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 2

Abstract 28 

Objective  29 

Gut microbiome composition is associated with multiple diseases, but relatively little is 30 

known about its relationship with long-term outcome measures. While gut dysbiosis has 31 

been linked to mortality risk in the general population, the relation with overall survival in 32 

specific diseases has not been extensively studied. In the current study, we present in-depth 33 

analyses regarding the relationship between gut dysbiosis and all-cause and cause-specific 34 

mortality in the setting of solid organ transplant recipients (SOTR).  35 

Design We analyzed 1,337 metagenomes derived from fecal samples of 766 kidney, 334 36 

liver, 170 lung and 67 heart transplant recipients from the TransplantLines Biobank and 37 

Cohort; a prospective cohort study including extensive phenotype data with 6.5 years of 38 

follow up. To quantify gut dysbiosis, we included additional 8,208 metagenomic samples 39 

from a general population from the same geographical location. Multivariable Cox regression 40 

and a machine learning algorithm were used to analyze the association of indicators of gut 41 

dysbiosis and species abundances, with all-cause and cause-specific mortality. 42 

Results We identified two patterns representing overall microbiome community variation that 43 

were associated with both all-cause and cause specific mortality. Gut microbial distance to 44 

the average of the general population was associated with all-cause mortality and infection-, 45 

malignancy- and cardiovascular disease related mortality. Using multivariable Cox 46 

regression, we identified 23 species that were associated with all-cause mortality. By using a 47 

machine learning algorithm, we identified a log-ratio of 19 species predictive of all-cause 48 

mortality, all of which were also independently associated in the multivariable Cox-49 

regression analysis. 50 

Conclusion Gut dysbiosis is consistently associated with mortality in SOTR. Our results 51 

support the observations that gut dysbiosis is predictive of long-term survival. Since our data 52 

do not provide causative evidence, further research needs to be done to see determine 53 

whether gut-microbiome targeting therapies might improve long term outcomes  54 

55 
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Summary box 56 

Significance of this study 57 

What is already known on this subject? 58 

● Current literature suggests that the gut microbiome signature might be associated 59 

with mortality risk in the general population. 60 

● Higher diversity of gut microbiota is associated with lower mortality in allogeneic 61 

hematopoietic-cell transplantation recipients. 62 

● Liver and kidney transplant recipients suffer from gut dysbiosis and an analysis with a 63 

relatively low number of events showed that dysbiosis is associated with mortality.  64 

What are the new findings? 65 

● Across kidney, liver, heart and lung transplant recipients, we identified two overall 66 

microbial community variation patterns that are associated with all-cause mortality 67 

independent of the organ transplant and specifically to death from malignancy and 68 

infection. 69 

● We find that multiple indicators of gut dysbiosis predict all-cause mortality and death 70 

by cardiovascular diseases, malignancy and infection.  71 

● We find multiple microbial species associated with all-cause and cause-specific 72 

mortality. Using three different methods, we identify multiple bacterial species 73 

(shared between different analytical approaches) that are associated with an 74 

increased or decreased risk of mortality following solid organ transplantation. 75 

● Using a machine learning algorithm, we identify a log-ratio of 19 bacterial species 76 

that was associated with all-cause mortality.   77 
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Introduction 78 

Gut dysbiosis, while not clearly defined, is a condition typically characterized by the growth 79 

of pathogens at the expense of commensal bacteria when compared to a healthy 80 

microbiome. A dysbiotic gut microbiome has been observed in many diseases, including 81 

inflammatory bowel disease, obesity, diabetes mellitus and cancer.1–4 Population-based 82 

studies report a large overlap in microbial associations to general health, suggesting a 83 

common dysbiotic signature in compromised health.5–7  84 

 Recent evidence suggests that such dysbiotic signatures are not only associated with 85 

a subject's health status at time of sampling but also predictive of long-term survival. The gut 86 

microbiome, characterized by metagenomic sequencing of stool samples, was associated 87 

with mortality in a well-characterized population-based study of 7,211 adults with a follow-up 88 

of 15 years in Finland.8 This study found that members from the Enterobacteriaceae family 89 

were especially associated with an increased mortality risk.8 While studies linking gut 90 

