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Abstract

Healthcare data is highly sensitive and confidential, with strict regulations and
laws to protect patient privacy and security. However, these regulations impede the
access of healthcare data to a wider AI research community. As a result, AI health-
care research is often dominated by organisations with access to larger datasets
or limited to silo-based development, where models are trained and evaluated
on a limited population. Taking inspiration from the non-sensitive nature of the
summary statistics (mean, variance, etc.) of healthcare data, this paper proposes
geometrically-aggregated training samples (GATS) where each training sample
is a convex combination of multiple patients’ characteristics. Thus, mappings
from patients to any constructed sample are highly convoluted, preserving patient
privacy. We demonstrate that these "summary training units" provide effective
training on different tabular and time-series datasets (CURIAL, UCI Adult, and
eICU), and indeed behave as a summary of the original training datasets. This
approach takes important steps towards data accessibility and democratization.

1 Introduction

Healthcare data often contains sensitive and confidential information about individuals’ health
conditions, medical histories, and demographic information. As such, there are regulations and laws
imposing strict requirements on how this data can be collected, used, and shared, requiring that
appropriate measures be taken to protect its privacy and security.

These regulations frequently act as barriers to the democratization of healthcare data, making it
challenging for artificial intelligence (AI) researchers seeking access to healthcare data. Democra-
tizing healthcare data can bring several benefits, including: 1) creating global clinical models by
combining datasets from various locations and diverse populations, enhancing model generalizability
and robustness; 2) promoting collaboration between researchers and across healthcare organizations;
and 3) enhancing transparency and reproducibility of data-driven algorithms.

Irreversible de-identification or anonymization of electronic health records (EHRs) directly supports
data democratization by ensuring that de-identified EHRs cannot be linked to specific patients.
However, there is no foolproof de-identification method, and it is always possible to map so-called
de-identified EHRs back to individual patients (1; 2; 3).
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The objective of this study is to enhance the security of de-identified pre-processed clinical data
and facilitate data democratization without compromising the performance of predictive models.
We exploit the fact that summary statistics (mean, variance, etc.) commonly shared to describe
study cohorts, are not considered sensitive information in healthcare data (3). Since these summary
statistics represent population characteristics rather than any individual patient’s features, they are
not typically regarded as private or sensitive.

Based on this understanding, we introduce a novel method called "geometrically-aggregated training
samples (GATS)," which constructs training samples using convex combinations of multiple patients’
characteristics. Thus, importantly, GATS occupies the same data space as real training samples, en-
abling effective model training. This approach ensures that mappings from patients to any constructed
sample become highly intricate, thereby preserving patient privacy. Moreover, the proposed approach
can further be augmented with methods such as differential privacy, for further protection against
set-membership inference attacks.

To validate the distinctiveness of GATS from real training samples, we perform correlation-based
quality checks. We evaluate the efficacy of these "summary training units" by applying it to two
extensive and data-rich healthcare datasets, namely CURIAL and eICU (which are tabular, and time-
series, respectively). Additionally, we assess its performance on a non-healthcare dataset, specifically
the UCI Adult dataset, thereby demonstrating its generalizability across diverse domains.

2 Related Works

Previous research efforts aimed at addressing data privacy concerns have predominantly focused on
three main approaches: creating or utilizing synthetic datasets for model development, differential
privacy, and implementing decentralized and distributed model training techniques. However, in this
paper, our primary focus is on methods that facilitate data democratization. Consequently, we will
not delve into methods specifically related to decentralized and distributed model training, such as
federated learning.

Researchers have demonstrated that Generative Adversarial Networks (GANs) can generate large and
diverse synthetic data, representative of real-world data(4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14). Synthetic
data generation not only protects patient privacy but also offers a cost-effective means of training AI
models, especially when obtaining real-world data is challenging or expensive (e.g., medical images
or rare disease cases). Despite the benefits, concerns about data quality arise with synthetic data.
Designing, validating, and verifying synthetic data to accurately capture the complexity and variability
of real-world data can be a time-consuming and resource-intensive task, requiring expertise and
infrastructure. The lack of standardized measures and evaluation metrics for assessing synthetic data
quality, particularly in the healthcare domain (with its heterogeneity and variation across populations,
diseases, and settings), further complicates the process (15). Additionally, training GANs can be
challenging due to potential issues such as overfitting to training data(16; 17), resulting in insufficient
diversity in synthetic data; convergence instabilities (18), leading to poor quality synthetic data; and
mode collapse (19; 20), which limits the variety of samples produced by the generator, resulting in
reduced diversity in the synthetic data.

Differential privacy is an approach where a machine learning (ML) algorithm is designed to safe-
guard the privacy of individuals whose data is used for training. By integrating differential privacy
techniques into the data generation process, synthetic datasets can be created with privacy assurances
(10; 11; 13; 21). However, it’s important to note that although differential privacy provides statistical
privacy guarantees, the addition of significant noise can reduce the usefulness of the data for ML
development, especially when the original data itself may be inherently noisy(22). Moreover, the
absence of a standardized approach or metric for implementing differential privacy in ML poses
challenges in terms of implementation, evaluation, and practical deployment.

3 Proposed Method

Our proposed approach - GATS - utilizes summary statistics (such as mean and variance) to generate
training samples for data-driven algorithms. Each training unit represents the “summary” of real data
points, incorporating the essential information from the original dataset while maintaining the privacy
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of individual patients. This method addresses the limitations of previous approaches in the following
ways:

1. It contains real information (summary statistics), eliminating the need to create synthetic
data points (which typically requires substantial amounts of data, resources, and validation
efforts).

2. There is no requirement to introduce noise or apply masking/encoding techniques to the
data, thereby preserving its usability for learning tasks.

