
   

 

 1 of 27  

 

Pervasive Influence of Hormonal Contraceptives on the Human Plasma 

Proteome in a Broad Population Study 

 

Nikola Dordevic1, †, Clemens Dierks2, † , Essi Hantikainen1, Vadim Farztdinov3, Fatma Amari3, Vinicius Verri 

Hernandes1, §, Alessandro De Grandi1, Francisco S. Domingues1, Michael Mülleder3, Peter Paul 

Pramstaller1,4, Johannes Rainer1,*, Markus Ralser2,5,6 

1 Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy 

2 Institute of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany 

3 Core Facility – High Throughput Mass Spectrometry, Charité Universitätsmedizin Berlin, 10117 Berlin, 

Germany 

4 Department of Neurology, General Central Hospital, 39100 Bolzano, Italy 

5 Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany 

6 The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, 

Oxford OX3 7BN, UK 

 † These authors contributed equally 
§ Current affiliation: Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria 

* Correspondence: johannes.rainer@eurac.edu 

Lead contact: johannes.rainer@eurac.edu 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.11.23296871doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:johannes.rainer@eurac.edu
https://doi.org/10.1101/2023.10.11.23296871
http://creativecommons.org/licenses/by-nd/4.0/


   

 

 2 of 27  

 

Abstract 
 

Background: Plasma proteomics offers new avenues to explore non-genetic associations, such as 

biomarkers for lifestyle and environmental exposure in population studies. To date, most proteomic 

investigations in population studies have utilized affinity-reagent based technologies, which are ideal to 

quantify the low abundant fraction of the circulating proteome but may omit several of the abundant 

proteins that function in plasma. 

Methods: Utilizing high throughput mass spectrometry, we quantified 148 highly abundant protein groups 

including immunoglobulins, coagulation factors, metabolic proteins, and components of the innate 

immune system, in the plasma of 3,632 participants from the Cooperative Health Research in South Tyrol 

(CHRIS) study. Using multiple regression analyses we then investigated associations with various factors 

including common medications. 

Results: Beyond age and sex, the high abundant plasma proteome is predominantly influenced by 

hormonal contraceptives. For instance, Angiotensinogen (AGT) levels exhibit significant alteration with 

this treatment, suggesting that AGT levels could be a potential biomarker for contraceptive use. The effect 

of this drug class is more pronounced than other common medications or covariates. Furthermore, our 

analysis does not reveal any enduring signature associated with the use of these contraceptives. 

Conclusion: In contrast to most used drugs, hormonal contraceptives exert a pronounced effect on the 

high abundant plasma proteome. Given its high prevalence among young female participants, the impact 

of hormonal contraceptives might be misconstrued as sex- or age-related effects on the plasma proteome. 

One should thus account for their use in any epidemiological or clinical plasma proteome study to prevent 

misleading results. 
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Introduction 

Human blood represents an easily obtainable and sensitive matrix for the assessment of health and 

disease in individuals or populations. The abundance of proteins, their respective isoforms, potential post-

translational modifications and protein sequence variants provide a snapshot of the current physiological 

state of the circulatory system and all organs with which blood comes into contact (Anderson and 

Anderson, 2002; Deutsch et al., 2021; Ignjatovic et al., 2019; Vernardis et al., 2023). In population studies, 

large-scale plasma proteomics provides new opportunities to study non-genetic associations to health-

related traits, such as markers for lifestyle and environmental exposure or to detect and characterize 

onset and progression of disease through longitudinal monitoring of protein abundance changes 

(Ferkingstad et al., 2021; Palstrøm et al., 2022; Suhre et al., 2021; Sun et al., 2023). While statistical 

approaches ranging from multivariate linear statistics to traditional machine learning have proven 

successful in identifying biomarkers and utilizing them for disease prediction (Bader et al., 2020; Demichev 

et al., 2021), large study cohorts would enable the application of more powerful deep learning models 

(Bader et al., 2023). The quantification of the plasma proteome is a formidable challenge due to a 

combination of factors: the exceptionally high abundance of select plasma proteins, the wide dynamic 

range of protein concentrations, the substantial sequence variability of certain proteins, and the 

fluctuations in protein abundances in response to diseases, physiological changes, or lifestyle factors. This 

challenge is particularly pronounced in large-scale studies, where it becomes even more daunting due to 

the heightened technical complexities involved (Deutsch et al., 2021; Suhre et al., 2021).  

Recently, different technologies emerged to measure proteins in human blood plasma or serum samples. 

These range from optimized single-protein assays to more flexible mass-spectrometry (MS) based 

workflows to affinity-based multiplex assays. For instance, highly multiplexed affinity-based platforms, 

such as Luminex, Olink and SomaScan, have emerged that offer attractive and fast high throughput assays 

for measurement of plasma protein panels in thousands of samples (Ferkingstad et al., 2021; Smith and 

Gerszten, 2017; Suhre et al., 2021). While throughput and sensitivity are high for these methods, their 

susceptibility to off-target binding as well as the lack of reproducibility raised questions about the quality 

of some affinity-based measures (Baker, 2015). Moreover, due to saturation of the affinity reagents, and 

the difficulty to differentiate among isoforms, many affinity-reagent based methods omit many highly 

abundant plasma proteins. Specifically, the high abundant plasma protein fraction is however enriched 

for proteins that exert their function in the plasma, which is responsible for nutrient transport, responds 

to lifestyle intervention and immune system activity. Indeed, the high abundant plasma proteome fraction 

is attractive for the development of marker panel assays for medical research and clinical use and 

encompasses most of the protein biomarkers used to date (Anderson and Anderson, 2002; Hartl et al., 

2023; Macklin et al., 2020; Vernardis et al., 2023).  

Mass spectrometry has a high specificity in protein identification and is not limited to the detection of a 

predefined group of proteins. Furthermore, it allows the detection of post-translational modifications or 

even interactions (Deutsch et al., 2021). MS-based proteomics increasingly allows the absolute 

quantification of plasma proteins and provides a simple path for the development of biomarker assays 

(Hartl et al., 2023; Macklin et al., 2020). While mass spectrometry per se is highly sensitive and can detect 

individual peptides down to zeptomoles, it struggles to detect low abundant plasma proteins due to the 

high dynamic range in the plasma proteome. MS methods can be made applicable for the analysis of the 

low abundant plasma proteome fraction, in particular, upon depletion of the high abundant fraction of 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.11.23296871doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296871
http://creativecommons.org/licenses/by-nd/4.0/


   

 

 4 of 27  

 

the plasma proteome (Reymond et al., 2023; Tu et al., 2010). However, protein depletion adds variability 

and cost, and similar to the use of affinity reagents, compromises the quantification of the important high-

abundant plasma fraction. With the goal to complement the existing proteomic studies with quantities 

about the high abundant plasma protein fraction, we recently presented a platform technology that 

combines a semi-automated sample preparation workflow, analytical flow rate chromatography  for 

gradient lengths of 0.5-5 minutes, specifically optimized DIA-MS acquisition schemes, and an adapted data 

processing software suite which integrates artificial neural networks in raw data processing (DIA-NN) 

(Demichev et al., 2020; Messner et al., 2020; Szyrwiel et al., 2023).  This platform achieves high 

measurement precision, and due to the high sample throughput as provided by the analytical flow rate 

chromatography, is highly cost effective in the processing of large plasma proteomes. 

