and potential data leakage are implicitly addressed during training and validation by ensuring that the 
data used for validation stemmed from patients unseen in training. 

 

Automatic extraction of motor features 
We designed a computational framework to automatically extract a large array of features representing 
movement characteristics in raw, unedited video recordings of parkinsonian patients performing motor 
tasks (Fig. 1a). A small but highly predictive subset of these features was then selected for training and 
validation of our ML to predict motor symptom severity quantified by MDS-UPDRS Part III metrics (Fig. 
1b). Associated with each patient record was a full-body video of walking/gait, a video of the finger-
tapping task, or both, collected during the same visit with a standard digital camera. In total, we extracted 
40 full-body walking/gait recordings from 25 participants and 48 hand recordings from 27 participants. A 
comprehensive computer vision pipeline based on deep learning techniques (see Methods) was used to 
extract kinematic time series from each video recording. We extracted kinematic time series from 13 
major body landmarks14 from each full-body video and kinematic time-series from 8  
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Table 1: Summary of clinical and demographic characteristics in patients and associated video clips 
dichotomized by MDS-UPDRS Part III motor score  

 
 Low Motor Impairment (n = 33) High Motor Impairment (n = 25) p-value  

Disease Type PD=33, PSP=0, PUCS=1 PD=17, PSP=7, PUCS=1 0.00‡ 

Age (yrs) 67.1	 ± 	7.4 71.4	 ± 	6.2 0.02∗ 

Sex M=20, F=13 M=15, F=10 0.96‡ 

Handedness  R=28, L=3, A=2 R=21, L=3, A=1 0.89‡ 

Education (yrs) 18.3 ± 2.5 17.5 ± 2.3 0.22∗ 

Disease duration (yrs) 7.4 ± 4.0 5.9 ± 3.0 0.14∗ 

Medication status On=18, Off=15 On=9, Off=16 0.16‡ 

MDS-UPDRS, Part I score 9.4 ± 5.4 10.4 ± 6.3 0.55∗ 

MDS-UPDRS, Part II score 8.8 ± 7.5 18.4 ± 13.7 0.01# 

MDS-UPDRS, Part III score 18.5 ± 10.3 43.4 ± 8.2 0.00∗ 

Hoehn and Yahr scale 1.9 ± 0.8 3.0 ± 1.1 0.00# 

MoCA score 26.5 ± 3.2 23.5 ± 5.0 0.01# 

 
PD = Parkinson’s disease; PSP = Progressive supranuclear palsy; PUCS=Parkinsonism of uncertain clinical 
significance; MDS-UPDRS = Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease 
Rating Scale; MDS-UPDRS, Part I = non-motor experiences of daily life; MDS-UPDRS, Part II = motor 
experiences of daily life; MDS-UPDRS, Part III = motor examination; MoCA = Montreal Cognitive Assessment. 
 
∗ Independent 2-sample t-test    † Mann Whitney U-test    ‡ Fisher’s exact test 

 

major hand landmarks from each hand video recording. This was followed by filtering and sub-
segmentation of the videos. As a result, all full-length videos were segmented into short, salient, and 
error-free video segments. From full-body videos, we produced 132 video segments with a mean 
duration of 5.1 ± 1.1 seconds. From hands videos, we produced 195 video segments with a mean 
duration of 5.7 ± 1.0 seconds (Supplemental Fig. 2). Removing those with improper or missing 
associated data entries, we retained 126 full-body video segments and 189 hand video segments. Based 
on the clinical dichotomization, 65 body video segments and 83 hands video segments were labeled as 
exhibiting less severe motor symptoms, whereas 61 and 106, respectively, were labeled as exhibiting 
more severe motor symptoms. The class assignments for the video segments were roughly balanced 
with marginally higher membership in the “more severe” category. 

Relationships between landmarks (e.g., arm-body lateral angle, thumb-index distance) were used to 
define new relative time series, provided that they were not occluded in the videos or highly similar to 
another relative time series. The concept behind this design was that some or all of the relative kinematic 
time series should capture aspects of high-level movement features such as stride patterns or finger-
tapping consistency. In total, our framework generated 339 features for each of the 126 video  
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Figure 1: Schematic overview of automatic feature extraction from video recordings for 
classification of Parkinson’s disease motor symptom severity. a. From recordings of participants 
performing prescribed motor assessment tasks, we extracted movement (kinematic) time series at key 
landmarks using the pose estimation library MediaPipe. Relative movement measurements were 
computed based on the extracted signals, from which various temporal and spectral metrics were 
computed as features. Pairwise combinations of samples from the same patient under the same 
medication state were performed on the body and hand feature sets to form the bi-modality 
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combination feature set. b. To obtain objective measurements of classification performances, we 
performed a leave-one-subject-out cross-validation (CV), where samples from one patient are held 
outas the training set for each CV iteration, on each dataset. The CV process is repeated 16 times to 
account for variabilities in models trained. During CV, a small subset of features with high predictive 
power with regard to the assigned group labels was selected via least absolute shrinkage and 
selection operator (LASSO) feature selection. The selected features were used to train the various 
machine learning (ML) models. c. LASSO feature selection consistently identified small sets of salient 
features during each CV iteration. The average number of features selected at each iteration is 
reported as mean ± standard deviation. 