3. It preserves patient privacy, enabling data sharing and democratization by allowing institu-
tions and groups to exchange clinically-rich data.

To construct a new sample (x̂, ŷ) for class C, we randomly select XC
N = {xi 2 Rd}Ni=1 training

samples of class C and aggregate them using a random convex combination:

x̂ =
NX

i=1

xici,where 8i ci � 0,
NX

i=1

ci = 1. (1)

ŷ = C. (2)

The coefficients ci are randomly sampled while enforcing the simplical constraint.

Unsurprisingly, we found that class-wise sample generation leads to comparable performances as
training on original data at low values of N (i.e. when less patient samples are combined together);
however, steadily decreases in performance as the value of N increases (Section 5, Results). Thus, to
both improve class imbalances and regularization during training, we extend the above process to
generate mixed-class samples, where N training samples from different classes are aggregated to
form a new sample. The label of this constructed sample is determined by a majority voting rule on
the labels of N input examples. Majority voting is also used for any binary/discrete variables.

As such, for each new sample, (x̂, ŷ), x̂ is formed as before (Equation 1); and ŷ is now constructed as:

ŷ =argmax
C

NX

i=1

H
i,C

,where (3)

H
i,C =

⇢
1 if the label for sample i is class C
0 otherwise

(4)

GATS replaces the original feature vectors with their interpolated versions which are a function of N
randomly chosen original feature vectors. Similar to mixup augmentation (23) used in computer vision,
these interpolated vectors (along with the original examples) expand the training data distribution.
However, since we can’t use original examples to avoid patient data leakage, training on GATS-
generated examples is equivalent to training models on a perturbed version of the original data that
encourages implicit regularisation (23; 24; 25; 26), robustness against adversarial attacks (27) and
enhances the information bottleneck (28), providing implicit differential privacy to some extent.
Moreover, GATS can also be used to decrease the class imbalance and prevent overfitting to the
training data, as diverse minority class examples can be constructed by aggregating mixed-class
examples.

From a geometric standpoint, the N chosen training examples can be visualized as the vertices of
a simplex. According to the principles of simplex geometry, the constructed sample x̂ must reside
within the convex hull of this simplex. When implemented, it is possible for the constructed sample
to be situated near a real training example within the data space. To prevent such situations, we
eliminate constructed samples that demonstrate a higher correlation (above 0.75) with real training
examples. This additional check guarantees that the publicly released GATS-generated data bears no
resemblance to any genuine patient samples.

In practical terms, implementing GATS is a straightforward process involving three key parameters:

1. The parameter p determines the proportion of mixed-label samples to be used.
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2. The parameter q specifies the mixed-label ratio, which indicates the percentage of samples
from class C0 to mix in when generating a sample from class C1. For instance, if N = 100
and q = 0.25, then 25 samples of class C0 and 75 samples of class C1 will be utilized to
create a single GATS sample of class C1.

3. The parameter b defines the batch size employed during the execution of GATS. This
parameter can be particularly beneficial for managing memory constraints in situations
involving extremely large datasets.

By adjusting these three parameters, GATS can be easily implemented to suit specific requirements,
ensuring efficient execution with minimal computational impact (implementation times can be found
in the Supplementary Material).

4 Experimental Set-Up

4.1 Datasets

We demonstrate our method on two large and clinically-rich datasets (CURIAL, eICU); and addition-
ally, evaluate one non-healthcare dataset (UCI Adult).

CURIAL: The CURIAL datasets (29; 30) consist of anonymized electronic health record (EHR)
data (including demographic information, blood tests, and vital signs) from emergency departments
(EDs) across four independent United Kingdom (UK) National Health Service (NHS) Trusts. These
datasets are used for the binary classification task of diagnosing COVID-19.

As CURIAL contains five cohorts across four hospital trusts, we split the PUH cohort into training
and internal validation sets, and use the other four cohorts (UHB, BH, OUH "wave 2", and OUH
"wave 1") as external validation sets.

UCI Adult (Census Income): The UCI Adult dataset (31) contains demographic and employment-
related features of individuals, such as age, education level, marital status, occupation, and income.
It is used for the binary classification task of predicting whether an individual’s income exceeds
$50,000 per year.

eICU Collaborative Research Database (eICU-CRD): The eICU dataset (32; 33) is a large, multi-
center critical care database comprising of clinical data for ICU admissions from hospitals across
the United States. The database includes a variety of data types, such as vital signs, medications,
laboratory results, and demographics. In our experiments, this dataset was used for the binary
classification task for predicting patient discharge status.

Consistent with previous studies, we addressed any missing values using population median imputa-
tion, then standardized features to have a mean of 0 and a standard deviation of 1.

Detailed summary statistics, data availability statements, and ethics approval (where appropriate) can
be found in the Supplementary Material.

4.2 Metrics

Area under the receiver operator characteristic curve (AUROC) and area under the precision recall
curve (AUPRC) are reported, alongside 95% confidence intervals (CIs) based on 1,000 bootstrapped
samples taken from the test set. Tests of significance comparing the performance between models are
calculated by evaluating how many times one model performs better than another, across 1,000 pairs
of bootstrapped iterations.

4.3 Baseline and State-of-the-art Comparators

We compare GATS-trained neural networks and XGBoost models against equivalent baseline models
trained on the corresponding original datasets. This will allow for a 1:1 comparison evaluating the
utility of GATS for two types of models. We additionally compare our method to current state-of-the-
art methods for differentially private, synthetic data generation including marginal (MWEM), neural
network (PATE-CTGAN), and hybrid (QUAIL) synthesizers.
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Multiplicative Weights Exponential Mechanism (MWEM): The MWEM algorithm utilizes the
Multiplicative Weights technique to maintain and update an approximate distribution, through
analyzing differences between true and approximate datasets. It uses the Exponential Mechanism
(10) to identify the queries that provide the most information to the Multiplicative Weights algorithm.
MWEM has been shown produce differentially private synthetic data which match theoretical accuracy
guarantees.