The Cooperative Health Research in South Tyrol (CHRIS) study (Pattaro et al., 2015) is a single-site 

population-based study aimed to investigate the genetic and molecular basis of common age-related 

chronic conditions and their interaction with lifestyle and the environment. In recent work, we have been 

evaluating the impact of age, sex and diet, amongst others, on the human metabolome (Verri Hernandes 

et al., 2022). Moreover, gene-metabolite associations (König et al., 2022), as well as genetic and 

metabolomic determinants of disease (Emmert et al., 2021), have been investigated. Using Scanning 

SWATH (Messner et al., 2021) acquisition on Triple TOF 6600 Instruments (Sciex) we created a MS-based 

plasma proteomics data set with low technical variability for n = 3,632 CHRIS participants. We performed 

a general exploratory analysis of the data set to identify relevant factors affecting the plasma proteome, 

including commonly used drugs. We found hormonal contraceptives to be the main factor explaining the 

variation in a human plasma proteome in this European cohort. 

 

 

Results 

Study Sample Characteristics and General Data Overview 

To quantify high abundant plasma proteins in 3,632 participants of the CHRIS study (Pattaro et al., 2015) 

(demographics shown in Table 1), citrate plasma samples were randomly arrayed on 50 96-well plates 

assigning nuclear families to the same plate. Each plate included 79 study samples, 4 replicates of the 

study pool, 1 procedural blank, 4 commercial serum and 8 commercial EDTA plasma samples. These serve 

as quality control (QC) and reference samples to compare, cross-reference and join large studies (Dammer 

et al., 2023; Pino et al., 2018). Measurements were performed on tryptic digests that have been created 

from the plasma citrate samples. These were analyzed utilizing high-flowrate liquid chromatography data 

independent acquisition mass spectrometry (LC-DIA-MS). Specifically, we used Scanning SWATH (Messner 

et al., 2021) acquisition, using 800µL/min, 5-minute water to acetonitrile chromatographic gradients, as 

described in the Materials and Methods section (Messner et al., 2021).  

The full set of 5,125 unique samples, included thus 977 quality control (QC) samples, 200 pools of study 

samples and 350 samples from a sub-study of CHRIS (Motta et al., 2019). This sample set was measured 

in 17 batches over the time span of 6 months on two Triple TOF 6600 instruments (Sciex) that were 
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connected to 1290 Infinity II chromatography systems (Agilent technologies). Data was recorded using 

Analyst (Sciex) and processed in DIA-NN using a spectral library approach (Methods).  

The data matrix consisted, after removal of 55 outliers and all QC samples of abundances for 6,762 peptide 

precursors in 4,093 samples. Peptide features with more than 40% missing values across all study samples 

were excluded, reducing thus the data set to a final number of 2,716 precursors. Cyclic loess normalization 

and plate correction were then applied to remove batch effects between plates as well as any other 

measurement-specific technical variation. Final summarization of peptides to protein abundances was 

performed after proteotypic filtering of the peptides to a final number of 2,386. In this final dataset, the 

quantitative precision is estimated with a median coefficient of variation (CV) to 15.45% and 30.97% for 

pooled and study samples (see Supplementary Figure S149 for distribution of CV before and after 

normalization). The set of quantified proteins along with the results from the present analysis are available 

in Supplementary Table S1. The final data set used for this analysis consisted, after removal of samples 

from pregnant women and participants with missing information for any of the traits listed in Table 1, of 

148 proteins in 3,472 study samples. 

While for most of the proteins the signal distribution across samples was about log-normal, some proteins, 

including AGT, SERPING1, IGHV5-10-1 and IGHV6-1, showed a clear bimodal signal distribution in the 

present data set (see Supplementary Figures S1-S148 for signal distributions of all proteins). 

 

 

Table 1: Demographic characteristics of the study participants included in the analysis. 

 Female Male 

n 1,939 1,533 

Age [mean (SD)] 45.9 (16.5) 46.2 (16.6) 

Not fasting, n (%) 118 (6.1%) 97 (6.3%) 

Classification according 
to BMI, n (%) 

  

1: underweight 41 (2.1%) 7 (0.6%) 

2: normal 1091 (56.3%) 593 (38.7%) 

3: overweight 518 (26.7%) 687 (44.8%) 

4: obese 289 (14.9%) 246 (16.0%) 

 

 

Protein Coverage and Variation in the CHRIS Cohort 
 

Of the consistently measured high abundant proteins, 139 were enriched in the following GO:BP 

pathways: complement cascade pathways (complement activation; complement activation, classical 

pathway), immune response pathways (humoral immune response; immunoglobulin mediated immune 

response; B cell mediated immunity; adaptive immune response; innate immune response among others); 

phagocytosis, blood coagulation, hemostasis, endocytosis, response to bacterium and many others (see 

Supplementary Table S2). For a more detailed investigation of protein functionality, we in addition used 

the PANTHER classification system (Mi et al., 2013). Of the 148 plasma proteins consistently quantified, 

134 could be assigned to 25 different functional classes. The most prominent were immunoglobulins (n = 
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27), protease inhibitors (22), serine proteases (13), components of the complement system (10) and 

apolipoproteins (9) (see Supplementary Table S2). 