 

segments from the body and 105 features for each of the 189 video segments from the hands. These 
features were computed based on the relative time series and their time derivatives with select temporal 
and spectral kinematic metrics (see Methods). Moreover, to unify the motor modalities, we also 
integrated body and hand feature sets via pairwise concatenation of body and hand feature vectors 
associated with the same patient with the same medication status. This procedure created 895 combined 
feature vectors with 496 features. 417 of the combined vectors are labeled as “less severe” and 478 as 
“more severe”. In all cases, large numbers of salient features were extracted from each video recording 
without any manual tracking. However, the high-dimensional nature of the feature sets posed a challenge 
to feature interpretability. To identify a minimal and optimal feature subset for the classification task, we 
introduced a sparsity-inducing feature selection module based on the least absolute shrinkage and 
selection operator (LASSO)42 technique to the classification framework. This module identified on 
average 60.48 ± 16.52, 8.60 ± 6.47, and 31.65 ± 29.02 features most important for severity prediction 
among the body, hand, and combined features, respectively (Fig. 1c). The significantly reduced feature 
set sizes and enabled further analysis and interpretation of trained models for generating clinically 
relevant insights. 

 

Classification of motor symptom severity based on extracted features 
To demonstrate that the automatically extracted and sparsified motor features have high predictive 
power in discriminating between low and high parkinsonian motor symptom severity states, we trained 
seven different ML models with the generated features (see Methods). We then quantified the 
classification performances using classification accuracy and average area under receiver operating 
characteristics curve (AUC) scores estimated with inter-patient cross-validation (CV) (Fig. 2; see 
Methods)43. In the interest of retaining sufficient sample sizes, we chose to retain data from patients with 
clinical parkinsonism secondary to PSP and PUCS as well. 

When the models were trained and evaluated on the body features, logistic regression (LR), support 
vector machine (SVM), and Gaussian naive bayes (GNB) classifiers achieved the highest average AUC 
of 0.76, 0.75, and 0.75, respectively. They were closely followed by linear discriminant analysis (LDA) 
and k-nearest neighbors (KNN) classifiers, at 0.72 and 0.71 average AUC scores, respectively. The 
remaining ensemble models, random forest (RF) and adaptive boosted trees (AB), had the chance-level 
average AUC scores of 0.53 and 0.49. Performance measured by classification accuracy were similar in 
relative ranking, with SVM  and LR achieving the highest average classification accuracy of 71% and 
70%, respectively. Lower but comparable classification accuracies of 68%, 67%, and 67% were 
observed in LDA, KNN, and GBN classifiers, respectively. RF and AB achieved near random accuracies  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.04.23298083doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.04.23298083
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

Figure 2: Classification performances of seven selected ML classification models. SVM = 
support vector machine; LR = logistic regression; LDA = linear discriminant analysis; RF = random 
forest; AB = adaptive-boosted trees; KNN = K-nearest neighbors; GNB = Gaussian naive Bayes; ROC 
AUC = area under receiver operating characteristics curve. a. Here we show the average ROC curves 
of the trained ML models during 16-times repeated leave-on-subject-out cross-validation (CV). The 
corresponding AUC scores are reported in the right margins as mean ± standard deviation. Overall, 
integrating body and hand features led to improved performances in the most models. b. Here we 
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show histograms of the classification accuracies of all models aggregated over all CV iterations. The 
accuracy scores are reported as mean ± standard deviation at the base of the histogram bars. Similar 
to the findings when reading the ROC plots, models trained with combined features were more 
accurate than those trained only on body features, which were more accurate than those trained only 
on hand features. 

 

of 54% and 51%. Overall, linear models trained with body features demonstrated decent classification 
performances. This suggests that the body features, parsed from only a few seconds of walking footage, 
formed an acceptable representation of the motor characteristics of the corresponding patients. 