Conditional Tabular GAN using Private Aggregation of Teacher Ensembles (PATE-CTGAN):

PATE-GAN (11) is a state-of-the-art privacy-preserving machine learning technique that combines two
methods: Generative Adversarial Networks (GANs) and Private Aggregation of Teacher Ensembles
(PATE). The GAN is used to generate synthetic data, while PATE is used to preserve the privacy
of the original data. Additionally, PATE-GAN is capable of generating mixed-type (continuous,
discrete, and binary) variables. We combine this with a conditional tabular GAN (CTGAN), which is
a GAN-based method specifically designed to improve synthetic data creation for tabular data (12).

Quailified Architecture to Improve Labeling (QUAIL): QUAIL (13) is a method that combines a
differentially private classifier and a differentially private synthesizer to generate synthetic data. It
fits the classifier on the original data, then uses the synthesizer to learn the distribution of the feature
columns from the original data. In our experiments, we use the PATE-CTGAN as the synthesizer
backbone. Synthetic data is then generated by sampling feature rows from the fitted synthesizer and
generating labels using the previously learned classifier. This approach allows practitioners to control
the privacy budget spent on classification versus learning the feature distribution.

It should be noted that MWEM was only tested on the Adult dataset as (10) specifically focused
on categorical attributes. Since CURIAL and eICU datasets contain a diverse range of continuous
variables, MWEM was not tested on them.

Furthermore, we reference baselines and state-of-the-art results reported in other studies, which
utilized the same datasets as presented in this work.

4.4 Training Outline

Each model in the study underwent a standardized training and evaluation process. The training set
was utilized for various stages, including model development, hyperparameter selection, and model
training. A separate validation set was used for continuous validation. Finally, held-out test sets were
used to assess the performance of all finalized models.

During model training, the data used consisted of samples generated by the GATS method, while the
evaluation of models was conducted on the original, real datasets. All baselines and state-of-the-art
comparisons are also tested on real data. Results from baseline and state-of-the-art models are
implemented and trained ourselves unless otherwise referenced.

5 Results

5.1 CURIAL Datasets

5.1.1 GATS Distributions

By comparing the feature distributions of the original data with the data generated by GATS, we
can observe that the distribution of features of constructed examples behave like the summary of
the distribution of original features, indicating that GATS effectively are the statistical summary of
the original dataset (see Figure 1). For example, for oxygen saturation, the median and IQR for the
original and GATS-generated datasets are both 0.142 (-0.110-0.393); for CRP, it’s -0.477 (-0.583-
0.109) and -0.437(-0.570-0.189) for the original and GATS-generated datasets, respectively; and for
haematocrit, it’s 0.086 (-0.551-0.657) and 0.070 (-0.469-0.576) for the original and GATS-generated
datasets, respectively. Additionally, we notice that the GATS-generated samples tend to bring the
features closer to their mean, which can be seen as an implicit form of regularization (25). It should
be noted that GATS was performed on the standardized datasets. Exact values may differ slightly
between different implementations of GATS, as samples and coefficients are randomly sampled.
While the original and GATS-generated datasets exhibit similarities in their summary statistics, all
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features displayed a significant difference in population medians (as determined by the Kruskal-Wallis
test, with p < 0.05).

Figure 1: Feature distribution comparison of the original patient dataset and the GATS-generated
dataset.

In addition, we employed t-Stochastic Neighbor Embedding (t-SNE) to visualize a lower-dimensional
representation of both the original data and the GATS-generated data for both the COVID-19 positive
and negative subgroups (refer to Figure 2). The t-SNE plots reveal the presence of two distinct
clusters, indicating that as claimed, the GATS-generated data is indeed the perturbed version of the
original data.

Figure 2: t-SNE comparison of the original patient dataset and the GATS-generated dataset, for
COVID-19 Negative (a) and Positive (b) samples.

This is further confirmed by the distribution of correlation coefficients comparing original patient
samples to GATS-generated samples (for N=5 and N=100), whereby the vast majority of original
samples have a correlation magnitude of < 0.5 to GATS samples (Figure 3). These figures confirm
that the privacy of individual patients is preserved through using GATS, even at small values of N .

Figure 3: Correlations between same- and mixed-label GATS-generated samples for (a) N=5, and (b)
N=100. Red dotted-lines mark magnitudes of 0.5 correlation.

5.1.2 Classification Results

Using the CURIAL datasets, we assessed the effectiveness of training models using class-wise
GATS compared to mixed-label GATS data. Figure 4 (a) demonstrates that when solely utilizing
class-wise GATS data without any mixed-label samples, the predictive performance (using a neural
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network) generally decreased as the privacy level (i.e., the number of combined patients, N ) increased.
However, Figure 4 (b) illustrates that incorporating mixed-label GATS data (with parameters p=0.25
and q=0.3) into the training process maintained consistent performance, comparable to a model
trained on the original dataset (baseline performance on the original dataset is represented by N=1).
The difference in accuracy between training on mixed-label GATS and same-label GATS was found to
be statistically significant (p < 0.0001) for all values of N . This trend was consistent across all five
test sets. Similar outcomes were obtained when training an XGBoost model, further validating that
the GATS-generated data retained the essential information from the original dataset. Comprehensive
numerical results for the neural network and XGBoost models can be found in the Supplementary
Material.

Figure 4: AUROC performances using a neural network-based model, alongside 95% confidence
intervals, for different values of N for (a) class-wise GATS and (b) mixed-class GATS (p=0.25, q=0.3).
Full numerical results for both AUROC and AUPRC can be found in the Supplementary Material.