dysbiosis with patient survival in specific disease populations are scarce, the relationship 91 

has been studied more extensively in allogeneic hematopoietic-cell transplantation where a 92 

lower alpha diversity is associated with increased mortality risk.9,10 We recently reported, in 93 

the setting of solid organ transplantation, that the extent of gut dysbiosis (in terms of the 94 

average distance from the general population) in both liver and kidney transplant recipients 95 

was associated with higher all-cause mortality risk.11 However, the number of events in this 96 

study was relatively small due to the limited follow-up time.  97 

In the current study, we present an in-depth survival analysis of both all-cause and 98 

cause-specific mortality in a large population of solid organ transplant recipients (SOTR). In 99 

the current study, we have 3.7 times more samples and 2.7 times more events from liver, 100 

kidney, heart, and lung transplantation recipients compared with our previous analyses. This 101 

population of SOTR represents an appropriate model to study the relationship between gut 102 

dysbiosis and long-term survival, because the population SOTR is characterized by 103 

polypharmacy, multimorbidity and the prevalence of dysbiosis is high compared with the 104 

general population.11,12 Using this unique population of transplant recipients (n=1,337) and 105 

metagenomics samples from the general population (n=8,208), we analyzed the relationship 106 

between the gut microbiome and mortality. These findings are of interest for the 107 

transplantation community but also of interest for our general understanding of the gut 108 

microbiome and its relation to health.  109 
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Results 110 

Characteristics of solid organ transplant recipients 111 

In total, 1,337 solid organ transplant recipients who provided a fecal sample at variable time 112 

after transplantation, including 766 kidney (KTR), 334 liver (LTR), 170 lung (LuTR) and 67 113 

heart (HTR) transplant recipients from the TransplantLines Biobank and Cohort study were 114 

included. The average age (± standard deviation, SD) of all recipients was 57 (± 13.0) years, 115 

784 recipients (59%) were male and the average time since transplantation across all organ 116 

types was 7.6 (± 8.0) years (Supplementary Figure 1A, 1B and 1C). During the follow-up 117 

period with a minimum of 2.8 years and a maximum of 6.5 years, a total of 162 participants 118 

(88 KTR, 33 LTR, 35 LuTR and 6 HTR) died (Supplementary Table 1). Of these, 48 (28%) 119 

died due to infection related mortality, 38 (23%) due to cardiovascular related mortality, 38 120 

(23%) due to malignancy related mortality, and 40 (25%) died from other causes 121 

(Supplementary Table 1).  122 

In the first part of the analysis, we computed for each transplant recipient’s gut 123 

microbiome, indicators of gut dysbiosis: Shannon diversity index, the distance to the average 124 

microbiome composition of the general population, richness of antibiotic resistance genes 125 

(ARGs) and virulence factors (VFs). With multivariable Cox regression including age, sex, 126 

BMI and years since transplantation, we subsequently investigated the relationship between 127 

each of these indicators and recipient all-cause and cause-specific mortality. While we 128 

analyzed all-cause mortality for each transplant organ type separately, we only performed 129 

the cause-specific analysis on all SOTR pooled, because of smaller numbers of these 130 

events. In the second part of the analysis, we aimed at identifying microbial species that 131 

individually or jointly predict mortality. We investigated the relationship between transplant 132 

recipient mortality and each species’ CLR-transformed abundance, the quantile of each 133 

species in the general population. Lastly, we used a machine learning algorithm to identify 134 

which log-ratio of species best predict mortality.  135 

 

Overall community variation is associated with mortality risk 136 

We first performed a Principal Component Analysis (PCA) on CLR-transformed species 137 

abundances. In all SOTR we observed a significant relationship between principal 138 

component (PC) 1 and increased all-cause mortality and decreased all-cause mortality and 139 