For the models trained and evaluated using hand features, most classifiers achieved average AUC 
scores between 0.67 and 0.69, with LR being the most performant at 0.69, closely followed by AB, SVM, 
and RF at 0.68, 0.67, and 0.67 respectively. LDA and KNN were the least performant at 0.62 and 0.61 
AUC. Similarly, most classifiers achieved the average classification accuracy of 66-67%, with the 
exception of LDA and KNN at 63% and 61%, respectively. Similarly, overall, the classification 
performances of most models trained with hand features were slightly poorer compared to models 
trained with body features. This may be explained by the fact that movement characteristics measurable 
by the finger-tapping task are specific and limited, whereas whole-body motor assessments, such as the 
walking task used in this investigation, may contain richer information for diagnosing the overall level of 
motor impairment. 

Integrating both body and hand features into a single model sustained or improved the classification 
performances. SVM and LR achieved the highest average AUC scores at 0.78 and 0.79, outperforming 
the single modality models. LDA, KNN, and GNB achieved lower AUC scores of 0.71, 0.68, and 0.68, 
consistent with or slightly lower than their counterparts trained with only body or hand features. RF and 
AB achieved the lowest scores of 0.63 and 0.61. In terms of classification accuracy, SVM and LR 
achieved an average accuracy of 72%, with LDA, KNN, and GNB following closely at 68%. The least 
performant RF and AB classifiers achieved average accuracies of 61% and 58%, which still offered an 
improved lower bound on the accuracies compared to training only with body features. Overall, 
integrating body and hand features led to improved performances in the most accurate models and 
similar performances in the remaining models. 

 

Feature stability analysis and clinical insights 
The classification performances demonstrated that our framework is capable of extracting optimal 
features for discriminating low and high motor symptom severity. However, direct interpretation of trained 
ML models is usually challenging due to variance in LASSO feature selection. The variance was a 
consequence of distinct data partitioning during CV. To allow insight into the most important features and 
their contributions to model outputs, we performed ensemble feature stability analysis, aggregating 
selection counts of features over all leave-one-subject-out CV iterations for each type of classifier model. 
Specifically, we considered features selected in at least 50% of all iterations as stable based on the 
ensemble paradigm32, which is a trade-off between retaining all potentially relevant features and retaining 
only stable features to facilitate interpretation 

Performing the analysis on the most performant combined feature set, we identified 9 body and 5 hand 
features with high stability for interpretation. For all identified features, there exist statistically significant 
differences (p ≪ 0.05; independent 2-sample t-test) in group means between the low and high motor  
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Figure 3: Group differences in stable features and their contribution to ML model predictions. 
STD = standard deviation. MAD = median absolute deviation. The stable features were chosen 
according to the criteria that they must be selected in at least 50% of all models trained during cross-
validation (CV). a. Point plot showing the statistically significant differences (p ≪ 0.01) in group means 
for the selected features between groups with low and high levels of motor impairment. The feature 
values are z-score normalized. b. The swarm plots on the left show individual SHAP values of feature 
values encountered during CV training of a logistic regression (LR) classifier. The histograms on the 
right show the mean absolute SHAP values of each feature. A higher SHAP value indicates a stronger 
bias toward predicting the “less severe” class label. A higher mean absolute SHAP value for each 
feature corresponds to its level of feature attribution in relation to the predicted label. c. Visualizations 
of landmark relationships from which kinematic metrics were derived. The body and hand skeletons 
also show important landmarks and other landmark relationships were based on in our extraction 
pipeline. 

 

symptom severity groups (Fig. 3a). Visualizations of the landmark relationships from which metrics were 
derived can be seen in Fig. 3c. 
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The disparities between feature values in the dichotomized groups and their impact on deciding the 
severity state of patients are compatible with the current clinical understanding of PD and parkinsonism 
symptoms. Specifically, in patients with higher symptom severity, the model pulled out higher variability 
in the inter-ankle distance during walking, suggestive of unsteadiness. Additionally, higher movement of 
the pinkie finger was seen during the finger tapping task which is strictly meant to be restricted to index 
finger movements only. This may reflect an increase in rigidity or loss of movement discriminability 
between fingers in more severe clinical Parkinsonian cases. More severe cases also had lower hip-ankle 
variability during gait, reflective of hip flexion reductions and gait “shuffling”. Increased axial rigidity was 
supported by reduced movement in the neck (relative power in the 2-4 Hz of neck angle) during gait as 
well as reductions in finger tapping as measured by the finger tapping speed and amplitude.  