5.1.3 Ablation Study

We additionally studied the effects of the key hyperparameters for GATS, at patient combination
levels of N=5, N=50, and N=100. We evaluate the mixed label ratio q, the batch size b, and the
proportion of mixed label GATS used in training p.

Figure 5 shows the validation AUROC across different privacy levels, N . For different mixed label
ratios, q, we present results for constructing COVID-19 positive samples using a mixture of both
COVID-19 positive and negative patients. The COVID-19 positive class was selected due to its status
as the minority class within the datasets, which increases the likelihood of overfitting. Generally, the
performance remains relatively stable at N=5 across all five test sets. However, for larger N values,
it is observed that utilizing a higher proportion of COVID-19 negative patients in each mixed-label
sample enhances performance. Similarly, at higher N values, increasing the proportion of mixed-label
GATS data within the overall training set, p, appears to have a slight positive impact on predictive
performance. These performance improvements are expected since the mixed-label samples (both
within and across individual GATS-generated samples), contribute to increased regularization during
training. Batch size does not significantly affect the predictive performance of the generated samples;
however, this may have impact on much larger datasets (e.g. � 105 samples).

5.1.4 Baseline and State-of-the-art Comparisons

Table 1 presents results of GATS training sets generated using different values of N . Results are for
GATS-trained neural network models, as this was the best performing baseline we trained. Results for
corresponding XGBoost models were similar, and can be found in the Supplementary Material.

As presented in Table 1, GATS with N=5 consistently outperformed state-of-the-art and baseline
comparators in terms of AUROC performance across all test sets. Even when using GATS generated
at higher values of N , the models still achieve comparable performances to baselines trained on the
original data. For instance, when N=75, the maximum decrease in AUROC is only 0.013 compared
to the corresponding neural network baseline. In contrast, the classification results obtained from
synthetic data generated by state-of-the-art QUAIL and PATE-CTGAN models did not surpass the
performance of GATS across all test sets and values of N .
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Figure 5: Ablation study of the mixed label ratio q, the batch size b, and the proportion of mixed label
GATS added in training p. Performance metric shown is AUROC. Full numerical results, alongside
95% confidence intervals can be found in the Supplementary Material.

5.2 eICU-CRD

In the case of the eICU dataset, we observed a general decrease in predictive performance as the
privacy parameter N increased when using only class-wise GATS. However, similar to our previous
findings, the introduction of mixed-label GATS led to consistent and comparable performance to the
baseline model trained on the original dataset. This pattern was observed for both neural network
and XGBoost models (complete numerical results can be found in the Supplementary Material). The
difference in accuracy between training on mixed-label GATS and same-label GATS was statistically
significant (p<0.0001) for all values of N .

Table 2 presents the results of training models on GATS data, generated with different values of N ,
using p=0.25 and q=0.3. The reported results are for XGBoost models, which performed the best
among the baseline models. Similar results were obtained for the corresponding neural network
models, and they can be found in the Supplementary Material.

Across different values of N , the models trained on GATS performed consistently. Although slightly
lower, the AUROC values were only 0.012-0.015 lower compared to the XGBoost baseline, indicating
that the GATS data captures the essential information from the original dataset.

When comparing results to synthetic data generated by state-of-the-art QUAIL and PATE-CTGAN
models, the performance of GATS consistently outperformed them across all values of N .
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Table 1: Baseline and state-of-the-art comparisons of AUROC performances (alongside 95% CIs,
unless otherwise stated), for the CURIAL datasets. Red and blue values denote best and second best
scores, respectively. Comparator studies marked with (*) considered data privacy-preservation.

Method PUH UHB BH OUH "wave 2" OUH "wave 1"

GATS (N=5) 0.897(0.881-0.912) 0.871(0.853-0.886) 0.939(0.919-0.955) 0.881(0.873-0.889) 0.860(0.847-0.873)

GATS (N=25) 0.891(0.874-0.908) 0.863(0.847-0.880) 0.933(0.914-0.950) 0.877(0.869-0.885) 0.848(0.834-0.862)
GATS (N=50) 0.888(0.869-0.905) 0.865(0.847-0.882) 0.910(0.882-0.933) 0.876(0.868-0.884) 0.851(0.837-0.866)

GATS (N=75) 0.879(0.861-0.897) 0.850(0.832-0.867) 0.936(0.915-0.954) 0.867(0.858-0.875) 0.837(0.822-0.853)

State-of-the-art comparisons (synthetic data)

QUAIL 0.823(0.801-0.845) 0.821(0.802-0.839) 0.893(0.868-0.916) 0.812(0.802-0.820) 0.789(0.772-0.806)
PATE-CTGAN 0.573(0.550-0.599) 0.583(0.560-0.605) 0.482(0.443-0.524) 0.607(0.596-0.618) 0.607(0.589-0.625)

Baseline comparisons (original data)

Neural Network 0.892(0.875-0.908) 0.859(0.840-0.876) 0.924(0.901-0.943) 0.874(0.865-0.882) 0.850(0.835-0.865)
XGBoost 0.892(0.873-0.908) 0.841(0.823-0.859) 0.914(0.890-0.933) 0.856(0.847-0.865) 0.818(0.802-0.834)

XGBoost (30) 0.872(0.863-0.882) 0.858(0.838-0.878) 0.881(0.851-0.912) 0.878(SD 0.001)

*Neural Network (34) 0.857 0.864 0.861
Neural Network (35) 0.867(0.857-0.877) 0.867(0.845-0.888) 0.894(0.859-0.929) 0.866(0.855-0.876)

Reinforcement Learning (36) 0.831(0.819-0.842) 0.837(0.814-0.861) 0.867(0.829-0.906) 0.861(0.850-0.871)
*Federated Learning (37) 0.876(0.865-0.886) 0.917(0.893-0.942) 0.872(0.862-0.882)

Table 2: Baseline and state-of-the-art comparisons of AUROC and AUPRC performances (alongside
95% CIs, unless otherwise stated), for the eICU dataset. Red and blue values denote best and second
best scores, respectively.