We next evaluated the variation of these proteins across our population study. The median coefficient of 

variation (CV) of all proteins across study samples was 31.1% with the 25% and 75% quantile being 21.5% 

and 47.3%, respectively (CV for all proteins included in Supplementary Table S1). Among the proteins with 

the lowest CV were, next to albumin (ALB; 13.3%), also proteins related to blood coagulation (F2, 

SERPINC1, KNG1 and SERPINF2; CV between 13% and 18.3%) as well as many proteins from the 

complement system (C3, C5, CFH, CFB, C1S, C8A, CFI and C1R, with a CV between 13.8% and 19.9%; see 

also Supplementary Table S3), reflecting that most of the individuals reported no acute condition at the 

time of sampling. To identify highly variable proteins, we calculated a relative CV defined as the ratio 

between the CVs in study and pooled QC samples. Among the top 30 proteins ranked by their relative CV 

were 12 immunoglobulins (IGHG4, IGHM, IGHV6-1, IGHV5-10-1, IGHA2, IGHG2, IGLV8-61, JCHAIN, IGHA1, 

IGHV2-26, IGKC and IGKV1-5, with a CV between 22% and 89.2%),  4 hemolysis-related proteins (HP, HPR, 

CP and HBB, with a CV between 26.9% and 54.5%) as well as the hormone transporters SERPINA6 (48.3%) 

and SHBG (123%; see Supplementary Table S4 for the full list). Of 46 common disease biomarker proteins 

detected previously using Scanning SWATH on neat plasma (Messner et al., 2020), 31 were also quantified 

in the present data set (Supplementary Table S5). Of these, 9, including ALB (13.3%), SERPINC1 (13.7%) 

and HPX (13.8%) had a CV in study samples below 20% while 10 had a CV larger than 40%, with the highest 

variable proteins being LPA (134%), SHBG (123%) and FN1 (CV = 88%). 

Next, we compared quantified protein abundances to related available accredited laboratory 

measurements that either determine the enzymatic activity of the respective proteins or quantify protein 

complexes containing them (such as HDL and LDL). Correlation coefficients (Spearman’s rho) for the 

investigated pairs of measurements range from 0.32 for albumin to 0.79 for APOB and LDL 

(Supplementary Table S6 and Supplementary Figure S150). Hence, while generally significant correlations 

between protein abundance and the diagnostic assays was achieved, this comparison equally indicates 

that the protein quantification by mass spectrometry, and the indirect quantification of the parameters 

by enzyme assays or estimation of protein complexes levels, produces varying quantitative results. 

 

 

Oral Hormonal Contraceptives Shape the Plasma Proteome in Female Study Participants 
 

To explore the data set and to investigate main influence factors on the present plasma proteome, we 

next performed a principal component analysis (PCA) on the z-score transformed abundances. This 

analysis revealed a subset of almost exclusively female individuals that separated from the main bulk of 

study participants on principal component 1 (PC1; see Figure 1, upper panel). This principal component, 

explaining the largest variance in the data set, also showed a clear relationship with the participants’ age 

(Figure 1, lower panel; the loading for age in the PCA was also approximately parallel to the direction of 

PC1) and, to a lower extent, with the participants’ sex. 

By integrating phenotypic and medication data from the study participants, we found the subset of 

individuals separating on PC1 to be best characterized by a medication related to systemic oral hormonal 
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contraceptives (ATC level 3 code G03A, hormonal contraceptives for systemic use, and ATC level 4 G03HB, 

antiandrogens and estrogens; Supplementary Figure S151). No other tested physiological parameter had 

a comparably strong influence on the plasma proteome. Thus, in the present data set, oral hormonal 

contraceptives are the major contributors to the variance observed on the quantified plasma proteome 

in a generally healthy population. 

 

Figure 1: Principal Component Analysis of the CHRIS plasma proteome dataset. Individuals are colored 

by sex (red: female, blue: male). Loadings from the PCA are shown as arrows. Each arrow represents one 

protein with its length and direction indicating their impact and importance for that principal 

component. The lower panel shows the age distribution of participants along PC1. 
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To identify the plasma proteome associated to hormonal contraceptives we next fitted multiple linear 

regression models to the proteomics data with explanatory variables for age, (categorical) BMI, (binary) 

fasting status and (binary) oral hormonal contraceptive use (HCU). To avoid any unwanted influence of 

age or sex on the results, we performed this analysis on the data subset of female participants below 

the age of 40 (n = 729, with 275 participants using hormonal contraceptives). As significance criteria we 

required for categorical variables, in addition to a statistical significance level, also the observed average 

difference in abundances to be larger than the CV of the respective protein determined on study specific 

quality control samples measured in the same data set. With this setting, we identified 50 plasma 

proteins that were significantly associated with the use of hormonal contraceptives, where the strongest 

association, and largest effect size, was found for AGT (angiotensinogen) (see Table 2). We further 

assessed the predictive power of AGT for HCU based on a sex, age, BMI, and fasting status-matched 

control group (n = 275) for the 275 female participants taking hormonal contraceptives. The AUROC 

(Area Under Receiver Operating Characteristic curve) for AGT was 89% confirming its high predictive 

ability (Figure 2B). 

 

Table 2: Proteins significantly associated with hormonal contraceptive use in females with age <= 40 

years. Columns coef, padj and ES contain the abundance difference (in log2 scale), the p-value adjusted 

for multiple hypothesis testing and the effect size, respectively. Proteins are ordered by p-value. 

UniProt Gene coef padj ES 

P01019 AGT 1.35 2.77e-95 1.38 

P00450 CP 0.552 1.14e-72 1.3 

Q96PD5 PGLYRP2 -0.624 5.39e-61 -1.19 

P08185 SERPINA6 0.822 5.43e-60 1.16 

P04278 SHBG 1.69 2.93e-59 1.16 

Q9UGM5 FETUB 1.22 6.38e-51 1.12 

P00747 PLG 0.286 1.14e-48 1.11 

P02774;P02774-3 GC 0.29 5.84e-46 1.06 

P01009 SERPINA1 0.344 2.83e-44 1.04 

P01042;P01042-2 KNG1 0.253 1.31e-42 1.05 

P01008 SERPINC1 -0.22 8.8e-38 -0.967 

P51884 LUM -0.428 1.4e-36 -0.979 

P05543 SERPINA6 0.509 2.13e-36 0.96 

P01043-2 KNG1 0.421 5.36e-35 0.961 

P05546 SERPIND1 0.375 6.38e-35 0.954 

P04196 HRG -0.435 2.8e-34 -0.907 

O14791;O14791-2;O14791-3 APOL1 0.457 7.87e-29 0.875 

P13671 C6 -0.308 1.47e-27 -0.868 

P04004 VTN 0.216 2.49e-25 0.777 

P07225 PROS1 -0.27 3.94e-25 -0.823 

P20851;P20851-2 C4BPB -0.405 4.8e-25 -0.825 

P02763 ORM1 -0.374 4.94e-25 -0.783 

P05155;P05155-3 SERPING1 -0.864 3.67e-24 -0.825 
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P02753 RBP4 0.27 6.76e-24 0.815 