We also found that the power spectral density for arm-body lateral angular velocity has a distribution shift 
with the severity of the motor symptoms. Specifically, the relative power in 4-6 Hz of arm-body lateral 
angular velocity is lower for patients with more severe motor symptoms, while the relative power in 0.5-1 
Hz is lower for patients with less severe symptoms (see also Supplemental Fig. 4). This suggests that 
with more severe PD motor symptoms, patients have increased lower-frequency changes and reduced 
higher-frequency changes in arm body lateral angle, suggestive of axial rigidity.  

Similarly, there is a distribution shift for the power spectral density of finger tapping speed. Patients with 
more severe symptoms have higher relative power in 4-6 Hz of their finger tapping speed suggesting 
jerky / sudden interruptions to regular tapping as this frequency range is higher than the actual tapping 
frequency. The relative power in 2-4 Hz of the finger tapping speed decreases with severity consistent 
with incomplete finger tapping for patients with more severe motor symptoms .  

The directions of the group differences were consistent with the SHAP values, which measure the impact 
feature values have on model outputs, estimated with a separate LR classifier using all 14 features (Fig. 
3b). In this case, a higher SHAP value biases the model towards assigning a sample the “less severe” 
label. Features whose values have a positive correlation with the estimated SHAP values were 
consistent with features with higher group means for participants with less severe motor symptoms. 
Moreover, based on the mean absolute SHAP value of each feature, which reflects overall feature 
attribution, body features had the most predictive power, higher than hand features associated with finger 
tapping. 

To further validate the optimality of the selected stable features, we compared the 2D projection results 
of each feature set (body, hand, combined) with and without stable feature selection (Fig 4). Here, the 
projection algorithm used was MDS (multidimensional scaling), which tends to preserve the global 
structures present in the data. When all features generated by our framework were retained prior to 
projection, the final class clusters were poorly separated in all three cases (Fig. 4a). In contrast, the class 
clusters saw improved linear separability when only stable features were retained prior to projection. 
Samples containing body or combined features experienced the most significant increase in separability, 
consistent with the high classification performance in models trained with them. (Fig. 4b). These results 
suggest that the stable features identified through ensemble analysis well-characterized the low and high 
motor impairment groups and are optimal for the classification task at hand. In conclusion, this form of 
ensemble analysis not only unified the CV iterations and increased model interpretability but also helped 
to identify and preserve the most important features. 
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Figure 4: Scatter plots comparing 2D projections of datasets with and without stable feature selection. 
The projections were computed using MDS (multidimensional scaling). a. Poor separability of class clusters in 2D 
projection space when all features in the datasets were used. b. Improved separation (especially when both body 
and hand features were included) of class clusters when only stable features were used. 

 

Discussion 
Our study demonstrates that an interpretable computer vision - ML pipeline is able to accurately classify 
parkinsonian motor severity (high versus low) using very brief video recordings of gait and finger tapping. 
The classification accuracy was significantly improved using a combined pipeline that incorporated both 
walking and finger movements. The combined model classification was comparable to previous studies 
that have relied upon complex and extensive hardware solutions including wearable sensors and 
prolonged, formalized clinical videos. Notably, our study was performed using only very short video clips 
from a retrospective clinical library; video recordings were not performed in a laboratory under 
standardized conditions nor optimized for computer vision or machine learning. This supports translation 
and scalability to real-world applications both in-clinic and potentially extended to outside the clinic.  

Clinical movement disorder diagnosis and tracking has shown limited fundamental conceptual 
advancement over the course of the last 200 years, relying mainly on subjective (expert) recognition and 
classification of symptoms from visual inspection. This is unsurprisingly significantly limited by inter-rater 
variability and lack of reproducibility. However, in addition to providing an accurate, objective, evaluation 
of Parkinsonian motor severity, unlike many ML schemes, our algorithm has the potential to provide, 
rather than obscure, clinical insight, through bespoke feature stability analysis. Here the algorithm 
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identified a number of classic parkinsonian features including finger tapping speed and arm swing during 
gait which serve as useful validation. Moreover, our pipeline identified other features including pinky 
finger stability during the finger tapping task and neck angle features that appear to drive classification 
and might serve as useful features for clinical classification, that may to date have been 
underappreciated in medical training. A bidirectional relationship between clinical expertise and ML-led 
feature identification has the potential to improve classification accuracies and clinical knowledge.  