Method AUROC AUPRC
GATS (N=5) 0.864(0.857-0.872) 0.495(0.475-0.517)

GATS (N=25) 0.864(0.857-0.872) 0.494(0.474-0.516)
GATS (N=50) 0.864(0.856-0.872) 0.499(0.478-0.52)
GATS (N=75) 0.864(0.857-0.872) 0.496(0.475-0.519)

GATS (N=100) 0.867(0.860-0.875) 0.501(0.482-0.522)
State-of-the-art comparisons (synthetic data)

QUAIL 0.715(0.704-0.727) 0.207(0.195-0.220)
PATE-CTGAN 0.595(0.584-0.608) 0.154(0.144-0.167)

Baseline comparisons (original data)
Neural Network 0.851(0.843-0.860) 0.473(0.453-0.495)

XGBoost 0.879(0.872-0.886) 0.527(0.507-0.549)

Logistic Regression (LASSO) (38) 0.820 0.208
BiLSTM (39) 0.866 (0.66) 0.552

5.3 Adult (Census Income)

When applying GATS to the Adult dataset, we observed a decrease in predictive performance as
privacy, N , increased when using class-wise GATS exclusively. However, once mixed-label GATS
samples were incorporated, the classifier achieved consistent performance, comparable to a baseline
model trained on the original dataset. This pattern was observed for both neural network and XGBoost
models, and detailed numerical results can be found in the Supplementary Material. The difference
in accuracy between training on mixed-label GATS and same-label GATS was statistically significant
(p<0.0001) for all values of N .

Table 3 presents GATS-based (results presented use p=0.4, and q=0.3) results for XGBoost models,
as this was the best performing baseline achieved. Results for GATS-trained neural network models
were similar, and can be found in the Supplementary Material. Using GATS-generated data, models
appear to perform consistently across varying values of N . AUROC scores were only 0.015-0.027
lower for all GATS-trained models compared to the XGBoost baseline, confirming that GATS data
retains the underlying information from the original dataset.

Furthermore, our findings showed that GATS outperformed QUAIL, MWEM, and PATE-CTGAN, as
well as other GAN models trained on the same dataset, across all values of N .

6 Conclusion and Discussion

In this paper, we introduce a novel framework called GATS that generates informative training
samples by combining features from multiple patients. Thus, the fabricated samples exist within the
same data space as the real training samples, enabling effective model training. These generated
samples can be seen as a "summary" of multiple patients (as opposed to "synthetic" data) and may not
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Table 3: Baseline and state-of-the-art comparisons of AUROC and AUPRC performances (alongside
95% CIs, unless otherwise stated), for the Adult dataset. Red and blue values denote best and second
best scores, respectively.

Method AUROC AUPRC
GATS (N=5) 0.909(0.904-0.915) 0.789(0.774-0.802)

GATS (N=25) 0.911(0.905-0.917) 0.790(0.776-0.804)
GATS (N=50) 0.913(0.907-0.919) 0.797(0.784-0.811)
GATS (N=75) 0.913(0.907-0.919) 0.796(0.783-0.810)

GATS (N=100) 0.913(0.908-0.919) 0.798(0.785-0.811)

State-of-the-art comparisons (synthetic data)
QUAIL 0.708(0.697-0.720) 0.448(0.429-0.468)
MWEM 0.599(0.586-0.610) 0.286(0.274-0.299)

PATE-CTGAN 0.506(0.503-0.509) 0.236(0.227-0.244)
IT-GAN (14) 0.86
CTGAN (12) 0.85 (Accuracy)

Baseline comparisons (original data)
Neural Network 0.888(0.882-0.895) 0.736(0.722-0.753)

XGBoost 0.928(0.922-0.933) 0.826(0.814-0.839)

be subject to the same level of sensitivity as individual patient data, potentially alleviating concerns
related to data privacy regulations. The difficulty in mapping a generated sample to a specific patient
enables data sharing and represents an initial step towards healthcare data democratization.

One important consideration is that the performance of GATS is influenced by its hyperparameters, as
indicated by our findings. The results clearly demonstrate that the choice of N, p, and q significantly
impacts performance. Therefore, future research can explore practical methods for setting these
hyperparameters without the necessity of conducting an exhaustive hyperparameter sweep or grid
search, which can be computationally demanding. Particularly in environments such as hospitals
where computational resources may be limited, the GATS method may add complexity to the data
processing stage. Some viable alternatives include employing random search, which entails randomly
selecting hyperparameters from predefined ranges. This approach is more efficient than a grid
search as it explores a wider range while requiring fewer iterations. Another option is to leverage
libraries that offer automated tools for hyperparameter optimization. These libraries often incorporate
sophisticated techniques like Bayesian optimization or evolutionary algorithms. Nonetheless, it’s
essential to acknowledge that determining the optimal hyperparameters may vary based on the specific
problem, the particular dataset being used, and the algorithm under consideration.