P20742 PZP 0.707 4.54e-21 0.76 

P04003 C4BPA -0.227 3.49e-20 -0.731 

P19652 ORM2 -0.333 1.67e-19 -0.731 

P80108 GPLD1 0.341 2.21e-19 0.74 

P05452 CLEC3B -0.244 6.23e-19 -0.72 

Q06033;Q06033-2 ITIH3 -0.423 1e-18 -0.724 

P02768 ALB -0.134 1.82e-16 -0.686 

P02656 APOC3 0.281 3.86e-16 0.685 

P07357 C8A -0.208 1.04e-14 -0.657 

Q16610;Q16610-4 ECM1 -0.327 1.5e-14 -0.651 

P02748 C9 -0.231 2.58e-14 -0.638 

P06727 APOA4 -0.284 1.45e-13 -0.619 

P01024 C3 0.12 3.54e-13 0.572 

P00748 F12 0.287 2.28e-12 0.594 

P02652 APOA2 0.139 7.23e-12 0.594 

P02747 C1QC -0.204 1.4e-11 -0.584 

P27169 PON1 0.272 1.55e-11 0.59 

P02746 C1QB -0.191 9.25e-10 -0.543 

P04217;P04217-2 A1BG 0.152 3.92e-09 0.534 

P00739 HPR 0.285 5.77e-07 0.47 

P02787 TF 0.11 1.78e-06 0.444 

O43866 CD5L -0.261 0.00037 -0.377 

A0A075B6I0 IGLV8-61 -0.272 0.00519 -0.329 

P01023 A2M -0.104 0.0171 -0.287 

P00738 HP -0.17 0.0455 -0.28 

P01871 IGHM -0.196 0.047 -0.289 

 

 

Similarly, we observed a clear and strong difference in abundance of AGT between females taking oral 

contraceptives and all other female as well as male participants when considering the overall study 

population (see Figure 2). This large difference also explained the observed bimodal signal distribution for 

this protein mentioned above. 
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Figure 2: Abundance of the protein angiotensinogen (AGT) in study participants taking hormonal 

contraceptives (HCU) and female and male participants that don’t (A). ROC (Receiver Operating 

Characteristics) curve demonstrating the high predictive power of ACT for hormonal contraceptive usage 

(B). 

 

Recently, a long-lasting effect of menopausal hormonal therapy (MHT) in the circulating proteome was 

reported (Thomas et al., 2022). To test whether also hormonal contraceptives would have a similar impact 

on the high abundant plasma proteome, we categorized female participants below 40 years of age into 3 

groups: current use of hormonal contraceptives (n = 275), previous use of contraceptives (n = 280), and 

never used hormonal contraceptives (n = 76) and identified proteins with significant differences in 

abundances between these. Restricting the analysis to young females ensured balanced groups and 

reduced a potential influence of age and menopause on the results. In contrast to current use of hormonal 

contraceptives, not a single protein had significantly different concentrations between women with 

previous HCU and women that never took contraceptives (Supplementary Figure S152). Thus, in the 

present data set we could not observe any long-term effects of hormonal contraceptives on the plasma 

proteome. 

 

Plasma Proteome Associations to Age, Sex, BMI 
 

To identify associations of proteins with age, sex, and body mass index (BMI) we next fitted multiple 

regression models to the abundances of each quantified plasma protein adjusting in addition for 

participants’ fasting status, and usage of oral hormonal contraceptives (the full results are provided in 

Supplementary Table S1). 

With this analysis we identified 22 plasma proteins significantly differing between female and male 

participants (Supplementary Table S7; Figure 3A), with the top five candidates being the proteins RBP4, 

GPLD1, SERPINF1, and TTR showing lower, and CP higher abundance in females, respectively. Ninety-one 

proteins were found to be significantly related to the participants’ age (Supplementary Table S8; Figure 

3B), with the proteins IGFALS and VTN having the strongest effects, showing decreasing abundances with 
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higher age (see Supplementary Figures S153 and S154). We observed multiple proteins that had 

significantly different concentrations when comparing participants of BMI category 1 (underweight; BMI 

< 18.5; n = 48), BMI category 3 (overweight; 25 <= BMI < 30; n = 1,205), BMI category 4 (obese; BMI >= 

30; n = 535) to participants from BMI category 2 (normal; 18.5 <= BMI < 25; n = 1,684). In total we observed 

4 significantly associated proteins for underweight, 4 proteins for overweight and 20 proteins for obese 

status (Supplementary Tables S9, S10 and S11). Most of the BMI-associated proteins showed a difference 

in concentrations which was consistently increasing (or decreasing) with BMI (Figure 3C), such as SHBG 

and APOD having lower abundances with increasing BMI. Also, one protein, APOA4, was significantly 

associated with fasting status showing a 9% higher abundance in non-fasting participants (Supplementary 

Table S12). 

 

Figure 3: Sex-, age- and BMI-associated plasma proteins in the CHRIS study. A) Sex-associations of high 

abundant plasma proteins (Volcano plot). The coefficient represents the log2 difference in average 

concentrations between female and male participants. B) Age-dependency of high abundant plasma 

proteins (Volcano plot). The coefficient represents the log2-change in abundance over 10 years. 

Significant proteins are highlighted in red. C) Coefficients for proteins found to be significantly associated 

with at least one BMI category (Heatmap). The coefficients represent the log2-difference in average 

abundances between underweight, overweight, and obese (BMI categories 1, 3, and 4 respectively) 

compared to the reference normal weight (BMI category 2). 

 

Off note, the results for HCU associations from this analysis were similar to the results from the analysis 

on the subset of female participants yielding almost identical coefficients and ranks of p-values and their 

effect sizes were larger than those for sex or age associated proteins (see Supplementary Figure S155). 

Given the large impact of HCU on the plasma proteome, we evaluated to what extent adjustment for HCU 

influences the results of a general analysis for age, sex and BMI-associations. We thus conducted a 

sensitivity analysis by fitting the same linear models to the data omitting only the explanatory variable for 

HCU and compared the results of the two models. Indeed, 8 from the 28 sex- and 15 from the 101 age-

associated proteins identified in this sensitivity analysis were significantly related to HCU but not to sex 
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or age in the full analysis model (see Supplementary Tables S13 and S14 for coefficients and p-values for 

these proteins in both analyses). In contrast, BMI-associations were not affected. Thus, the adjustment 

for HCU had a clear impact on the age and sex-association results while it did not affect the BMI-

associations (see Figure 4). 