Here our algorithm was used to classify high versus low parkinsonian severity instead of predicting MDS-
UPDRS scores directly with regressive models due to limited data availability. In the future, with larger 
datasets this could be further trained to provide objective, quantitative, diagnostic evaluations that could 
support classical clinical diagnostic pathways. In addition to single time point evaluations, this approach 
could in principle be extended to at-home implementation. This has the potential to support chronic 
symptom tracking in order to monitor naturalistic motor fluctuations over time toward personalized 
optimization of therapy. Online pose estimation (with immediate deletion of raw video footage) plus 
automated person recognition have the potential to address potential privacy and security concerns. 

The accuracies reported in our study are not directly comparable to existing studies which reported 
relatively higher classification accuracy differentiating PD from healthy control using movement data 
(average accuracy of 89.1 ± 8.3%)44 for three primary reasons: First, our study classifies severity in 
patients diagnosed with Parkinsonian symptoms (rather than against healthy controls) and attempts to 
predict high versus low total MDS-UPDRS Part III score. This is a more difficult task compared to the 
classification of finger tapping or gait scores, which is primarily used in past studies. Second, our 
approach is designed to use short (~5) second-long video segments captured by consumer-grade 
devices such as smartphones, tablets, simple digital cameras. Previous studies, on the other hand, 
benefit from the movement data collected using a variety of camera-based, sensor-based, or other 
miscellaneous recording devices captured over multi-minute long recordings. Therefore, they lacked the 
technical simplicity offered by our framework45. Third, we prioritize model interpretability over 
performance to determine highly stable and predictive features of hand and body, providing reliable 
clinical insights. 

There are a number of limitations to the present study. First, the relatively small cohort size might limit or 
bias the model performances reported. A larger cohort of patients is required to fully validate the 
framework’s reported performance and objectivity, particularly with respect to important features 
identified. Ideally, the cohort should contain more diverse subjects, with patients at all stages of disease 
progression and with healthy controls. Having a larger cohort could also enable fine-grain analysis such 
as regression on UPDRS scores to validate the framework’s utility in obtaining detailed clinical 
diagnoses. Second, the performances reported may be affected by the quality of the video data, which 
was not collected in a manner specifically designed and optimized for a computer vision task. This has 
resulted in some suboptimal data unsuitable for ML analysis. Standardization of video acquisition and 
analysis protocols will be beneficial for the framework’s objective assessment of PD symptoms, as well 
as adaptability and scalability. However, this also demonstrates the robustness of our technique to real-
world clinical application. Additional pre-processing should also be explored to increase the pose position 
estimate validity, including evaluation of a wider suite of available pose estimation computer vision 
software packages. However, this dataset represents a floor to classification accuracy. Finally, we chose 
to perform stability analysis based on selection frequency by LASSO during training to promote feature 
interpretability. However, the method might be overly conservative and ignorant of some important 
features, especially those with collinearity. Future developments could consider methods such as 
creating “proto-features” from clusters of correlated features46,47, which might better preserve important 
features. 
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In conclusion, our framework effectively expands upon previous research in PD quantification and 
addresses many of the shortcomings for a simple yet comprehensive video-based solution. Analyzing a 
cohort of parkinsonism patients with the proposed framework, we showed that our approach extracted 
and identified salient kinematic features that could be used to train accurate ML models for predicting 
low- and high-severity states for motor impairment with high accuracy. Follow-up studies should focus on 
further refining the framework, increasing the degree of automation, and validating it in larger, 
representative cohorts. The framework should also be extended to incorporate additional motor 
modalities, such as facial expressions and speech, as well as non-motor modalities such as neurological 
data. Future directions should also include exploring the framework’s utility in predicting other clinically 
relevant outcomes in PD and in application to other neurological movement disorders such as dystonia 
and essential tremor. 
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Methods 
Participants and assessment of motor symptoms 
A cohort of patients presenting with parkinsonism symptoms, including idiopathic PD and PSP, was 
recruited at the UCSF Movement Disorder and Neuromodulation Center. Qualitative and Quantitative 
assessments of motor and non-motor symptoms of participating patients were conducted by a movement 
disorders neurologist based on MDS-UPDRS, the H&Y scale, and the MoCA scale. The main 
assessment metric used in this study for measuring motor symptom severity was the MDS-UPDRS Part 
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III score 22,48. The MDD-UPDRS uses an ordinal scale ranging from 0 to 132, where higher values 
indicate greater motor impairment. Motor assessments using MDS-UPDRS Part III were conducted for 
the “off” and “on” dopaminergic medication states. For the “off” state, participants were withdrawn from 
their medications for a minimum of twelve hours prior to assessment. For the “on” state, participants 
were given a standard morning dose of Levodopa medication and evaluated one hour later. Not all 
patients were prescribed dopaminergic medication, and thus some were only assessed in the “off” state. 
Concurrently with the clinical assessments, video recordings of participants were captured with a 
consumer-grade iPad tablet recording device at full HD (1920x1080) resolution and 30 frames per 
second, mounted on a tripod in the clinical care area. During recording, participants were instructed to 
perform finger-tapping and gait tasks as described in MDS-UPDRS sections 3.4 and 3.10. For the finger-
tapping task, participants were instructed to tap their index finger on their thumb a minimum of ten times 
with maximally achievable speed and amplitude. For the gait task, participants were instructed to walk 
toward and away from the camera for a minimum of 10 meters (30 feet) each way. The resultant videos 
underwent no additional editing. All participants provided written consent forms for the use of personal 
health information in research and release. Privacy and confidentiality protection have been explicitly 
addressed with IRB approval. The raw videos were not authorized for release. 

