Non-generalizability of biomarkers for mortality in SARS-CoV-2: a meta-analyses series

ME Rahman Shuvo*MBBS, Max Schwiening*BA, Felipe Soares PhD, Oliver Feng PhD,

Susana Abreu PhD, Niki Veale MBBS, William Thomas MBBS, AA Roger Thompson PhD,

Richard J Samworth PhD, Nicholas W Morrell PhD, Stefan J Marciniak PhD,

Elaine Soon PhD (0000-0002-5744-5014)

SUPPLEMENT

Statistical Methods

R aw data and pre-processing: In each study, we do not have access to individual patient data, but the following measurements are reported:

Study leader and country; Cohort size; AUC and associated 95% conf dence i nterval; Age: mean and spread; Biomarker level: mean and spread; type of outcome measured (mortality or critical illness)

Converting spread measurements or confidence intervals into a standard error for the mean estimate: The spread is given as either a SD estimate $\hat{\sigma}$, a 95% confidence interval $[\hat{l}, \hat{u}]$, an IQR $[\hat{q}, \hat{Q}]$ or a range $[\hat{m}, \hat{M}]$. Under the assumption that the age and biomarker levels are normally distributed, we converted the IQR and range measurements into SD estimates via

$$\hat{\sigma}^{\text{CI}} = \frac{\sqrt{n}(\hat{u} - \hat{l})}{2\Phi^{-1}(0.95)}, \quad \hat{\sigma}^{\text{IQR}} = \frac{\hat{Q} - \hat{q}}{2\Phi^{-1}(3/4)} \quad \text{and} \quad \hat{\sigma}^{\text{range}} = \frac{\hat{M} - \hat{m}}{2\sqrt{2\log n}}, \tag{1}$$

where n is the cohort size. The standard error of the mean estimate was then calculated as $\hat{\sigma}/\sqrt[V]{n}.$

Pooling data from subgroups: Sometimes, the age and biomarker information are reported separately for different subgroups of patients (e.g. in different hospitals or wards) of sizes n_1, \ldots, n_K (with $\begin{bmatrix} K \\ k=1 \end{bmatrix} n_k = n$), in which case we aggregated the individual mean and variance estimates $\hat{\mu}_1, \ldots, \hat{\mu}_K$ and $\hat{\sigma}_1^2, \ldots, \hat{\sigma}_K^2$ via

$$\hat{\mu} = \frac{1}{n} \bigwedge_{k=1}^{M} n_k \hat{\mu}_k \text{ and } \hat{\sigma}^2 = \frac{1}{n} \bigwedge_{k=1}^{M} n_k \hat{\sigma}_k^2 + (\hat{\mu}_k - \hat{\mu})^2 .$$

The reasoning behind this is that if Z_{k1}, \ldots, Z_{kn_k} are random variables with mean μ_k and variance σ_k^2 for $1 \le k \le K$, then letting Z be drawn uniformly at random from $\{Z_k^{\ :} : 1 \le k \le K\}$

K, $1 \leq \leq n_k$, we have

$$\mu = E(Z) = \frac{1}{n} \frac{X^{k}}{k=1} n_{k} \mu_{k} \text{ and } \sigma^{2} = E(Z - \mu)^{2} = \frac{1}{n} \frac{X}{k=1} n_{k} \sigma_{k}^{2} + (\mu_{k} - \mu)^{2}$$

Statistical meta-analysis (Covi dMeta. xl sx): Ideally, we would build a logistic regression model that includes age, gender, levels of different biomarkers, country, type of patient (ICU or non-ICU) etc. as covariates. However, because individual patient data is not available, the current approach is to study the biomarkers individually and determine whether or not there is any significant difference in

- Ability of a single biomarker to predict mortality, as measured by AUC;
- Biomarker level at admission;
- Age

between European/North American and Asian cohorts.

Biomarker I evel and age: Since the nean estimates for individual studies were found to exhibit high I evels of heterogeneity within both the European/North American and Asian parts of the overall dataset, we fitted the random of ects nodel

$$Y_{ij} = a_i + b_j + \epsilon_{ij}$$
 for $i = 1, 2, j = 1, ..., N_i$ (2)

using the R package net a. Here, N₁ and N₂ are the total number of studies from Europe (i = 1) and Asia (i = 2) respectively, a_1 , a_2 are the (f xed) baseline means for Europe and Asia, $\overline{Y_{ij}}$ is the mean for the jth study in region i (with n_{ij} participants), { $b_j \sim N(0, \tau_i^2) : 1 \le i \le 2, 1 \le j \le N_i$ } are independent random effects, and $\epsilon_{ij} \sim N(0, \sigma_{ij}^2/n_{ij})$ are independent noise variables.