 

 

Figure 4: Sensitivity analysis for sex, age, and BMI-associations of plasma proteins. Shown are the 

coefficients from the linear model adjusting for hormonal contraceptive use (x-axis) against the 

coefficients from a linear model without that adjustment (y-axis). The solid black line represents the 

identity line. 

 

 

 

Influence of Medication on Quantified Plasma Proteins 
 

To evaluate whether also other medications influence the abundances of plasma proteins, we next 

determined the most common medications in the present data set and evaluated their impact on the high 

abundant plasma proteome. To identify associations between plasma proteins and therapeutical 

subgroups of general medication, we first identified all ATC level 3 medications taken by at least 15 

participants (0.4% of the sample set) on a regular basis (at least two times per week) and defined a binary 

variable for each of them. These were then included as explanatory variables into the per-protein multiple 

regression models, that accounted also for age, sex, (categorical) BMI and (binary) fasting status of each 

study participant. The tested medications along with the number of participants as well as significant 

protein associations are shown in Table 3. 
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Table 3: Overview of association results for ATC level 3 medications in the CHRIS study subset. Only 

medications taken on a regular basis by more than 14 of the in total 3,632 participants were considered. 

Columns Participants and Proteins list the number of participants taking the medication and number of 

significantly associated proteins. 

ATC Name Participants Proteins 

G03A HORMONAL CONTRACEPTIVES FOR SYSTEMIC USE 286 50 

H03A THYROID PREPARATIONS 262 0 

B01A ANTITHROMBOTIC AGENTS 243 2 

C10A LIPID MODIFYING AGENTS, PLAIN 203 1 

C09A ACE INHIBITORS, PLAIN 156 0 

C07A BETA BLOCKING AGENTS 149 1 

N06A ANTIDEPRESSANTS 141 0 

C09D ANGIOTENSIN II ANTAGONISTS, COMBINATIONS 113 1 

A02B DRUGS FOR PEPTIC ULCER AND GASTRO-OESOPHAGEAL 
REFLUX DISEASE (GORD) 

94 0 

C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY 
VASCULAR EFFECTS 

91 0 

C09C ANGIOTENSIN II ANTAGONISTS, PLAIN 74 1 

A12A CALCIUM 65 2 

C09B ACE INHIBITORS, COMBINATIONS 59 0 

A10B BLOOD GLUCOSE LOWERING DRUGS, EXCL. INSULINS 57 4 

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, 
NON-STEROIDS 

48 3 

G02B CONTRACEPTIVES FOR TOPICAL USE 46 19 

G04C DRUGS USED IN BENIGN PROSTATIC HYPERTROPHY 46 4 

M04A ANTIGOUT PREPARATIONS 36 2 

N03A ANTIEPILEPTICS 34 1 

N05C HYPNOTICS AND SEDATIVES 32 0 

S01E ANTIGLAUCOMA PREPARATIONS AND MIOTICS 30 0 

R03A ADRENERGICS, INHALANTS 29 1 

N05B ANXIOLYTICS 24 0 

N05A ANTIPSYCHOTICS 21 0 

G03F PROGESTOGENS AND ESTROGENS IN COMBINATION 18 0 

G03H ANTIANDROGENS 16 38 

N04B DOPAMINERGIC AGENTS 16 1 

 

Among the 27 tested ATC3 medications, most frequent were hormonal contraceptives for systemic use 

(ATC3 G03A), thyroid preparations (ATC3 H03A), antithrombotic agents (ATC3 B01A) and lipid modifying 

agents (ATC3 C10A), each with more than 200 participants taking these on a regular basis. In line with 

results from the previous sections, medications related to contraception (ATC3 G03A, G03H and G02B) 

yielded by far the highest number of significantly associated plasma proteins (50, 38 and 19, respectively, 

see Table 3). For these medications we observe a considerable overlap of the protein signatures as well 

as similar effect sizes (see Figure 5). Even contraceptives for topical use (ATC3 G02B), which was not 
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considered in the definition of the oral hormonal contraceptive use (HCU) variable in the previous section, 

showed, despite smaller effect sizes, a similar protein signature. For the remaining medications, no or only 

few significant protein associations were found (see Table 3). Tables with significant proteins for each 

medication are provided in the supplement (Supplementary Tables S15-S30).  

 

 

Figure 5: Significant associations between proteins (rows) and ATC level 3 medications (columns). Effect 

sizes (as a number and color coded) are only shown for significant associations. 
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We next repeated the analysis on ATC level 4 medications to eventually identify additional associations 

with the more specific chemical or pharmacological subgroups defined by this ATC level. Also in this 

analysis, medications related to hormonal contraceptives yielded the highest number of significant 

protein associations: 52, 38, 36 and 35 for progestogens and estrogens, fixed combinations (ATC4 G03AA), 

antiandrogens and estrogens (ATC4 G03HB), progestogens and estrogens, sequential preparations (ATC4 

G03AB) and intravaginal contraceptives (ATC4 G02BB), respectively (see Table S31). Further, the 

signatures and effect sizes were highly similar for these medications, irrespective of the route of 

administration (Supplementary Figure S156): intravaginal contraceptives had a similar signature and 

effect sizes than all other, orally administered, hormonal contraceptives. In contrast, no significant protein 

was found for the ATC4 medication intrauterine contraceptives (ATC4 G02BA), which is part of the same 

ATC level 3 medication subgroup (ATC3 G02B, contraceptives for topical use) as intravaginal 

contraceptives (ATC4 G02BB). The medication subgroup with the next most significant proteins (14) was 

vitamin K antagonists (ATC4 B01AA), while for platelet aggregation inhibitors excl. heparin (ATC4 B01AC, 

part of the same ATC3 therapeutic subgroup antithrombotic agents) only a single significant association 

was found. For the remaining medications, only few significant proteins were identified, and no significant 

association was detected for 13 of the in total 29 tested medication subgroups (see Supplementary Tables 

S32-S44 for significant proteins for the tested medications). 

Thus, summarizing, hormonal contraceptives had, among all tested medications, by far the strongest 

influence on the quantified plasma proteome in this study. 