 

Pose estimation and signal processing 
For each video, kinematic (movement) time series at select body and hand landmarks (Fig. 5) were 
extracted using the Pose and Hands tracking solutions from MediaPipe14. Mediapipe is an open-sourced 
framework for building multimodal machine learning pipelines. It is cross-platform (server, iOS, Android) 
and uses a graph-based pipeline to perform processing and inference functions on multimodal input 
streams, such as vision and audio. Through this framework, we employ pre-trained hand and pose 
models, which were trained on ~30k and 85K (25k of which performing fitness exercises), respectively. 
All of these images were annotated by humans49. The hand model infers 21 3D landmarks of a hand 
from a single frame, while the pose model predicts the location of 33 pose landmarks.  The two-stage 
pipeline used by MediaPipe for pose and hand tracking consists of (1) an autoencoder detector, similar 
to feature pyramid networks, for finding bounding box for pose or hand 50, and (2) an convolutional 
encoder tracker for landmark localization informed by the bounding box. While current state-of-the-art 
approaches rely primarily on powerful desktop environments for inference, Mediapipe pose and hand 
models achieve real-time performance on mobile phones. MediaPipe, as well as alternatives such as 
DeepLabCut and OpenPose, have been adopted for accurate extraction of kinematic data from video 
recordings for clinical analysis of PD24,51–53.  

Moderate Gaussian smoothing was applied to the extracted signals to reduce random fluctuations due to 
tracking inaccuracies, implemented as a weighted sum over a 5-point rolling Gaussian window (σ = 0.5) 
with the python data manipulation library pandas (version 1.4.0)54. Time points at which major tracking 
errors in any time series, e.g. missing data, invalid numerics, severe flickering, occurred were identified 
and marked for removal. Specifically, severe flickering was detected by checking for rapid zero-crossing 
in distance between shoulders. Time points at which specific posing requirements were not met were 
also marked for removal. For body recordings, the requirements were that the subject being filmed must 
be fully standing and roughly facing forward or backward relative to the camera. We determine if a 
subject is standing by verifying that the apparent lower leg length (ankle-knee distance) is at most twice 
the apparent upper leg length (hip-knee distance). We approximately determine if a subject is facing 
forward or backward by verifying that the horizontal distances of left-wrist-to-left-hip and right-wrist-to-
right-hip are of opposite signs, i.e. the hands are on opposite sides of the body. For hand recordings, the 
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requirement was that one and only one hand must be raised (and assumed to be engaged in active 
finger-tapping). We determine this by verifying that the vertical distances of left and right index-finger-to-
wrist are of opposite signs, i.e. one hand is pointed up and the other down. For each invalid time point 
identified, a time window within 0.333 seconds (10 time points) from the invalid point was removed from 
all extracted time series.  

 

 
 

Figure 5: Body and hand skeletons with key landmarks used in analysis labeled. For simplicity, we only 
labeled relevant landmarks on one side of the body and one of the hands. Some labels were renamed and 
differed from the official nomenclatures provided by MediaPipe. 

 

As a byproduct, the filtering operation effectively segmented the movement data, resulting in sets of short 
time series at key landmarks grouped by video segments. To equalize the video segments with respect 
to duration (and by extension the amount of contained information), segments with a duration less than 3 
seconds were discarded and segments with a duration greater than 8 seconds were further sub-
segmented. The minimum and maximum duration values were empirically chosen such that each 
segment contained sufficient kinematic information, i.e. multiple stride or finger-tapping cycles, for non-
trivial extraction of motor features while maximizing the number of samples available for subsequent 
model training and classification. 