PC3 (PC1: HR=1.32, 95% CI=1.13-1.54, FDR=5.8x10-4; PC3: HR=0.80, 95% CI=0.68-0.93, 140 

FDR=4.0x10-3; Figure 1A and 1B). PC3 was also associated with a lower mortality for KTR 141 

and HTR (KTR: HR=0.73, 95% CI=0.59-0.89, FDR=2.2x10-3; HTR: HR=0.34, 95% CI=0.12-142 

0.95, FDR=0.03; Figure 1C). In the cause-specific analysis, we found that PC1 was related 143 

to death from malignancy and infection (malignancy: HR=1.64, 95% CI=1.20-2.24, FDR=2.0 144 
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x 10-3; infection: HR=1.42, 95% CI=1.06-1.89, FDR=0.01; Figure 1A, 1B and 1D), and PC3 145 

with a decreased risk of death from malignancy (HR=0.68, 95% CI=0.49-0.94, FDR=2.0 x 146 

10-2). The five species that exhibited the largest positive loadings onto PC1 (and thus were 147 

associated with mortality) were Ruminococcus gnavus, Clostridium clostridioforme, 148 

Clostridium symbiosum, Hungathella hathewayi, and Clostridium innocuum (Figure 1E), and 149 

the five species that exhibited the largest positive loadings onto PC3 (and thus were 150 

inversely associated with mortality) were Bifidobacterium adolescentis, Dorea longitena, 151 

Bifidobacterium longum, Collinsella aerofaciens and Eubacterium rectale (Figure 1F). 152 
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Figure 1 (A and B) Forest plot depicting results from Cox-regression analysis performed in 153 

principal component 1 and 3 for all-cause and cause-specific mortality. (C) Principal 154 

component analysis (PCA) colored by transplantation type. Circles and crosses represent 155 

centroids of SOTR that are alive and dead at the time of the follow-up, respectively. (D) PCA 156 

colored by cause of death showing the centroids (represented by crosses) of infection and 157 

malignancy related mortality are separated from cardiovascular and other causes of death in 158 

PC1. (E and F) Principal component loadings consisting of the 10 species with the largest 159 
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positive and negative loadings for PC1 and PC3, thus were associated with mortality. I.: 160 

Intestinimonas. 161 

 

Multiple gut dysbiosis indicators are associated with all-cause and cause-162 

specific mortality  163 

In the cause-specific analyses performed in all SOTR, we found that the Shannon diversity 164 

index was related to death from malignancy (HR=0.71, 95% CI=0.54-0.93, FDR=0.01). We 165 

calculated how far each transplant recipient’s gut microbiome was from the average 166 

composition of the general population (Aitchison distance) and performed Cox-regression 167 

analyses. The distance to the general population was significantly associated with higher 168 

mortality risk in all SOTR (HR=1.29, 95% CI=1.11-1.51; FDR = 9.3 x 10-4; Figure 2, 169 

Supplementary Figure 2). In the cause-specific analyses, the distance to the general 170 

population was related to death from infection (HR=1.46, 95% CI=1.11-1.93, FDR=7.2x10-3), 171 

malignancy (HR=1.39, 95% CI=1.02-1.89, FDR=0.03) and cardiovascular disease (HR=1.36, 172 

95% CI=1.01-1.87, FDR=0.04; Figure 2). Finally, we found that harboring a higher richness 173 

of antibiotic resistance genes (ARG) s and virulence factors (VFs) were associated with an 174 

increased all-cause mortality risk (ARGs: HR=1.27, 95% CI=1.09-1.47; FDR=2.2x10-3, 175 

Figure 2; VFs: HR=1.14, 95% CI=1.01-1.27; FDR=0.03; Figure 2) and with death from 176 

infection in the cause-specific analyses (ARGs: HR=1.45, 95% CI=1.10-1.90, FDR=8.0 x 10-177 
3; VFs: HR=1.28, 95% CI=1.09-1.51, FDR=3.0 x 10-3; Figure 2). We did not observe a 178 

significant association between the Shannon diversity index and all-cause mortality when we 179 

analyzed recipients together and stratified by organ type (FDR>0.05, Supplementary Table 180 

2).  Overall, higher distance to the general population, increased in richness of ARG and VF, 181 

and decreased in Shannon diversity were linked to increased mortality.  182 

 

 

Figure 2 Alpha diversity metrics for all-cause and cause-specific mortality analysis. We 183 

calculated the Aitchison distance of each transplant recipient from the average composition 184 

of the general population and identified a relationship with all-cause and cause specific 185 
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mortality. The Shannon diversity index was associated with malignancy related mortality. 186 