 

Discussion 

In this study, we explored the high abundant plasma proteome fraction of 3,632 CHRIS study participants 

using proteomics. Using a combination of semi-automated sample preparation of neat plasma, fast 

analytical flow-rate chromatography, and Scanning SWATH (Messner et al., 2021), we recorded the 

proteomes for over 5,125 plasma samples (including QCs). Using an HPLC setup with two binary pump 

systems, one gradient and one wash/equilibration pump, reduced overheads to 1.8 min and eventually 

allowed one operator to run 3 LC-MS batches (3x 96-well plates each) per week and to complete the 

measurements within 4 weeks of instrument time. We obtained precise quantities and limited batch 

effects, demonstrating that mass spectrometry-based proteomics suits the quantification of the high 

abundant plasma proteomic fraction in large-scale epidemiological cohorts. Applying strict filtering 

criteria, we report a set of 148 reliably measured proteins considering all study samples. We would like to 

note that in other applications of our plasma proteomic platform a higher proteomic depth was achieved, 

albeit in lower sample numbers (Demichev et al., 2021; Vernardis et al., 2023). We speculate that the 

sample matrix or a confounding technical factor (like plastic materials), have affected tryptic digestion and 

hence proteomics depths achieved in the present data set. However, the quantitative precision of the 

obtained data was high, thus allowing us to test for associations between the high abundant plasma 

proteome and epidemiological parameters.  

Many of the high abundant plasma proteins identified were either members of the complement system 

and innate immunity, coagulation factors, or immunoglobulins, and thus representing processes with high 

disease relevance. Indeed, a considerable number of these proteins varied significantly across individuals 
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and at least 31 of them are linked to disease biomarkers, reflecting the high importance of the upper 

plasma protein fraction for biomarker discovery.  

A general comparison of quantified protein abundances with typical laboratory tests yielded an overall 

significance concordance, considering that the assays test for different parameters. While the proteomics 

platform assesses protein abundance projecting to the average proteoform, the diagnostic tests either 

test for total protein, enzyme activity or assess protein complexes like LDL or HDL. Given these constraints, 

the related tests yielded significant correlations. For instance, the correlation coefficients were high for 

some proteins (0.78 between APOB and HDL, 0.68 for transferrin) while APOA1 levels correlated to a 

somewhat lower degree with the LDL, of which APOA1 is a component (0.41).  

Our plasma proteome reflected both known and new associations with epidemiological parameters. For 

instance, when comparing to literature, 12 from the 22 sex associated proteins identified in our study, 

have been described using other methods.  Reassuringly, for most, these show the same directionality of 

the effect (Cho et al., 2006; Ding et al., 2012; Gaya da Costa et al., 2018; Hammond, 2011; Lehallier et al., 

2019; Lin et al., 2013; Lyutvinskiy et al., 2013; Miike et al., 2010), whereas for GPLD1 an opposite effect 

was reported (Lehallier et al., 2019) (see Supplementary Table S45).  Nine proteins which showed a sex 

association in our dataset (TTR, AZGP1, HBA1, LRG1, APOA4 IGHA1, CD5L, APOD) have not been identified 

as sex dependent in previous studies, to the best of our knowledge. Our dataset revealed 91 age-

associated protein abundances. Of these, 63 have been previously associated with ageing in the literature 

(Cominetti et al., 2018; Larsson et al., 2020; Lehallier et al., 2019; Orwoll et al., 2020; Siino et al., 2022; 

Tanaka et al., 2020; M. Xu et al., 2020; R. Xu et al., 2020) . About 80% of these (n = 50) showed a similar 

pattern of regulation in our study. Of the remaining 29 proteins, 28 were previously reported to have no 

statistically significant correlation with age (Siino et al., 2022; Tanaka et al., 2020; R. Xu et al., 2020). 

However, despite the lack of statistical significance in previous studies, 75% of these showed a similar 

trend in fold change as observed in our study (see Supplementary Table S45). Regarding BMI, we identified 

20 proteins with significant differences in concentration between the various BMI categories and the 

reference level. Among these, 15 have been previously reported for BMI, with same directionality, based 

on plasma proteomes from large population studies such as KORA, INTERVAL, and QMDiab (Goudswaard 

et al., 2021; Zaghlool et al., 2021). Finally, a lower overlap with results from literature was found for 

proteins that were significantly associated with hormonal contraceptive use in our data (22 out of 50) 

(Josse et al., 2012; Ramsey et al., 2016). In proteomics, comparisons with results from literature generally 

suffer from a low overlap and coverage of measured proteins due to the different employed platforms 

(various MS-based protocols, different affinity proteomics approaches) resulting in gaps and missing 

reference values. This was particularly the case with Enroth et al. (Enroth et al., 2018), where the 

intersection of analytes was limited to a single commonly measured protein, thus precluding an extensive 

confrontation of results. Arguably, differences in study sizes as well as employed statistical tests and 

significance cut-offs will impact comparisons with literature. Taken together, the overall acceptable 

coefficient of variation of the data set together with the correlation of protein abundances with estimates 

from independent laboratory tests on the same blood samples and the agreement of results from the 

investigated traits with previous results from literature suggest the present MS-based plasma proteome 

data set to be of high quality and proves its utility to identify biologically and clinically interesting signals. 

In our data set, hormonal contraceptives explained most of the variance of the quantified plasma 

proteome.  Indeed, an impact of oral contraceptives, and to a lower extend also of the menstrual cycle, 

on plasma protein and metabolite abundances has also been reported previously (Klipping et al., 2021; 
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Ramsey et al., 2016), yet, the use of hormonal contraceptives is not yet systematically accounted for in 

the typical epidemiological studies.  In the liver, oral contraceptives stimulate the synthesis of steroid-

binding globulins, such as sex hormone-binding globulin (SHBG), thereby affecting circulating, free steroid 

levels and they further increase low-grade inflammation, alter lipid metabolism and affect the coagulation 

system, resulting in an increased risk for thromboembolic events (Kangasniemi et al., 2023). We were able 

to independently validate these findings using our extensive dataset, which identifies a substantial 

number of plasma proteins that are significantly impacted by the use of oral hormonal contraceptives. In 

addition to oral contraceptives, also (hormonal) intravaginal contraceptives resulted in an almost identical 

protein signature with highly similar effect sizes. The effect of hormonal contraceptives on the plasma 

proteome is thus independent of the route of administration. Also, compared to the other analyzed traits 

(age, sex, BMI), the numbers of significant proteins and related effect sizes were much larger for hormonal 

contraceptive use. Notably, levels in angiotensinogen (AGT), the most discriminatory protein, separated 

users and non-users of hormonal contraceptives, and might serve as a biomarker of contraceptive use. 