The output from each neta-analysis (recorded in the RDat a fles and summary sheets in Covi dMet a. xl sx) consists of estimates \hat{a}_1 , \hat{a}_2 of the European/North American and Asian baseline means, together with 95% confidence intervals for both, as well as a p-value for testing

$$H_0: a_1 = a_2$$
 against $H_1: a_1 \in a_2$.

Further statistical details: Consider f rst the simpler model where the σ_{ij} are known and $\tau_i = 0$ for i = 1, 2 (i.e. there are no random effects). Then the MLEs of a_1 and a_2 are given by

$$\tilde{\alpha_i} = \underset{\mu}{\operatorname{argmin}} \prod_{j=1}^{M_i} \frac{n_{ij}}{2\sigma_{ij}^2} (\overline{Y_{ij}} - \mu)^2 = \frac{P_{N_i}}{P_{j=1}^{N_i} w_{ij} \overline{Y_{ij}}} \frac{N_{ij}}{N_i} W_{ij}$$

for i = 1, 2, where $w_{ij} = n_{ij}/\sigma_{ij}^2$ are the inverse variance weights. In the model (2), the estimates take the form $P_{ij} = n_{ij}/\sigma_{ij}^2$

$$\hat{a}_{i} = -\frac{P_{ij}^{N_{i}} \hat{w}_{ij} Y_{ij}}{P_{j=1}^{N_{i}} \hat{w}_{ij}} \quad \text{with} \quad \hat{w}_{ij} = -\frac{\hat{\sigma}_{ij}^{2}}{n_{ij}} + \hat{\tau}_{i}^{2} \quad ,$$

where the estimates $\hat{\tau}_1^2, \hat{\tau}_2^2$ of the variances of the random effects are obtained by e.g. MLE or restricted maximum likelihood (REML), and the variance estimates $\hat{\sigma}_{ij}^2$ from the individual studies are plugged in.

AUC scores for single biomarkers: The AUC scores for a given biomarker take values in [0, 1] and are not normally distributed, so following the approach of Debray et al. (2017, 2019), we first logit-transformed the reported AUC scores p_{ij} and confidence intervals $[p_{ij}^l, p_{ij}^u]$ for individual studies, and then obtained a standard error for $\text{logit}(p_{ij}) = \log p_{ij}/(1 - p_{ij})$ via (1). We then f tted a random effects model (2) with $\text{logit}(p_{ij})$ in place of Y_{ij} , and then applied the inverse logit transform t 7–1/(1 + e^{-t}) to the resulting estimates to obtain pooled AUCs (and associated 95% confidence intervals) for the European, Asian and overall datasets respectively. For the biomarker under consideration, this analysis also yields a p-value for the significance of the difference between the AUC scores in European and Asian countries.

At the population level, the AUC for a classifier that assigns a score to each patient is given by $P(S_1 \ge S_0)$, where S_1 is the score for a randomly drawn patient from class 1 (i.e. who goes on to die) and S_0 is the score for a randomly drawn patient from class 0 (i.e. who survives).

Sensitivity analyses

Sensitivity analyses were performed by serially excluding each study to determine the implications of individual studies on the pooled AUC. No individual study had a significant implication for the pooled AUCs for either European/N.American or the Asian cohorts (Supplementary Tables 1-5).