The richness of antibiotic resistance genes and virulence factors were both associated with 187 

all-cause and infection related mortality.  188 

 

Multiple species are associated with mortality  189 

We identified a total of 23 (16%; FDR<0.10) species whose CLR-transformed abundance 190 

were associated with all-cause mortality using multivariate Cox-regression including age, 191 

sex, BMI and years since transplantation (Supplementary Table 5). When we analyzed all 192 

SOTR, we found four Clostridium species (C. innocuum [HR=1.35, 95% CI=1.18-1.54, 193 

FDR=0.001], C. clostridioforme [HR=1.34, 95% CI=1.16-1.54, FDR=0.003], C. symbiosum 194 

[HR=1.35, 95% CI=1.17-1.57, FDR=0.003] and C. bolteae [HR=1.32, 95% CI=1.157-1.52, 195 

FDR=0.004]) that were positively associated with all-cause mortality (Figure 3A; 196 

Supplementary Table 5) and death from infection in the cause-specific analyses 197 

(Supplementary Table 6; Figure 3B). Other species that were associated with an elevated 198 

mortality risk included H. hathewayi (HR=1.29, 95% CI=1.12-1.50, FDR=0.01), Veillonella 199 

parvula (HR=1.29, 95% CI=1.12-1.49, FDR=0.01) and R. gnavus (HR=1.26, 95% CI=1.09-200 

1.46, FDR=0.03; Figure 3A; Supplementary Table 5). In the cause-specific analyses, we 201 

found that the abundance of H. hathewayi (HR=1.48, 95% CI=1.18-1.92, FDR=0.08) and V. 202 

parvula (HR=1.57, 95% CI=1.21-2.03, FDR=0.04) were related to death from infection 203 

(Supplementary Table 6; Figure 3B) and that the abundance of R. gnavus was related to 204 

death from malignancy (HR=1.83, 95% CI=1.34-2.49, FDR=0.04; Supplementary Table 6; 205 

Figure 3B). We also identified multiple species that were associated with a lower mortality 206 

risk when we analyzed all SOTR. For example, butyrate producers Eubacterium hallii 207 

(HR=0.75, 95% CI=0.63-0.89, FDR=0.01), Firmicutes bacterium CAG 83 (HR=0.77, 95% 208 

CI=0.66-0.90, FDR=0.01), Gemmiger formicilis (HR=0.77, 95% CI=0.66-0.89, FDR=0.01) 209 

and Faecalibacterium prausnitzii (HR=0.83, 95% CI=0.73-0.95, FDR=0.05) were negatively 210 

associated with mortality (Figure 3A; Supplementary Table 5). Other commensals that 211 

were associated with a lower mortality risk included Adlercreutzia equolifaciens (HR=0.77, 212 

95% CI=0.66-0.91, FDR=0.02), Prevotella copri (HR=0.77, 95% CI=0.65-0.91, FDR=0.03), 213 

Asaccharobacter celatus (HR=0.79, 95% CI= 0.67-0.93, FDR=0.04) and D. longicatena 214 

(HR=0.80, 95% CI=0.68-0.93, FDR=0.04).  215 
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Figure 3 (A) Forest plot depicting all-cause mortality associated species from Cox-216 

regression analysis. Hazard-ratio and 95% confidence interval and the FDR-corrected value 217 

are shown. (B) Forest plot depicting cause-specific mortality associated species from Cox-218 

regression analysis. Hazard-ratio and 95% confidence interval and the FDR-corrected value 219 

are shown. 220 
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We took the analyses one step further by categorizing species based on whether 221 

their CLR-transformed abundance in each transplantation recipient were outside of its 222 