Indeed, exogenous estrogens have been reported to cause upregulation of hepatic angiotensinogen (Elger 

et al., 2017; Gordon et al., 1992) associated with an activation of the renin angiotensin system with 

however little renal and systemic consequences (Cherney et al., 2007; Kang et al., 2001). A sensitivity 

analysis unequivocally underscored the necessity of incorporating hormonal contraceptive use into the 

analytical models, in order to prevent proteins influenced by this treatment from being erroneously linked 

to factors such as age, sex, or correlated phenotypes. Recently, a long-term effect of menopausal 

hormonal therapy on the circulating plasma proteome was described (Thomas et al., 2022). We, however, 

could not identify any such effect for hormonal contraceptives on the high abundant plasma proteome, 

possibly, due to differences in hormone composition and dosage between the two medications. In 

addition, the intersection of quantified proteins in both studies is very small (22 proteins) and, except for 

SERPINA3, none of the proteins from the reported signature was detected in our data set.  Thus, hormonal 

contraceptives represent a large influence factor on plasma protein concentrations and should be 

considered, in addition to clinical practice as suggested by Ramsey et al. (Ramsey et al., 2016), in any study 

involving plasma proteomics data sets, particularly if the analyzed trait might be related to either age or 

sex. For example, hormonal contraceptive use should be accounted for in an association analysis for 

cardiovascular health in the present data set to avoid confounded results.   

In contrast to hormonal contraceptives, the majority of the commonly used medications among the 

participants in the CHRIS study were those prescribed for the management of cardiometabolic conditions. 

None of these drugs had a similarly strong influence on plasma protein levels but affected specific 

pathways. The disparity in concentration observed for these medications was notably less pronounced 

than that seen with hormonal contraceptives. For instance, lipid-modifying agents were found to 

influence APOB levels, and it was this specific protein that exhibited a statistically significant association 

with the medication in our study.  

To conclude, we assessed the potential of the high abundant fraction of the plasma proteome in an 

epidemiological study, the CHRIS cohort. We identified associations between protein abundances and 

common factors such as sex and age, but notably, report that hormonal contraceptives had the largest 

effect on the plasma proteome. Due to its high prevalence, and apparently strong influence, this type of 

medication should be accounted for in any epidemiological or clinical study of the plasma proteome to 

avoid spurious findings.  Moreover, future studies should clarify to which degree desired and undesired 

effects resulting from the use of contraceptives are associated with the changes in the plasma proteome. 
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Material and Methods 
 

Study cohort 
 

Details on the CHRIS study including recruitment are given in (Pattaro et al., 2015). In brief, study 

participants were recruited from the adult population of the middle and upper Vinschgau/Val Venosta 

district located in the mountainous northern-most region of Italy. Next to collection and subsequent 

biobanking of blood and urine samples a self-reported, questionnaire-based health assessment was 

performed. Medication information was collected by scanning the barcode of the medication boxes study 

participants brought along and assignment of the respective Anatomical Therapeutic Chemical (ATC) 

codes. Standard blood parameters were measured in blood samples at the Hospital of Merano using 

standardized clinical assays. Details on measurements of clinical laboratory parameters for the present 

study set including the description of sample handling are described in (Noce et al., 2017). In brief, 

antithrombin was measured in plasma citrate samples using the enzymatic Siemens Innovance 

Antithrombine assay on a ROCHE SYSMEX CA1500 and for a subset of participants using the STA-Stachrom 

AT III assay on a STAGO STA COMPACT MAX instrument. Albumin, HDL, LDL, Triglycerides and transferring 

were measured in serum samples using the colorimetric Cobas ALB plus Albumin BCG assay, the enzymatic 

Cobas HDL-C Plus 3 generation assay, the enzymatic Cobas LDL-C plus 2nd generation assay, the Cobas 

Triglyceride GPO-PAP assay and the immunological Cobas Tina-quant Transferrin ver.2 assay, respectively, 

on a ROCHE MODULAR PPE and for a subset of samples using the colorimetric ALBUMIN BCG assay, the 

ULTRA HDL assay, the DIRECT LDL assay, the TRIGLYCERIDE assay and the immunological TRANSFERRIN 

assay, respectively, on an ABBOT DIAGNOSTIC ARCHITECT. Hemoglobin (HGB) was measured in EDTA 

plasma using the electronic impedance laser light scattering based assay on an ABBOT CD SAPPHIRE 

instrument and on a subset of samples on a SYSMEX XN-1000. 

From the in total 13,393 participants of the CHRIS study 3,632, participating to the study between August 

2011 and August 2014, were selected for mass spectrometry-based quantification of their plasma 

proteome. 

 

Sample Preparation 
 

In this study, a total of 5,125 samples were subjected to measurement. Among these, 479 samples were 

quality control samples, 498 were plasma set samples and 200 were pooled study samples that were 

utilized to monitor measurement quality and control technical variation. The measurement comprised of 

3,948 study samples including 350 samples from a CHRIS sub-study, which were, however, excluded from 

the present data analysis. These plasma citrate samples were randomly distributed across 50 96-well 
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plates, together with 4 study pools, 4 commercial serum (ZenBio SER-SPL) samples, and 8 plasma samples 

(ZenBio HSER-P500ML) per plate. Measurements were performed in 17 batches, each consisting of 3 

plates (except for MS batch 17), over a span of 6 months.  

Semi-automated in-solution digestion was performed as previously described for high throughput clinical 

proteomics (Messner et al., 2020). All stocks and stock plates were prepared in advance to reduce 

variability and were stored at -80°C until use. Briefly, 5 μl of thawed samples were transferred to the 

denaturation and reduction solution (50 μl 8 M Urea, 100 mM ammonium bicarbonate (ABC), 5 µl 50 mM 

dithiothreitol per well) mixed and incubated at 30°C for 60 minutes. Five microliters were then transferred 

from the iodoacetamide stock solution plate (100 mM) to the sample plate and incubated in the dark at 

RT for 30 minutes before dilution with 100 mM ABC buffer (340 μl). 220 μl of this solution was transferred 

to the pre-made trypsin stock solution plate (12.5 μl, 0.1 μg/μl) and incubated at 37°C for 17 h (Benchmark 

Scientific Incu-Mixer MP4). The digestion was quenched by addition of formic acid (10% v/v, 25 μl) and 

cleaned using C18 solid phase extraction in 96-well plates (BioPureSPE Macro 96-Well, 100 mg PROTO 

C18, The Nest Group). The eluent was dried under vacuum and reconstituted in 60 μl 0.1% formic acid. 

Insoluble particles were removed by centrifugation and the samples transferred to a new plate. 