Pooled	Lower	Upper	Pooled	Lower	Upper	p-value	Study omitted
AUC	Limit	Limit	AUC	Limit	Limit		
Europe/NA	Europe/NA	Europe/NA	Asia	Asia	Asia		
0.6728	0.6294	0.7133	0.8267	0.7958	0.8538	4.629E-10	None
0.6759	0.6306	0.7181	0.8267	0.7958	0.8538	1.9685E-09	Soon (Cambridge)
0.6722	0.6262	0.7152	0.8267	0.7958	0.8538	1.1395E-09	Soares (Spain)
0.6757	0.6304	0.7180	0.8267	0.7958	0.8538	1.9182E-09	van Dam (Netherlands)
0.6566	0.6220	0.6896	0.8267	0.7958	0.8538	8.6597E-14	Aloisio (Italy)
0.6724	0.6266	0.7151	0.8267	0.7958	0.8538	1.0607E-09	Peiro (Spain)
0.6785	0.6348	0.7193	0.8267	0.7958	0.8538	1.976E-09	Manocha (USA)
0.6714	0.6257	0.7142	0.8267	0.7958	0.8538	8.5351E-10	Montrucchio (Italy)
0.6718	0.6264	0.7141	0.8267	0.7958	0.8538	7.7371E-10	Pieri (Italy)
0.6670	0.6223	0.7089	0.8267	0.7958	0.8538	1.957E-10	Muinos (Spain)
0.6779	0.6347	0.7184	0.8267	0.7958	0.8538	1.4483E-09	Kara (USA)
0.6669	0.6235	0.7076	0.8267	0.7958	0.8538	1.078E-10	Laguna-Goya (Spain)
0.6722	0.6266	0.7148	0.8267	0.7958	0.8538	9.6236E-10	Myrhe (Norway)
0.6784	0.6347	0.7192	0.8267	0.7958	0.8538	1.928E-09	Donoso-Navarro (Spain)
0.6753	0.6299	0.7176	0.8267	0.7958	0.8538	1.7903E-09	Macias-Munoz (Spain)
0.6739	0.6279	0.7168	0.8267	0.7958	0.8538	1.6296E-09	Rubio-Rivas (Spain)
0.6746	0.6294	0.7167	0.8267	0.7958	0.8538	1.3959E-09	Mueller (USA)
0.6780	0.6337	0.7193	0.8267	0.7958	0.8538	2.1939E-09	Pouw (Netherlands)
0.6766	0.6314	0.7187	0.8267	0.7958	0.8538	2.2088E-09	Smilowitz (USA)
0.6722	0.6265	0.7148	0.8267	0.7958	0.8538	9.7217E-10	Omland (Norway)
0.6686	0.6241	0.7103	0.8267	0.7958	0.8538	2.6866E-10	Dolci (Italy)
0.6705	0.6251	0.7130	0.8267	0.7958	0.8538	6.0326E-10	Oliva (Italy)
0.6728	0.6294	0.7133	0.8297	0.8001	0.8557	8.7022E-11	Asghar (Pakistan)
0.6728	0.6294	0.7133	0.8247	0.7930	0.8524	1.1669E-09	Cheng (China)
0.6728	0.6294	0.7133	0.8293	0.7980	0.8567	3.2389E-10	Tahtasakal (Turkey)
0.6728	0.6294	0.7133	0.8294	0.7989	0.8562	1.8498E-10	Chen L (China)
0.6728	0.6294	0.7133	0.8288	0.7977	0.8561	3.2087E-10	Zhang J (China)
0.6728	0.6294	0.7133	0.8264	0.7939	0.8547	1.3448E-09	Huang (China)
0.6728	0.6294	0.7133	0.8249	0.7928	0.8530	1.4766E-09	Cheng A (China)
0.6728	0.6294	0.7133	0.8237	0.7919	0.8516	1.6089E-09	Luo Y (China)
0.6728	0.6294	0.7133	0.8282	0.7959	0.8563	7.6537E-10	Keski (Turkey)
0.6728	0.6294	0.7133	0.8265	0.7940	0.8548	1.3139E-09	Zhang L (China)
0.6728	0.6294	0.7133	0.8261	0.7944	0.8539	8.8744E-10	Bastug (Turkey)
0.6728	0.6294	0.7133	0.8283	0.7965	0.8561	5.5814E-10	Pan (China)
0.6728	0.6294	0.7133	0.8231	0.7919	0.8506	1.3213E-09	Luo (China)
0.6728	0.6294	0.7133	0.8262	0.7939	0.8543	1.2356E-09	Liang (China)
0.6728	0.6294	0.7133	0.8264	0.7943	0.8545	1.0568E-09	Han (China)
0.6728	0.6294	0.7133	0.8275	0.7951	0.8558	1.0157E-09	Duan (China)
0.6728	0.6294	0.7133	0.8286	0.7968	0.8564	5.2922E-10	Wang D (China)
0.6728	0.6294	0.7133	0.8276	0.7957	0.8554	6.8295E-10	Gao Y (China)
0.6728	0.6294	0.7133	0.8234	0.7986	0.8457	1.4571E-11	Okuyan (Turkey)
0.6728	0.6294	0.7133	0.8288	0.7976	0.8561	3.3895E-10	Genc (Turkey)
0.6728	0.6294	0.7133	0.8268	0.7943	0.8550	1.1898E-09	Li Y (China)
0.6728	0.6294	0.7133	0.8228	0.7931	0.8490	5.3769E-10	Wu W (China)
0.6728	0.6294	0.7133	0.8279	0.7955	0.8561	8.9683E-10	Qin JJ (China)
0.6728	0.6294	0.7133	0.8271	0.7949	0.8552	9.6175E-10	Zeng HL (Chína)
0.6728	0.6294	0.7133	0.8286	0.7968	0.8563	5.158E-10	Bintoro (Indonesia)
0.6728	0.6294	0.7133	0.8268	0.7948	0.8547	9.114/E-10	xu JB (China)
0.6728	0.6294	0.7133	0.8275	0.7950	0.8558	1.0443E-09	Znao Y (China)
0.6728	0.6294	0.7133	0.8282	0.7965	0.8558	5.3729E-10	Saji (Japan)