‘normal’ range in the general population (higher [>75% quantile] or lower [<25% quantile]) 223 

and whether this binary classification associated more strongly with mortality. This measure 224 

is relatively similar to our dysbiotic indicator ‘distance to the average of the general 225 

population’ but instead gives an indication of dysbiosis on the species as opposed to the 226 

microbial community level. When we analyzed all SOTR, we found many of the same 227 

associations (11/16 and 22/23 species at an FDR<0.05 and FDR<0.1, respectively) but with 228 

stronger hazard ratios (at an FDR<0.05; Figure 4). For example, the four Clostridium 229 

species (C. innocuum, C. clostridioforme, C. symbiosum and C. bolteae) that were positively 230 

associated with all-cause mortality in the previous analysis exhibited up to 1.8 times higher 231 

hazard ratios in this analysis (range of increase: min=1.3, median=1.35, max=1.8; Figure 4).  232 
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Figure 4 Kaplan-Meier curves showing the mortality probabilities of recipients compared 233 

with the general population. Bar plots depict the percent of deceased patients in the low and 234 
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high group, respectively. (A) Decreased mortality risk; i.e., if the relative abundance of the 235 

bacteria of a SOTR corresponds to the highest quantile of the general population there was 236 

a significantly lower risk for mortality. (B) Increased mortality risk; i.e., if the relative 237 

abundance of the bacteria of a SOTR corresponds to the highest quantile of the general 238 

population there was a significantly higher risk for mortality. 239 

 

Gut microbiome as predictive biomarker of mortality 240 

Finally, to identify a predictive biomarker we used a machine learning algorithm 241 

(CoDaCoRe). This algorithm has been developed to identify the log-ratio most predictive of 242 

an outcome, in this case death (dead/alive at the time of censoring) in all SOTR (see 243 

Methods). We first split our data into a training and testing set (80/20) with a proportional 244 

number of events in each set. This algorithm identified a log-ratio consisting of 19 species 245 

(AUC=0.68; Figure 5A and 5B) that had a classification accuracy of 88% in the test set. In 246 

this log-ratio, the numerator – or species whose joint abundance is predictive of death 247 

consisted of eight species (Bacteroides eggerthii, B. fragilis, H. hathewayi, C. bolteae, C. 248 

clostridioforme, C. symbiosum, Ruminococcaceae bacterium D16 and Escherichia coli; 249 

Figure 5A; Supplementary Table 9), and the denominator – or species whose joint 250 

abundance is predictive of mortality consisted of 11 species (B. adolescentis, B. longum, 251 

Adlercreutzia equolifaciens, A. celatus, P. copri. E. hallii, Anaerostipes hadrus, Coprococcus 252 

comes, D. longicatena, Fusicatenibacter saccharivorans and G. formicilis; Figure 5A; 253 

Supplementary Table 9). All of these species were individually identified to be associated 254 

with mortality in our previous analyses (FDR<0.10; Figure 3A; Supplementary Table 5). 255 

Finally, we tested whether the identified log-ratio also could predict mortality in a 256 

multivariable Cox regression including age, sex, BMI and years since transplantation. We 257 

found that this log-ratio (i.e., harboring more of the numerator species and less of the 258 

denominator species) is indeed associated with an elevated mortality risk (HR=1.74 ,95% 259 

CI=1.48-2.04, P=1.60 x 10-11, Figure 5C). When we categorized individual transplant 260 

recipients based on whether they harbored lower or higher than the median value of this log-261 

ratio across all SOTR, we found that the hazard ratio increased by almost a factor of 1.4 262 

(HR=2.40, 95% CI=1.71-3.35, P=3.40 x 10-7, Figure 5D).   263 
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Figure 5 Machine learning algorithm identifies a log-ratio predictive of mortality. (A) Species 264 

included in the identified CoDaCoRe ratio. (B) AUC-ROC curve demonstrating discriminative 265 

power of the most predictive log-ratio identified by CoDaCoRe in the training set. (C) Blue 266 

line indicates the estimated hazard ratio compared to the log-ratio values with light blue area 267 

representing the 95% confidence interval (CI) of the hazard ratio. (D) Kaplan-Meier curves 268 

for recipients harboring lower (orange) and higher (blue) the median log-ratio value across 269 

all SOTR. R.: Ruminococcaceae, B.: Bifidobacterium, F.: Fusicatenibacter.   270 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.23297709doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.28.23297709
http://creativecommons.org/licenses/by-nd/4.0/


 15

Discussion 271 

In the current study, we report an in-depth analysis of the gut microbiome in relation with 272 

both all-cause and cause-specific mortality in a population of SOTR from the 273 

TransplantLines cohort and biobank study.13 We observed gut microbial signatures 274 

associated with both all-cause and cause-specific mortality, especially death from infection. 275 