 

Computing relative movement measurements 
Similar to strategies seen in existing literature53, we generated relational time series from the filtered and 
segmented kinematic time series based on predefined interactions between two or more landmarks. 
Unlike previous studies where the relationships are manually selected, we included most relationships 
between landmarks as long as they are not occluded or invalidated by the retrospective view of the 
videos or have significant overlap with another relationship. These new time series collectively captured 
aspects of healthy and pathological movement features without explicit computation of the movement 
features. The list of time series computed is provided here: 
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1. Neck angle (angle between nose, mid-shoulder, and left shoulder) 
2. Arm-body lateral angle (angle between elbow, shoulder, and hip, lateral to body) 
3. Left/right wrist-shoulder distance 
4. Left/right ankle-hip distance 
5. Ankle separation (horizontal displacement between ankles) 
6. Knee separation (horizontal displacement between knees) 
7. Body sway (horizontal displacement between mid-shoulder and mid-hip) 
8. Leg raise (vertical displacement between ankles) 
9. Shoulder tilt (vertical displacement between shoulders) 
10. Hip tilt (vertical displacement between hips) 
11. Finger tapping (distance between thumb and index finger of active hand) 
12. Middle finger movement (distance between middle finger and wrist of active hand) 
13. Ring finger movement (distance between ring finger and wrist of active hand) 
14. Pinky finger movement (distance between pinky finger and wrist of active hand) 

 
Note that the filtering step ensured that only one hand will be actively performing finger-tapping for any 
given time segment; therefore, distinguishing between left and right-sided hand movements was 
unnecessary as the resting hand will necessarily have little to no movement and could have its time 
series discarded.  
 

Time series assessment with kinematic metrics 
Once we computed the relational time series, as the apparent body and hand sizes change depending 
on the distance between the subject and the camera, we normalized the new time series at each time 
point to equalize the scale and allow direct comparison. For body signals, normalization was achieved by 
dividing the time series by the body length (distance between mid-shoulder and mid-hip) and centered 
mid-hip. For hand signals, normalization was achieved by dividing the time series by the palm length 
(distance between wrist and midpoint between bases of index and pinky fingers) and centering at the 
wrist. The normalization was followed by kinematic metric evaluation of each time series, during which 
various temporal (distribution-based) and spectral (spectral density-based) metrics were used to provide 
a statistical summary of the body and hand movement characteristics (Table 2). This process was 
repeated for the derivatives of the relational time series, calculated as the rate of change between 
adjacent time points.  

The computed metric values formed the feature vectors associated with each time segment and were 
used in subsequent ML training and classification. Since only one hand is performing active finger-
tapping at any time in the videos, features from the non-active hand are discarded. Considering the 
common unilateral development of PD symptoms, we needed to retain both left and right-sided body 
features. This posed a challenge to compare features between subjects whose manifestation of unilateral 
features might be on opposite sides of the body. To address this, we recategorized left and right-sided 
features of the same type as “minimum” and “maximum” features by ranking numerically, thereby 
eliminating the sidedness of features. In addition, to unify the body and hand kinematic features and 
increase classification performance, we generated combined feature vectors from all valid combinations 
of body and hand feature vectors, so long as they were associated with the same patient record, i.e. 
same patient under the same medication status. 
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Feature selection and classification 
The scikit-learn package (version 1.1.2) in Python was used for feature selection and classification on 
low and high motor symptom severity for all three feature sets generated by our framework. To generate 
training and validation data in a robust manner, we conducted the aforementioned procedure with a 
custom leave-one-subject-out CV, repeated 16 times to account for model variability due to 
hyperparameter tuning. The leave-one-subject-out protocol selects a different patient at each CV 
iteration and isolates all samples related to that patient as the testing set. This form of CV is necessary to 
prevent dependency on hidden confounding variables and thus data leakage. Once partitioned, the 
training and validation sets were centered and normalized feature-wise based on means and standard 
deviations from the training set. Then, to reduce feature dimensionality, address multicollinearity, and  

improve interpretability, we applied to all feature sets as a pre-training step LASSO feature selection, 
which is an L1-regularized, sparsity-inducing algorithm. Finally, classification performances were 
evaluated using seven different ML algorithms: (1) linear discriminant analysis (LDA)55; (2) logistic 
regression (LR)56; (3) support vector machine (SVM)57; (4) random forest (RF)58; (5) adaptive-boosted 

Table 2: Temporal and spectral metrics used to characterize movement measurements 
extracted from video recordings. 