0.6728	0.6294	0.7133	0.8223	0.7933	0.8481	4.0471E-10	Bilgir (Turkey)
0.6728	0.6294	0.7133	0.8290	0.7976	0.8565	3.6033E-10	Guneysu (Turkey)
0.6728	0.6294	0.7133	0.8253	0.7934	0.8531	1.1591E-09	Li J (China)
0.6728	0.6294	0.7133	0.8268	0.7945	0.8549	1.0518E-09	Wang F (China)

Pooled AUCs for CRP calculated with omitting a single study at a time. The first line (in bold) shows

the summary from all studies with no omissions.

Pooled	Lower	Upper	Pooled	Lower	Upper	p-value	Study omitted
AUC	Limit	Limit	AUC	Limit	Limit		
Europe/NA	Europe/NA	Europe/NA	Asia	Asia	Asia		
0.6884	0.6566	0.7185	0.7895	0.7564	0.8192	5.3114E-06	None
0.6886	0.6557	0.7197	0.7895	0.7564	0.8192	6.9417E-06	Soon (Cambridge)
0.6882	0.6543	0.7202	0.7895	0.7564	0.8192	8.2452E-06	Soares (Spain)
0.6866	0.6536	0.7179	0.7895	0.7564	0.8192	4.8748E-06	Gomez (Spain)
0.6874	0.6543	0.7187	0.7895	0.7564	0.8192	5.75E-06	Maeda (USA)
0.6718	0.6473	0.6954	0.7895	0.7564	0.8192	1.5102E-08	Aloisio (Italy)
0.6849	0.6522	0.7159	0.7895	0.7564	0.8192	3.2088E-06	Peiro (Spain)
0.6892	0.6565	0.7202	0.7895	0.7564	0.8192	7.658E-06	Myrhe (Norway)
0.6914	0.6582	0.7228	0.7895	0.7564	0.8192	1.3108E-05	Manocha (USA)
0.6869	0.6540	0.7180	0.7895	0.7564	0.8192	4.9141E-06	Pieri (Italy)
0.6868	0.6531	0.7188	0.7895	0.7564	0.8192	6.0822E-06	Muinos (Spain)
0.6873	0.6545	0.7184	0.7895	0.7564	0.8192	5.3418E-06	Gavin (USA)
0.6864	0.6536	0.7175	0.7895	0.7564	0.8192	4.4513E-06	Laguna-Goya (Spain)
0.6915	0.6582	0.7230	0.7895	0.7564	0.8192	1.3767E-05	Chocron (France)
0.6921	0.6594	0.7230	0.7895	0.7564	0.8192	1.3386E-05	Macias-Munoz (Spain)
0.6949	0.6655	0.7228	0.7895	0.7564	0.8192	1.1215E-05	Donoso-Navarro (Spain)
0.6892	0.6561	0.7205	0.7895	0.7564	0.8192	8.3615E-06	Goudot (France)
0.6916	0.6580	0.7232	0.7895	0.7564	0.8192	1.4498E-05	Rubio-Rivas (Spain)
0.6866	0.6536	0.7178	0.7895	0.7564	0.8192	4.762E-06	Mueller (USA)
0.6905	0.6572	0.7218	0.7895	0.7564	0.8192	1.086E-05	Pouw (Netherlands)
0.6925	0.6593	0.7237	0.7895	0.7564	0.8192	1.5618E-05	Smilowitz (USA)
0.6913	0.6585	0.7223	0.7895	0.7564	0.8192	1.1715E-05	Omland (Norway)
0.6961	0 6520	0 7174	0 7905	0.7564	0.9100	4 49795 06	Petersen-Uribe
0.0001	0.0529	0.7174	0.7895	0.7504	0.0192	4.4676E-00	(Germany)
0.0004	0.0500	0.7185	0.7000	0.7555	0.0104	1.01002-03	Acabar (Bakistan)
0.0004	0.0500	0.7185	0.7915	0.7574	0.8210	4.93172-00	Asgrial (Fakistan)
0.0004	0.0500	0.7185	0.7910	0.7582	0.0219	2 40475 06	Tahtasakal (Turkov)