The distance of the gut microbiome to general population controls, resistome and virulence 276 

factor richness were associated with a higher mortality risk. We found a consistent mortality 277 

related gut microbial signal consisting of previously disease-associated species. 278 

Interestingly, we discovered that if the abundance of a species among SOTR is outside what 279 

is considered the 'normal' or 'healthy' range in the general population, it also predicts 280 

mortality. Overall, our results show that gut dysbiosis related gut microbial signatures are 281 

associated with mortality across different SOTR.  282 

 Diversity analysis was partly consistent with previously reported results. Patients with 283 

a lower Shannon diversity index had 29% higher risk of malignancy related mortality. 284 

However, we did not observe a significant relationship between the Shannon diversity index 285 

and all-cause mortality in all the pooled SOTR analysis or stratified by organ-type. Thus, we 286 

are unable to confirm previous reported associations between the Shannon diversity index 287 

and mortality in HSCT-recipients and liver transplant recipients.10,11 Similar to the gut 288 

microbiome mortality analysis in the general population, we observed a significant 289 

relationship between all-cause and cause-specific mortality and the PCA signature.8 SOTR 290 

that were one standard deviation higher than average in PC1 had a 32% higher mortality risk 291 

while SOTR lower in PC3 had a 20% lower mortality risk. We observed a consistent gut 292 

microbial signal in all of our mortality analyses, i.e., the PCA mortality analysis, the gut 293 

dysbiosis indicator analysis, and the per-species and machine learning mortality analysis.  294 

Many of the species that were associated with mortality in our study, have previously 295 

been associated with disease in the general population.5 Specifically, we found that 296 

abundances of several clostridium species, including C. clostridioforme, C. symbiosum, C. 297 

bolteae, and V. parvula and R. gnavus were significantly associated with higher mortality in 298 

SOTR and with multiple diseases in the general population. In contrast, P. copri, D. 299 

longicatena and F. prausnitzii were associated with lower mortality in SOTR and with general 300 

health in the general population.5 Furthermore, we observed that the extent of dissimilarity of 301 

the gut microbiome compared with the general population is associated with all-cause-, 302 

infection related-, cardiovascular related- and malignancy related mortality. This relationship 303 

was consistent with individual bacterial species in our study, but when compared to in the 304 

FINRISK study we were only able to confirm the observation of a lower mortality risk for 305 

SOTR with a higher abundance of Faecalibacterium prausnitzii.8 However, in the FINRISK 306 
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study Cox-regression analysis was performed on the genus level and SHOGUN was used 307 

for taxonomical classification while we performed our analysis on the species level and used 308 

MetaPhlAn for taxonomic profiling, potentially limiting the comparability between the two 309 

studies.14 Thus, further research using diverse populations and standardized methodology is 310 

needed to test whether our findings generalize to broader populations. 311 

We observed a lower abundance of four butyrate producing bacteria is linked to 312 

increased mortality; Gemmiger formicilis, Firmicutes bacterium CAG 83, Eubacterium hallii 313 

and Faecalibacterium prausnitzii.15–18 Butyrate is a short-chain fatty acid (SCFA) with a 314 

broad range of functionality including; microbiome modulation, anti-inflammatory activity, 315 

anti-obesity effect and antioxidant functions.19 It was previously observed that KTR and LTR 316 

have a lower abundance of butyrate producing bacteria compared with controls and that a 317 

lower abundance of butyrate producing bacteria is associated with a lower health related 318 

quality of life in KTR. 11,20–22 We now find a higher mortality risk for SOTR with a lower 319 

abundance of butyrate producing bacteria. These results suggest that reduced butyrate 320 

levels could potentially have a direct role in mortality for SOTR. A lower abundance of 321 

butyrate producing bacteria was associated with increased occurrence of graft-vs-host 322 

disease and transplantation related mortality in HSCT recipients.23 While measuring fecal 323 

SCFA was outside of the scope of the current study, future studies should evaluate fecal 324 