Similarly, it would be valuable to gain insights into the scenarios where GATS demonstrate optimal
performance and where it encounters limitations, extending our analysis beyond hyperparameters.
Considering real datasets, which often exhibit noise, outliers, and missing data that necessitate
imputation, it will be important to investigate how would these issues affect the performance of GATS.
For example, could outliers significantly disrupt the convex combination? It would be beneficial
to assess such considerations from a practical, real-world usage perspective. Particularly in the
domain of medical data, there exists a spectrum of case severities. Critical cases, such as those
involving patients with various comorbidities, can introduce noticeable fluctuations in data values
and deviations from the mean or median. While extreme values can indeed provide valuable insights,
it is essential to manage them appropriately to prevent any adverse impacts on model performance. In
our conducted experiments, we adhered to the same data preprocessing protocol as employed in prior
studies, which did not involve any extreme or improbable outliers. Therefore, for future research, it
may prove advantageous to explore additional filtering and preprocessing steps aimed at identifying
anomalies and enhancing the dataset’s quality prior to commencing model development and testing.

Another limitation of this study lies in the depth of fidelity assessment. Synthetic data evaluation
typically encompasses both utility (pertaining to downstream performance) and fidelity (pertaining
to resemblance to real data). In this paper, the primary emphasis is placed on utility and practical
application within experiments. However, in contexts involving medical data, where concerns
regarding interpretability are likely, fidelity assumes paramount significance. Through the process of
summarizing the original data into statistics like mean and variance, the proposed approach (GATS)
may fail to capture the intricate details and subtleties inherent in the original dataset. While summary
statistics offer a high-level overview of the data, they may fall short in encapsulating the full spectrum
of diversity and complexity present in individual patient information. Additionally, since the approach
generates samples that are combinations, there is potentially a loss of interpretability. For instance, it
can become challenging to ensure that the generated samples incorporate feature combinations that
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align with clinical plausibility. Although the concept of using "summary statistics" maintains the
distribution of the real data, it will still be important to further validate the validity and realism of
the samples generated. Nevertheless, in situations where the goal is to train models or comprehend
the data distributions used in model training, sharing GATS-generated data may suffice. This can
enable external researchers to replicate studies or gain insights into data disparities during domain
adaptation.

To evaluate the distinction between GATS-generated samples and the original data in the context of
privacy analysis, we employed empirical techniques such as correlation analysis and t-SNE analysis.
However, it is imperative to conduct additional experiments in order to develop a more comprehensive
understanding of the potential privacy risks and vulnerabilities associated with the proposed approach.
For instance, it would be beneficial to explore tasks such as reverse-engineering GATS-generated
samples to ascertain individual patients’ data or subjecting GATS to adversarial attacks. These specific
types of attacks fall outside the scope of our current investigations, as our primary focus was directed
towards ensuring that samples generated based on "summary statistics" could not be traced back to
individual patient samples.

Furthermore, numerous research initiatives have directed their efforts towards mitigating data pri-
vacy concerns through decentralized and distributed model training approaches. In our study, we
concentrated primarily on promoting data democratization, allowing data to be shared, a concept that
decentralized training aims to circumvent. Nevertheless, techniques like federated learning, which
involve decentralized and distributed model training, have exhibited impressive performance while
enhancing privacy assurances. Consequently, future experiments could explore the integration of
various privacy-preserving methods, including differential privacy, GATS, and federated learning,
to reinforce privacy and facilitate collaborative approaches in the development of machine learning
tools.

In this study, we delve into and illustrate the practicality of GATS within the medical domain,
specifically focusing on its application to electronic health records, which are organized in a tabular
data format. Furthermore, we showcase its efficacy using the Adult Census dataset, which falls outside
the realm of the medical domain but is also structured as tabular data. However, it’s important to
acknowledge that both healthcare and non-healthcare domains encompass a variety of data structures,
including images, text, and time-series data. In these alternative scenarios, the application of
GATS may present challenges due to the potential complexity in interpreting the combined samples
produced. For instance, determining how to meaningfully merge doctor’s written notes through
a convex combination or how to combine multiple images in a manner that maintains medical
plausibility can prove to be non-trivial tasks. Thus, although GATS can be applied to different fields,
more consideration needs to be given to the data modality being considered. Furthermore, it could be
of interest to assess the performance of GATS on unlabeled datasets, particularly in the context of
unsupervised learning tasks, an area we have yet to explore, having demonstrated GATS on supervised
learning tasks.

Despite the innovative approach to safeguarding privacy, there may still exist regulatory concerns
and obstacles to surmount, given the stringent laws and regulations governing healthcare data. If
mishandled, the convolution of patient data could inadvertently lead to unintended consequences,
such as the creation of training samples that do not accurately represent specific patient demographics.
Moreover, it’s worth emphasizing that while this paper provides a technical solution to address
certain legal aspects, it remains essential to involve legal experts and regulatory authorities for a
comprehensive assessment of the proposed approach. Such an analysis would serve to uncover any
potential legal issues and ensure alignment with prevailing data privacy laws, thereby confirming
that the samples generated by GATS do not qualify as sensitive information within the current legal
framework.

Contributions

JY conceived and ran the experiments. JY and AT wrote and implemented the code. JY and AAS
preprocessed the COVID-19 datasets. JY preprocessed the eICU and Adult datasets. All authors
revised the manuscript.

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297460doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.24.23297460
http://creativecommons.org/licenses/by/4.0/


Acknowledgements

We express our sincere thanks to all patients and staff across the four participating NHS trusts;
Oxford University Hospitals NHS Foundation Trust, University Hospitals Birmingham NHS Trust,
Bedfordshire Hospitals NHS Foundations Trust, and Portsmouth Hospitals University NHS Trust.