0.0004	0.0500	0.7185	0.7923	0.7563	0.8222	5.4047E-00	Ke (China)
0.0004	0.0500	0.7185	0.7903	0.7567	0.8208	5.9499E-06	Ke (China) Kucukceran (Turkey)
0.0004	0.0500	0.7185	0.7908	0.7557	0.8212	7.8759E-06	Solcuk (Turkov)
0.6884	0.6566	0.7185	0.7033	0.7590	0.0200	3 2284F-06	Soni (India)
0.6884	0.6566	0 7185	0.7890	0 7549	0.8196	8 6246F-06	Luo HC (China)
0.6884	0.6566	0 7185	0 7890	0 7548	0.8196	8 7767F-06	Chen I (China)
0.6884	0.6566	0 7185	0 7897	0.7555	0.8203	7 659E-06	Wang 7 (China)
0.6884	0.6566	0 7185	0 7921	0.7586	0.8221	3 6913F-06	Chen H (China)
0.6884	0.6566	0 7185	0 7872	0 7534	0.8175	1 086F-05	Oin 71 (China)
0.6884	0.6566	0 7185	0 7920	0 7587	0.8218	3 4374F-06	Zhang I (China)
0.6884	0.6566	0.7185	0.7901	0.7558	0.8206	7.2557F-06	Huang Y (China)
0.6884	0.6566	0.7185	0.7861	0.7524	0.8164	1.2974F-05	Cheng A (China)
0.6884	0.6566	0.7185	0.7895	0.7553	0.8200	8.0692F-06	Ye W (China)
0.6884	0.6566	0.7185	0.7844	0.7526	0.8130	8.731F-06	Liu Q (China)
0.6884	0.6566	0.7185	0.7865	0.7525	0.8169	1.3153E-05	Luo Y (China)
0.6884	0.6566	0.7185	0.7878	0.7536	0.8184	1.1083E-05	Keski (Turkev)
0.6884	0.6566	0.7185	0.7857	0.7520	0.8159	1.3756E-05	Zhang L (China)

0.6884	0.6566	0.7185	0.7921	0.7587	0.8220	3.5069E-06	Liang (China)
0.6884	0.6566	0.7185	0.7873	0.7537	0.8173	9.66E-06	Bastug (Turkey)
0.6884	0.6566	0.7185	0.7895	0.7554	0.8199	7.5685E-06	Wang P (China)
0.6884	0.6566	0.7185	0.7936	0.7615	0.8224	1.456E-06	Cheng S (China)
0.6884	0.6566	0.7185	0.7902	0.7561	0.8207	6.8324E-06	Wang D (China)
0.6884	0.6566	0.7185	0.7905	0.7566	0.8208	5.8778E-06	Gao Y (China)
0.6884	0.6566	0.7185	0.7932	0.7606	0.8225	2.0196E-06	Duan (China)
0.6884	0.6566	0.7185	0.7922	0.7589	0.8220	3.226E-06	M Pan (China)
0.6884	0.6566	0.7185	0.7891	0.7548	0.8198	9.0186E-06	Qin JJ (China)
0.6884	0.6566	0.7185	0.7893	0.7551	0.8198	8.295E-06	Poudel (Nepal)
0.6884	0.6566	0.7185	0.7853	0.7522	0.8150	1.1949E-05	Okuyan (Turkey)
0.6884	0.6566	0.7185	0.7906	0.7566	0.8209	5.8778E-06	Genc (Turkey)
0.6884	0.6566	0.7185	0.7904	0.7563	0.8209	6.6122E-06	Korkusuz (Turkey)
							Bintoro (Surabaya,
0.6884	0.6566	0.7185	0.7922	0.7589	0.8220	3.2827E-06	Indonesia)
0.6884	0.6566	0.7185	0.7909	0.7572	0.8211	5.0085E-06	Saji (Kanagawa, Japan)
0.6884	0.6566	0.7185	0.7821	0.7521	0.8095	7.3371E-06	Bilgir (Turkey)
0.6884	0.6566	0.7185	0.7887	0.7545	0.8192	9.3339E-06	Wang F (Wuhan, China)