SCFA in relation with mortality. Our results warrant further studies into the role of butyrate 325 

producing bacteria and mortality in SOTR. The use of butyrate producing probiotics might 326 

offer a promising way to improve outcomes of solid organ transplantation.24 327 

 Strengths of the current study include a large sample size of the population of SOTR 328 

and the availability of a large control group from the Dutch population. With this dataset we 329 

were able to pinpoint a gut microbiome - mortality related signal in a group of SOTR with a 330 

high prevalence of dysbiosis. A limitation of the current study is that samples were not 331 

obtained at uniform time points after transplantation due to the cross-sectional nature of the 332 

cohort. Furthermore, we report results from an observational study which limits us to identify 333 

any causal relationships. It is possible that reverting dysbiosis will improve survival after 334 

transplantation, but it is also possible that the gut microbial signature that we observe is the 335 

effect of poor overall health and that the effect is not causal.  336 

 This study highlights a dysbiosis gut microbial - mortality signal in a population of 337 

SOTR with a high prevalence of dysbiosis. These findings are of interest for the transplant 338 

community as well as our general understanding of the relationship between the gut 339 

microbiome and health. Our results support emerging evidence showing that gut dysbiosis is 340 

predictive of long-term survival, indicating that gut-microbiome targeting therapies might 341 

improve patient outcomes although causal links should be identified first. 342 
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Methods  343 

 344 

Study design  345 

All SOTR cross-sectional gut microbiome data from the TransplantLines Biobank and Cohort 346 

study (Trial registration number NCT03272841) was included.13 The TransplantLines study 347 

has been previously described in detail and aimed to include all potential adult solid organ 348 

transplant recipients and kidney donors at the University Medical Center Groningen 349 

(UMCG), The Netherlands, starting from June 2015.13 We included 1337 fecal samples from 350 

SOTR. 8,208 subjects from the Dutch Microbiome Project were included to quantify the 351 

extent of dysbiosis and per species dysbiosis analysis.5 Fecal samples from TransplantLines 352 

and DMP were collected using the same procedures and processed with the same DNA 353 

extraction protocols (see below). All participants signed an informed consent form prior to 354 

sample collection. TransplantLines (METc 2014/077) and Lifelines (METc 2017/152) were 355 

approved by the local institutional ethics review board (IRB) from the UMCG. Both studies 356 

adhere to the UMCG Biobank Regulation and are in accordance with the World Medical 357 

Association (WMA) Declaration of Helsinki and the Declaration of Istanbul. 358 

 

Clinical data 359 

In the TransplantLines study, every transplant recipient was asked to fill in questionnaires 360 

and blood, urine and fecal samples were collected. A detailed description, including details 361 

regarding the rationale of the study design, inclusion/exclusion criteria and randomization of 362 

the TransplantLines study is given by Eisenga et al..13 In the current study, the primary 363 

outcome was overall survival. Clinical records were assessed to verify if a participant was 364 

alive or deceased, using a censoring date of January 1st 2022. If a patient was deceased, we 365 

assessed the cause of death and classified the cause of death into cardiovascular, infection, 366 

malignancy or other related mortality categories.  367 

 

Sample selection and gut microbiome data generation 368 

 369 

Fecal sample collection and subsequent processing 370 

Patients were asked to collect a fecal sample the day prior to the study visit. A FecesCatcher 371 

(TAG Hemi VOF, Zeijen, The Netherlands) was sent to the patients at home. Feces were 372 

collected and stored in appropriate tubes and frozen at home (at -18°C) immediately after 373 

collection. Frozen fecal samples were collected by UMCG personnel and stored at -80°C 374 

until DNA extraction.  375 
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DNA extraction 376 

Microbial DNA was extracted using QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany) 377 

according to the manufacturer’s instructions. The QIAcube (Qiagen, Germany) automated 378 

sample preparation system was used for this purpose. Library preparation was performed 379 

using NEBNext® Ultra™ DNA Library Prep Kit for Illumina for samples with total DNA 380 

amount lower than 200ng, as measured using Qubit 4 Fluorometer, while samples with DNA 381 

yield higher than 200ng were prepared using NEBNext® Ultra™ II DNA Library Prep Kit for 382 

Illumina®. Libraries were prepared according to the manufacturer’s instructions. 383 

Metagenomic shotgun sequencing was performed using Illumina HiSeq 2000 sequencing 384 

platform and generated approximately 8 Gb of 150 bp paired-end reads per sample (mean 385 