Funding

This work was supported by the Wellcome Trust/University of Oxford Medical & Life Sciences
Translational Fund (Award: 0009350), and the Oxford National Institute of Research (NIHR) Biomed-
ical Research Centre (BRC). JY is a Marie Sklodowska-Curie Fellow, under the European Union’s
Horizon 2020 research and innovation programme (Grant agreement: 955681, "MOIRA"). AAS is
an NIHR Academic Clinical Fellow (Award: ACF-2020-13-015). DAC was supported by a Royal
Academy of Engineering Research Chair, an NIHR Research Professorship, the InnoHK Hong Kong
Centre for Cerebro-cardiovascular Health Engineering (COCHE), and the Pandemic Sciences Institute
at the University of Oxford. The funders of the study had no role in study design, data collection, data
analysis, data interpretation, or writing of the manuscript. The views expressed in this publication are
those of the authors and not necessarily those of the funders.

Ethics

United Kingdom National Health Service (NHS) approval via the national oversight/regulatory body,
the Health Research Authority (HRA), has been granted for use of routinely collected clinical data to
develop and validate artificial intelligence models to detect Covid-19 (CURIAL; NHS HRA IRAS
ID: 281832).

Declarations and Competing Interests

DAC reports personal fees from Oxford University Innovation, personal fees from BioBeats, personal
fees from Sensyne Health, outside the submitted work.

Data Availability

Data from UHB, PUH and BH are available on reasonable request to the respective trusts,
subject to HRA requirements. Data from OUH studied here are available from the Infections in
Oxfordshire Research Database (https://oxfordbrc.nihr.ac.uk/research-themes/
modernising-medical-microbiology-and-big-infection-diagnostics/
infections-in-oxfordshire-research-database-iord/), subject to an application
meeting the ethical and governance requirements of the database. Data from UHB, PUH and BH are
available on reasonable request from the respective trusts, subject to HRA requirements.

The eICU Collaborative Research Database is available online at https://www.physionet.org/
content/eicu-crd/2.0/.

The UCI Adult (Census Income) dataset is available online at https://archive.ics.uci.edu/
dataset/2/adult.

Code Availability

Code for this will be available upon publication.

References

[1] El Emam, K., Rodgers, S., & Malin, B. (2015). Anonymising and sharing individual patient
data. bmj, 350.

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297460doi: medRxiv preprint 

https://oxfordbrc.nihr.ac.uk/research-themes/modernising-medical-microbiology-and-big-infection-diagnostics/infections-in-oxfordshire-research-database-iord/
https://oxfordbrc.nihr.ac.uk/research-themes/modernising-medical-microbiology-and-big-infection-diagnostics/infections-in-oxfordshire-research-database-iord/
https://oxfordbrc.nihr.ac.uk/research-themes/modernising-medical-microbiology-and-big-infection-diagnostics/infections-in-oxfordshire-research-database-iord/
https://www.physionet.org/content/eicu-crd/2.0/
https://www.physionet.org/content/eicu-crd/2.0/
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/2/adult
https://doi.org/10.1101/2023.10.24.23297460
http://creativecommons.org/licenses/by/4.0/


[2] Henriksen-Bulmer, J., & Jeary, S. (2016). Re-identification attacks—A systematic literature
review. International Journal of Information Management, 36(6), 1184-1192.

[3] Vokinger, K. N., Stekhoven, D. J., & Krauthammer, M. (2020). Lost in anonymization—A data
anonymization reference classification merging legal and technical considerations. Journal of
Law, Medicine & Ethics, 48(1), 228-231.

[4] Dash, S., Yale, A., Guyon, I., & Bennett, K. P. (2020). Medical time-series data generation
using generative adversarial networks. In Artificial Intelligence in Medicine: 18th International
Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA,
August 25–28, 2020, Proceedings 18 (pp. 382-391). Springer International Publishing.

[5] Zhang, C., Kuppannagari, S. R., Kannan, R., & Prasanna, V. K. (2018, October). Generative
adversarial network for synthetic time series data generation in smart grids. In 2018 IEEE
international conference on communications, control, and computing technologies for smart
grids (SmartGridComm) (pp. 1-6). IEEE.

[6] Torfi, A., & Fox, E. A. (2020). CorGAN: Correlation-capturing convolutional generative adver-
sarial networks for generating synthetic healthcare records. arXiv preprint arXiv:2001.09346.

[7] Hazra, D., & Byun, Y. C. (2020). SynSigGAN: Generative adversarial networks for synthetic
biomedical signal generation. Biology, 9(12), 441.

[8] Yoon, J., Jarrett, D., & Van der Schaar, M. (2019). Time-series generative adversarial networks.
Advances in neural information processing systems, 32.

[9] Delaney, A. M., Brophy, E., & Ward, T. E. (2019). Synthesis of realistic ECG using generative
adversarial networks. arXiv preprint arXiv:1909.09150.

[10] Hardt, M., Ligett, K., & McSherry, F. (2012). A simple and practical algorithm for differentially
private data release. Advances in neural information processing systems, 25.

[11] Jordon, J., Yoon, J., & Van Der Schaar, M. (2019, May). PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International conference on learning representations.

[12] Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular
data using conditional gan. Advances in Neural Information Processing Systems, 32.

[13] Rosenblatt, L., Liu, X., Pouyanfar, S., de Leon, E., Desai, A., & Allen, J. (2020). Dif-
ferentially private synthetic data: Applied evaluations and enhancements. arXiv preprint
arXiv:2011.05537.

[14] Lee, J., Hyeong, J., Jeon, J., Park, N., & Cho, J. (2021). Invertible tabular GANs: Killing two
birds with one stone for tabular data synthesis. Advances in Neural Information Processing
Systems, 34, 4263-4273.

[15] Yang, J., Soltan, A. A., & Clifton, D. A. (2022). Machine learning generalizability across
healthcare settings: insights from multi-site COVID-19 screening. npj Digital Medicine, 5(1),
69.

[16] Yazici, Y., Foo, C. S., Winkler, S., Yap, K. H., & Chandrasekhar, V. (2020, October). Empirical
analysis of overfitting and mode drop in gan training. In 2020 IEEE International Conference
on Image Processing (ICIP) (pp. 1651-1655). IEEE.