Pooled AUCs for D-dimer calculated with omitting a single study at a time. The first line (in bold) shows the summary from all studies with no omissions.

Pooled	Lower	Upper	Pooled	Lower	Upper	p-value	Study omitted
AUC	Limit	Limit	AUC	Limit	Limit		
Europe/NA	Europe/NA	Europe/NA	Asia	Asia	Asia		
0.7791	0.7431	0.8114	0.7856	0.6958	0.8544	0.86183	None
0.7846	0.7438	0.8205	0.7856	0.6958	0.8544	0.97986	Soon (Cambridge)
0.7615	0.7182	0.8000	0.7856	0.6958	0.8544	0.53160	Soares (Spain)
0.7784	0.7315	0.8192	0.7856	0.6958	0.8544	0.85104	Kaufmann (Austria)
0.7911	0.7573	0.8213	0.7856	0.6958	0.8544	0.87794	van Dam (Netherlands)
0.7778	0.7435	0.8086	0.7856	0.6958	0.8544	0.83132	Carlino (Italy)
0.7768	0.7267	0.8200	0.7856	0.6958	0.8544	0.82051	Gomez (Spain)
0.7791	0.7431	0.8114	0.7961	0.6938	0.8707	0.67502	Asghar (Pakistan)
0.7791	0.7431	0.8114	0.8077	0.7299	0.8672	0.38689	Tahtasakal (Turkey)
0.7791	0.7431	0.8114	0.7893	0.6826	0.8671	0.80740	Ke (China)
0.7791	0.7431	0.8114	0.7754	0.6712	0.8538	0.92743	Zhang J (China)
0.7791	0.7431	0.8114	0.7782	0.6748	0.8557	0.98167	Liu Q (China)
0.7791	0.7431	0.8114	0.7989	0.7099	0.8657	0.58671	Cheng S (China)
0.7791	0.7431	0.8114	0.7646	0.6668	0.8406	0.70703	Cheng A (China)
0.7791	0.7431	0.8114	0.7778	0.6734	0.8560	0.97432	Zeng HL (China)
0.7791	0.7431	0.8114	0.7807	0.6837	0.8543	0.96784	Bilgir (Turkey)

Pooled AUCs for urea calculated with omitting a single study at a time. The first line (in bold) shows

the summary from all studies with no omissions.