7.9 gb, st.dev 1.2 gb). Library preparation and sequencing were performed at Novogene and 386 

MGI. 387 

 

Metagenomic data processing 388 

Illumina adapters and low-quality reads (Phred score <30) were filtered out using KneadData 389 

(v0.5.1)25. Then Bowtie2 (v2.3.4.1)26 was used to remove reads aligned to the human 390 

genome (hg19). The quality of the reads was examined using FastQC toolkit (v0.11.7). 391 

Taxonomy alignment was done by MetaPhlAn3 (v3.7.2)26,27 with the database of marker 392 

genes mpa_v20_m200. Metacyc pathways were profiled by HUMAnN2 (v0.11.1)28. Bacterial 393 

virulence factors and antibiotic resistance genes were identified using shortBRED 394 

[shortbred_identify.py (v0.9.5) (51) and shortbred_quantify.py tool (v0.9.5)] against virulence 395 

factors of pathogenic bacteria (VFDB) database (http://www.mgc.ac.cn/VFs/main.htm) and 396 

comprehensive antibiotic resistance database (CARD) (https://card.mcmaster.ca/) 397 

separately. Samples were further excluded in case of an eukaryotic or viral abundance 398 

>25% of total microbiome content or a total read depth <10 million. In total, we identified 399 

1132 taxa (17 phyla, 27 class, 52 order, 98 family, 231 genera and 705 species). After 400 

filtering for a prevalence of 10% and relative abundance threshold of 0.01%, 141 species 401 

were left. Hereafter, total-sum normalization was applied. Analyses were performed using 402 

locally installed tools and databases on CentOS (release 6.9) on the high-performance 403 

computing infrastructure available at UMCG and University of Groningen (RUG). An 404 

example of scripts used for microbiome processing is available at 405 

https://github.com/GRONINGEN-MICROBIOME-CENTRE/TransplantLines.  406 

 

Statistical analysis 407 

Centered log-ratio normalization was used due to the compositional nature of the 408 

metagenomic sequencing data29. PCA was performed using Euclidean distance between clr-409 

transformed abundances (Aitchison distance30) of bacterial species. The Shannon diversity 410 
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index was calculated using the vegan31 package in R. Cox proportional hazard models using 411 

the R packages survival and rms was used including age, sex, BMI and years since 412 

transplantation to analyze the association between diversity metrics and mortality. We used 413 

the cox_wrapper function from Salosensaari et al. to analyze the relationship between the 414 

gut microbiome and mortality per species.8 To further analyze the relationship between 415 

dysbiosis and the gut microbiome we used gut microbiome data from the general population 416 

and reclassified species abundance for SOTR according to quantiles of the general 417 

population. Cox-regression analysis was performed on this newly classified data.5 To assess 418 

which ratio of bacteria best predicted mortality in SOTR we applied CoDaCore with mortality 419 

status as the dependent variable using balances as the log-ratio type, a lambda of 0 and a 420 

maximum for base learners of 1.32 The most predictive ratio was than calculated per SOTR 421 

and Cox-regression analysis was performed on this ratio. False discovery rate was applied 422 

as a correction for multiple testing in all analysis.33 423 

 

Data availability 424 

The raw microbiome sequencing data and basic phenotypes used in this study are available 425 

at the European Genome-Phenome Archive under accession numbers EGAD00001008907 426 

(https://ega-archive.org/datasets/EGAD00001008907), EGAS00001006257 (https://ega-427 

archive.org/studies/EGAS00001006257) and EGAS00001006258 (https://ega-428 

archive.org/studies/EGAS00001006258).  Due to patient confidentiality, the clinical datasets 429 

associated with the metagenomic datasets are available upon request to the University 430 

Medical Centre Groningen. Access to this clinical dataset requires a minimal access 431 

procedure consisting of a request per email (datarequest.transplantlines@umcg.nl) for a 432 

data access form. A response will be provided within two working weeks. This access 433 

procedure is to ensure that the data are being requested for research/scientific purposes 434 

only and thus complies with the informed consent signed by TransplantLines participants, 435 

which specifies that the collected data will not be used for commercial purposes. 436 
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