 

Liquid Chromatography and Mass Spectrometry 
 

The digested peptides were separated on a 5-min high-flow chromatographic gradient and recorded by 

mass spectrometry using Scanning SWATH (Messner et al., 2021) on an Agilent Infinity II HPLC combined 

with a SCIEX 6600 TripleTOF platform. Five micrograms of sample were injected onto a reverse phase 

HPLC column (Luna®Omega 1.6µm C18 100A, 30 × 2.1 mm, Phenomenex) and resolved by gradient elution 

at a flow rate of 800 µl/min and column temperature of 30⁰C. All solvents were of LC-MS grade. The fast 

separation used 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) using 

an alternating column regeneration system where the gradient separation of one sample is performed on 

one LC column by a gradient pump while a second identical column is being washed and equilibrated using 

a regeneration pump. The gradient separation, wash and equilibration programs are described in 

Supplementary Table S46. For mass spectrometry analysis, the scanning SWATH precursor isolation 

window was 10 m/z, the bin size was set to 20% of the window size, the cycle time was 0.52 s, the 

precursor range was set to 400 – 900 m/z, the fragment range to 100 – 1500 m/z as previously described 

in Messner et al. (Messner et al., 2021). A Sciex IonDrive TurboV source was used with ion source gas 1 

(nebulizer gas), ion source gas 2 (heater gas) and curtain gas set to 50 psi, 40 psi and 25 psi, respectively. 

The source temperature and ion spray voltage were set to 450⁰C and 5500 V, respectively. 

 

Data Processing and Statistical Data Analysis 
 

Raw MS data was processed using DIA-NN v1.8 (Demichev et al., 2020). Although DIA-NN can optimize 

mass accuracies and the scan window size, we fixed them to ensure the reproducibility of our results 

(MS1: 12 ppm; MS2: 20 ppm; scan window size: 6). An external, publicly available spectral library was used 
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for all measurements (Bruderer et al., 2019). The spectral library was annotated using the Human UniProt 

(UniProt Consortium, 2008) isoform sequence database (Proteome ID: 3AUP000005640). 

All preprocessing steps of the DIA-NN output matrix were performed in the R programming language 

(v4.0.4). All libraries used were in compatible versions to the R version used. Imputation of missing values 

was performed using the knn function implemented in the impute package, with k = 9 nearest neighbors 

applied to samples within each MS batch. Data were normalized using cyclic loess (with the ‘fast’ option) 

(Ballman et al., 2004; Bolstad et al., 2003) and plate effects were corrected using the removeBatchEffect 

function from the limma Bioconductor package (Ritchie et al., 2015). To map peptide precursors to 

proteins, precursor filtering (retaining only proteotypic precursors) and median polish summarization 

were applied, as implemented in the preprocessCore Bioconductor package. Functional analysis was 

performed with gProfiler package (Kolberg et al., 2020). Only GO Terms with an FDR-corrected p-value > 

0.05 were considered significant. Protein class information was obtained from the PANTHER Classification 

System (Mi et al., 2013). The results of the functional annotations are summarized in Supplementary Table 

S2. To assess the predictive ability of AGT, a control group was defined using the MatchIt package with an 

“optimal” matching strategy and calculation of propensity scores by a generalized linear model. ROC 

curves were calculated by using the pROC package.   

To compute the CV for each protein or peptic precursor, the empirical standard deviation (the square root 

of the variance) was divided by the empirical mean (the average abundance), and the result was expressed 

as a percentage. For PCA analysis, protein abundances were scaled to zero mean and standard deviation 

of one (autoscaling or z-score transformation). To identify associations with sex, age, BMI, fasting status, 

and hormonal contraceptive use, linear regression models were fitted separately for each protein using 

its concentration as response variable and sex, age, fasting status, BMI and hormonal contraceptive use 

as covariates. For easier interpretation of relative effects, participants’ age is divided by 10, thus age-

related coefficients and effect sizes are related to 10 years of difference (Steyerberg, 2019). For BMI, 

clinical categories were used (WHO Consultation on Obesity (1999: Geneva and Organization, 2000): 

underweight (category 1, BMI < 18.5), normal range (category 2, 18.5 ≤ BMI < 25), overweight (category 

3, 25 ≤ BMI < 30) and obese (category 4, BMI > 30). For fasting status, a binary variable based on the self-

reported fasting information from the questionnaire was used (1 for participants declaring to have had a 

meal within the 12 hours prior blood drawing and 0 for all others). Medication information was recorded 

by scanning the medication boxes participants were asked to bring along to the visit at the study site and 

Anatomical Therapeutic Chemical (ATC) codes of the medications were extracted. A binary variable for 

oral hormonal contraceptives was defined using ATC level 3 categories “HORMONAL CONTRACEPTIVES 

FOR SYSTEMIC USE” (ATC3 G03A) and “ANTIANDROGENS” (ATC3 G03H). To evaluate influence on 

common medication on plasma protein levels, age, sex, BMI and fasting status-adjusted linear models 

were fitted including in addition explanatory variables for ATC3 or ATC4 medications taken on a regular 

basis by at least 15 participants. P-values from linear models were adjusted for multiple testing using the 

Bonferroni method. Proteins with an adjusted p-value smaller than 0.05 were considered statistically 

significant. In addition, for categorical variables (such as sex, age, BMI, or medications), to call a protein 

significant, its absolute difference in concentration for the variable had to be larger than its CV across the 

sample pools. The observed difference in concentrations is thus required to be larger than the technical 

variability that was observed for that protein in the present data set (calculated on the QC CHRIS Pool 

samples). 
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Categorization of female participants into groups “current HCU”, “previous HCU” and “never used any 

hormonal contraceptives” was based on self-reported questionnaire data combined with the definition of 

hormonal contraceptive use described above. Females with missing or ambiguous information were 

excluded from the analysis. To identify proteins with significant differences in abundances between these 

categories, linear models were fitted to the data adjusting in addition for age, BMI, and fasting status. 

Additionally, linear regression models were fitted to protein concentrations standardized to mean of 0 

and standard deviation of 1. Coefficients from this analysis, where differences in one unit are equal to a 

standard deviation of 1, are comparable and reported as “effect size”. All analyses were performed on 

log2-transformed protein concentrations. 

Data analysis was performed in R (version 4.2.2), R markdown documents defining and describing the 

analysis are available on github (https://github.com/EuracBiomedicalResearch/chris_plasma_proteome). 

 

 

Data Availability Statement 

CHRIS study data can be requested for research purposes by submitting a dedicated request to the CHRIS 
Access Committee. Please contact access.request.biomedicine@eurac.edu for more information on the 
process. 
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