Pooled	Lower	Upper	Pooled	Lower	Upper	p-value	Study omitted
AUC	Limit	Limit	AUC	Limit	Limit		
Europe/NA	Europe/NA	Europe/NA	Asia	Asia	Asia		
0.7891	0.7415	0.8299	0.8121	0.7659	0.8509	0.42437	None
0.7934	0.7430	0.8361	0.8121	0.7659	0.8509	0.52584	Soon (Cambridge)
0.7850	0.7337	0.8287	0.8121	0.7659	0.8509	0.36282	Soares (Spain)
0.7852	0.7344	0.8286	0.8121	0.7659	0.8509	0.36515	Kaufmann (Austria)
0.7881	0.7362	0.8320	0.8121	0.7659	0.8509	0.42128	de Michieli (Italy)
0.7869	0.7353	0.8308	0.8121	0.7659	0.8509	0.39882	Peiro (Spain)
0.7875	0.7366	0.8308	0.8121	0.7659	0.8509	0.40640	Cipriani (Italy)
0.7969	0.7500	0.8370	0.8121	0.7659	0.8509	0.59410	Smilowitz (USA)
0.7862	0.7361	0.8290	0.8121	0.7659	0.8509	0.37902	Goudot (France)
0.7950	0.7462	0.8365	0.8121	0.7659	0.8509	0.55548	Macias-Munoz (Spain)
0.7969	0.7523	0.8352	0.8121	0.7659	0.8509	0.58517	Myrhe (Norway)
0.7895	0.7376	0.8335	0.8121	0.7659	0.8509	0.45003	Harmouch (USA)
0.7899	0.7379	0.8339	0.8121	0.7659	0.8509	0.45753	Manocha (USA)
0.7929	0.7427	0.8354	0.8121	0.7659	0.8509	0.51268	Herold (Germany)
0.7775	0.7364	0.8138	0.8121	0.7659	0.8509	0.20345	Aloisio (Italy)
							Petersen-Uribe
0.7928	0.7425	0.8355	0.8121	0.7659	0.8509	0.51208	(Germany)
0.7824	0.7318	0.8256	0.8121	0.7659	0.8509	0.31472	Salvatici (Italy)
0.7891	0.7415	0.8299	0.8184	0.7728	0.8566	0.30315	Asghar (Pakistan)
0.7891	0.7415	0.8299	0.8088	0.7588	0.8504	0.50928	Deng (China)
0.7891	0.7415	0.8299	0.8174	0.7696	0.8572	0.33105	Tahtasakal (Turkey)
0.7891	0.7415	0.8299	0.8115	0.7614	0.8532	0.45270	Liang (China)
0.7891	0.7415	0.8299	0.8088	0.7591	0.8502	0.50742	Chen L (China)
0.7891	0.7415	0.8299	0.8092	0.7605	0.8500	0.49423	Cao (China)
0.7891	0.7415	0.8299	0.8180	0.7707	0.8573	0.31939	Chen H (China)
0.7891	0.7415	0.8299	0.8136	0.7638	0.8548	0.41108	Wang Y (China)
0.7891	0.7415	0.8299	0.8119	0.7635	0.8523	0.43622	Ozyilmaz (Turkey)
0.7891	0.7415	0.8299	0.8164	0.7688	0.8560	0.34777	Zhang J (China)
0.7891	0.7415	0.8299	0.8072	0.7573	0.8489	0.54380	Luo Y (China)
0.7891	0.7415	0.8299	0.8208	0.7782	0.8566	0.25043	Ozdin (Turkey)
0.7891	0.7415	0.8299	0.8108	0.7605	0.8526	0.46780	Sun W (Wuhan, China)
0.7891	0.7415	0.8299	0.8029	0.7581	0.8412	0.62438	Shi S (Wuhan, China)
0.7891	0.7415	0.8299	0.8146	0.7651	0.8556	0.39030	Qin JJ (Wuhan, China)
0.7891	0.7415	0.8299	0.8014	0.7549	0.8410	0.66842	Zhu F (Shanghai, China)

Pooled AUCs for troponin calculated with omitting a single study at a time. The first line (in bold) shows the summary from all studies with no omissions.