 
 Metric Formulation  

Temporal Mean 
𝜇 =

1

𝑇
%
𝑇

𝑡=𝑡0

𝑥[𝑡]  
 

Standard deviation (STD) 

𝜎 = '
1

𝑇
%
𝑇

𝑡=𝑡0

(𝑥[𝑡] − 𝜇)2 

 

Median absolute deviation (MAD) 𝑀𝐴𝐷 = 	𝑀𝑒𝑑𝑖𝑎𝑛(|𝑥[𝑡] − 𝜇|)  

 
Skewness 

𝑚3

𝑚2
3/2 where 𝑚) =

*
+
∑+,-,% (𝑥[𝑡] − 𝜇))	  

Kurtosis (Tailedness; amount of 
outliers/extreme values) 

1
𝑇𝜎/ D

+

,-,%

(𝑥[𝑡] − 𝜇)/ 
 

Spectral  
Half-Power Frequency 

𝜔∗ s.t. ∑0∗
𝜔-0% 𝑆1(𝜔) = ∑20-0∗ 𝑆1(𝜔)  

 
Spectral Entropy 

−∑20-0% 𝑠(𝜔) 𝑙𝑛 𝑠(𝜔) where 𝑠(𝜔) = 3'(0)
∑()*)% 3'(0)

  

 
Relative Powers (in 0.5-1, 1-2, 2-
4, 4-6, >6 Hz frequency bands) 

∑0+
𝜔-0,

𝑆1(𝜔)
∑20-0% 𝑆1(𝜔)

 
 

 
𝑥[𝑡] denotes the discrete movement time series at time 𝑡.  

𝑆"(𝜔) denotes the power spectral density of 𝑥. 
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trees (AdaBoost; AB)59; (6) K-nearest neighbors (KNN)60; and, (7) Gaussian naive Bayes (GNB)61. The 
regularization parameter for LASSO feature sparsity, as well as relevant hyperparameters for each 
classification model, were chosen via hyperparameter optimization with nested leave-one-subject-out CV 
during each CV iteration. Classification accuracies and AUC scores were recorded for each classifier, 
where accuracy measures the model’s ability to classify on the defined class labels and AUC measures 
the model’s sensitivity and generalizability by looking at all probabilities for assigning labels. Accuracy 
and AUC scores during CV were aggregated and reported as mean ± standard deviation. 
 
 

Feature stability analysis 
To address the challenge of interpreting membership variance in salient feature subsets selected via 
LASSO during CV, we performed feature stability analysis based on frequencies of selection. Here, we 
defined a feature as being stable if it was selected by LASSO in at least 50% of all CV iterations. Once 
the stable features have been identified, their contributions to model predictions were evaluated with 
SHAP analysis on the most performant model using the python package SHAP (version 0.40.0). 
Additional validation was performed by comparing the 2D projections of the datasets with and without 
stable feature selection. The algorithm used for projection was multidimensional scaling (MDS), an 
unsupervised dimensionality reduction algorithm that preserves global structures in the data. 

 

Statistical Analysis 
Continuous variables were presented as mean ± standard deviation and compared between low and 
high motor scoring groups with independent 2-sample t-test if normally distributed or with the Mann-
Whitney U-test if otherwise. Categorical variables were presented as counts and compared between 
scoring groups with Fisher's exact test, which is analogous to the Chi-squared test but suitable for small-
sized samples. A p-value less than 0.05 was considered statistically significant. 
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Supplemental Materials 

 
 

Supplemental Figure 1: Histograms showing distributions of clinical and demographic characteristics 
between low and high motor symptom severity groups. 

 

 

 
 

Supplemental Figure 2: Histograms showing time segment counts per recording and their duration. 
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Supplemental Figure 3: Average confusion matrices of selected classifiers. LDA = linear discriminant 
analysis; LR = logistic regression; SVM = support vector machine; RF = random forest; AB = adaptive-boosted 
trees. Compared to classifiers trained with gait features, classifiers trained with finger-tapping features 
misclassified the low motor impairment class more. Classifiers trained with both gait and finger-tapping features 
had more confidence and accuracy when predicting the motor impairment labels. 

 

 

 
 

Supplemental Figure 4: Average relative PSDs of arm-body lateral angular velocity of all participants. The 
shaded areas correspond to ± 1 standard deviation. 
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https://drive.google.com/file/d/1yZmQd2WJKd255fFlKta8yG0YzLzgkF-R/view?usp=share_link 

https://drive.google.com/file/d/1_rsVCPP1qmm3Bei47KWrx0mR1pPP9ge7/view?usp=share_link 

 

Supplemental Video 1: Visualizations of extracted landmark kinematics of example pose and hand 
recordings. At any point in the videos, a green background indicates that the given frame is error-free and 
usable, whereas a red background indicates that the frame is to be discarded. 
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