[17] Li, Z., Wu, X., Xia, B., Zhang, J., Wang, C., & Li, B. (2022). A comprehensive survey on
data-efficient GANs in image generation. arXiv preprint arXiv:2204.08329.

[18] Mescheder, L., Geiger, A., & Nowozin, S. (2018, July). Which training methods for GANs do
actually converge?. In International conference on machine learning (pp. 3481-3490). PMLR.

[19] Bau, D., Zhu, J. Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., & Torralba, A. (2019).
Seeing what a gan cannot generate. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (pp. 4502-4511).

13

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297460doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.24.23297460
http://creativecommons.org/licenses/by/4.0/


[20] Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., & Sutton, C. (2017). Veegan: Reducing
mode collapse in gans using implicit variational learning. Advances in neural information
processing systems, 30.

[21] Fang, M. L., Dhami, D. S., & Kersting, K. (2022, July). Dp-ctgan: Differentially private
medical data generation using ctgans. In Artificial Intelligence in Medicine: 20th International
Conference on Artificial Intelligence in Medicine, AIME 2022, Halifax, NS, Canada, June
14–17, 2022, Proceedings (pp. 178-188). Cham: Springer International Publishing.

[22] Garrido, G. M., Liu, X., Matthes, F., & Song, D. (2022). Lessons Learned: Surveying the
Practicality of Differential Privacy in the Industry. arXiv preprint arXiv:2211.03898.

[23] Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412.

[24] Wei, C., Kakade, S., & Ma, T. (2020, November). The implicit and explicit regularization
effects of dropout. In International conference on machine learning (pp. 10181-10192). PMLR.

[25] Carratino, L., Cissé, M., Jenatton, R., & Vert, J. P. (2020). On mixup regularization. arXiv
preprint arXiv:2006.06049.

[26] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1), 1929-1958.

[27] Swenor, A., & Kalita, J. (2022). Using random perturbations to mitigate adversarial attacks on
sentiment analysis models. arXiv preprint arXiv:2202.05758.

[28] Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. arXiv
preprint physics/0004057.

[29] Soltan, A. A., Kouchaki, S., Zhu, T., Kiyasseh, D., Taylor, T., Hussain, Z. B., ... & Clifton,
D. A. (2021). Rapid triage for COVID-19 using routine clinical data for patients attending
hospital: development and prospective validation of an artificial intelligence screening test.
The Lancet Digital Health, 3(2), e78-e87.

[30] Soltan, A. A., Yang, J., Pattanshetty, R., Novak, A., Yang, Y., Rohanian, O., ... & Muthusami,
V. (2022). Real-world evaluation of rapid and laboratory-free COVID-19 triage for emergency
care: external validation and pilot deployment of artificial intelligence driven screening. The
Lancet Digital Health, 4(4), e266-e278.

[31] Kohavi, R., & Becker, B. (1996). Uci adult data set. UCI Meachine Learning Repository, 5.

[32] Pollard, T. J., Johnson, A. E., Raffa, J. D., Celi, L. A., Mark, R. G., & Badawi, O. (2018). The
eICU Collaborative Research Database, a freely available multi-center database for critical
care research. Scientific data, 5(1), 1-13.

[33] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., ...
& Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new
research resource for complex physiologic signals. circulation, 101(23), e215-e220.

[34] Rohanian, O., Kouchaki, S., Soltan, A., Yang, J., Rohanian, M., Yang, Y., & Clifton, D. (2022).
Privacy-aware Early Detection of COVID-19 through Adversarial Training. IEEE Journal of
Biomedical and Health Informatics.

[35] Yang, J., Soltan, A. A., Eyre, D. W., Yang, Y., & Clifton, D. A. (2023). An adversarial training
framework for mitigating algorithmic biases in clinical machine learning. npj Digital Medicine,
6(1), 55.

[36] Yang, J., El-Bouri, R., O’Donoghue, O., Lachapelle, A. S., Soltan, A. A., & Clifton, D. A.
(2022). Deep Reinforcement Learning for Multi-class Imbalanced Training. arXiv preprint
arXiv:2205.12070.

14

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297460doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.24.23297460
http://creativecommons.org/licenses/by/4.0/


[37] Soltan, A. A., Thakur, A., Yang, J., Chauhan, A., D’Cruz, L. G., Dickson, P., ... & Clifton, D.
A. (2023). Scalable federated learning for emergency care using low cost microcomputing:
Real-world, privacy preserving development and evaluation of a COVID-19 screening test in
UK hospitals. medRxiv, 2023-05.

[38] Feng, S., & Dubin, J. A. (2021). Identifying early-measured variables associated with APACHE
IVa providing incorrect in-hospital mortality predictions for critical care patients. Scientific
Reports, 11(1), 1-13.

[39] Sheikhalishahi, S., Balaraman, V., & Osmani, V. (2020). Benchmarking machine learning
models on multi-centre eICU critical care dataset. Plos one, 15(7), e0235424.

15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297460doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.24.23297460
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Works
	Proposed Method
	Experimental Set-Up
	Datasets
	Metrics
	Baseline and State-of-the-art Comparators
	Training Outline

	Results
	CURIAL Datasets
	GATS Distributions
	Classification Results
	Ablation Study
	Baseline and State-of-the-art Comparisons

	eICU-CRD
	Adult (Census Income)

	Conclusion and Discussion
	Software Packages and Implementation
	Datasets
	CURIAL Datasets
	ICU Dataset
	Adult (Census Income) Dataset

	Model Architectures
	Results
	CURIAL datasets
	eICU dataset
	Adult (Census Income) dataset

	Code implementation