Pooled	Lower	Upper	Pooled	Lower	Upper	p-value	Study omitted
AUC	Limit	Limit	AUC	Limit	Limit		
Europe/NA	Europe/NA	Europe/NA	Asia	Asia	Asia		
0.69910	0.64283	0.74995	0.86064	0.80530	0.90216	8.76545E-06	None
0.70017	0.63808	0.75570	0.86064	0.80530	0.90216	1.73829E-05	Soon (Cambridge)
0.69989	0.63872	0.75468	0.86064	0.80530	0.90216	1.5351E-05	Soares (Spain)
0.69206	0.63350	0.74503	0.86064	0.80530	0.90216	4.97628E-06	Maeda (USA)
0.69755	0.63714	0.75182	0.86064	0.80530	0.90216	1.1052E-05	Nagant (Belgium)
0.70750	0.65397	0.75584	0.86064	0.80530	0.90216	1.61647E-05	Pieri (Italy)
0.70545	0.64717	0.75771	0.86064	0.80530	0.90216	2.07354E-05	Kara (USA)
0.69668	0.63566	0.75147	0.86064	0.80530	0.90216	1.073E-05	Laguna-Goya (Spain)
0.70349	0.64457	0.75634	0.86064	0.80530	0.90216	1.79307E-05	Mueller (USA)
0.70895	0.65978	0.75367	0.86064	0.80530	0.90216	1.23311E-05	Donoso-Navarro (Spain)
0.70087	0.63878	0.75635	0.86064	0.80530	0.90216	1.86744E-05	Muinos (Spain)
0.69659	0.64033	0.74752	0.86064	0.80530	0.90216	6.40601E-06	Carlino (Italy)
0.68459	0.63518	0.73016	0.86064	0.80530	0.90216	7.25907E-07	Herold (Germany)
0.69130	0.63462	0.74276	0.86064	0.80530	0.90216	3.70937E-06	Quartuccio (Italy)
0.70026	0.63890	0.75519	0.86064	0.80530	0.90216	1.62707E-05	Myrhe (Norway)
0.69768	0.63823	0.75117	0.86064	0.80530	0.90216	1.01345E-05	Guirao (Spain)
0.70449	0.64556	0.75730	0.86064	0.80530	0.90216	1.99393E-05	Villa (Italy)
0.69800	0.63722	0.75255	0.86064	0.80530	0.90216	1.20541E-05	Ruscica (Italy)
0.69910	0.64283	0.74995	0.86179	0.79323	0.91019	7.37739E-05	Shi (China)
0.69910	0.64283	0.74995	0.86602	0.80686	0.90910	1.03533E-05	Ke (China)
0.69910	0.64283	0.74995	0.85088	0.79167	0.89548	4.6002E-05	Shang (China)
0.69910	0.64283	0.74995	0.87035	0.81733	0.90968	1.44626E-06	Zhang J (China)
0.69910	0.64283	0.74995	0.84044	0.79690	0.87609	5.4559E-06	Zhang (China)
0.69910	0.64283	0.74995	0.86650	0.80807	0.90914	8.39488E-06	Pan (China)
0.69910	0.64283	0.74995	0.86126	0.79939	0.90629	2.8198E-05	Han (China)
0.69910	0.64283	0.74995	0.86179	0.79323	0.91019	7.37739E-05	Shi (China)
0.69910	0.64283	0.74995	0.85909	0.80003	0.90283	1.99223E-05	Satis (Turkey)
0.69910	0.64283	0.74995	0.86546	0.80704	0.90821	9.28051E-06	Gao Y (China)
0.69910	0.64283	0.74995	0.86038	0.79911	0.90517	2.7228E-05	Saji (Japan)
0.69910	0.64283	0.74995	0.85836	0.79583	0.90404	4.15284E-05	Wang F (China)

Pooled AUCs for IL-6 calculated with omitting a single study at a time. The first line (in bold) shows

the summary from all studies with no omissions.

Flow diagram for identification and selection of studies regarding utility of D-dimer as a biomarker

in vaccinated and/or variant cohorts.

Flow diagram for identification and selection of studies regarding utility of CRP as a biomarker in

vaccinated and/or variant cohorts.

Flow diagram for identification and selection of studies regarding utility of troponin as a biomarker

in vaccinated and/or variant cohorts.

Flow diagram for identification and selection of studies regarding utility of urea as a biomarker in

vaccinated and/or variant cohorts.

Flow diagram for identification and selection of studies regarding utility of IL-6 as a biomarker in

vaccinated and/or variant cohorts.

Acknowledgements

Many thanks to the following scientists and doctors who have interrogated their data further at our request.

Dr Jose Miguel Urra Ardanaz

Prof. Jeffrey Berger

Dr Francisco Bernabeu Andreu

Dr Alberto Cipriani

- Dr Christina Creel-Bulos
- Dr Tobias Herold
- Dr Areeba Kara and Dr Warren Gavin

Dr Edy Kim

Dr Christoph Kaufmann

Dr Manuel Morales

Dr Peder Langeland Myrhe

Dr Carole Nagant

Dr Natalia Pascual Gomez

Mr Niels Pouw and Dr Jacobien Hoogerwerf

Dr Luca Quartuccio

Dr Morayma Reyes Gil

Dr Manuel Rubio-Rivas

Dr Maria Salinas

Dr Fatima Sharif

Dr Tao **Shen**

Dr Paul van Dam

Dr Erica Villa

Thank you!

We thank all patients and families affected by this pandemic who have contributed to the data needed for this work. We thank all healthcare, social care and essential workers that have soldiered on, regardless of personal risk.