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Abstract 

Clinical studies investigating the benefits of beta-lactam therapeutic drug monitoring (TDM) among 

critically ill patients have been hindered by small patient group, variability between studies, patient 

heterogeneity and inadequate use of TDM. Accordingly, definitive conclusions regarding the efficacy of 

TDM have remained elusive. To address these challenges, we propose an innovative approach that 

leverages data-driven methods to unveil the concealed connections between therapy effectiveness and 

patient data. Our findings reveal that machine learning algorithms can identify informative features that 

distinguish between healthy and sick states. These hold promise as potential markers for disease 

classification and severity stratification, as well as offering a continuous and data-driven 

"multidimensional" SOFA score. The implementation of TDM-guided therapy was associated with 

improved recovery rates particularly during the critical 72 hours after sepsis onset. Providing the first-ever 

quantification of the impact of TDM, our approach has the potential to revolutionize the way TDM applied 

in critical care. 
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Sepsis is a life-threatening condition that poses significant challenges to healthcare professionals due to 

its difficulty in early detection and management, leading to a high mortality rate. Intravenous antibiotic 

therapy, including the commonly used beta-lactam class of antibiotics, is a crucial element in the 

management of sepsis1. Antibiotic administration should start as soon as possible, ideally within the first 

hour of diagnosis and after clinical cultures are obtained2. Early recognition and optimized treatment of 

sepsis can improve the chances of patient survival. Due to the heterogeneous presentation of sepsis, 

however, early recognition is often challenging. This can lead to delayed care, increasing the risk of organ 

failure and negatively impacting patient outcomes. 

Due to acute disease processes and treatment interventions associated with sepsis and its management 

in the intensive care unit (ICU), critically ill patients often experience altered pharmacokinetics (PK)3–5. 

This can result in highly variable and unpredictable exposures of beta-lactam antibiotics6. Moreover, due 

to antibiotic usage being higher in the ICU compared to other areas of the hospital and in the community, 

pathogens isolated in ICU patients are at risk of reduced antibiotic susceptibility. This adds to the difficulty 

in ensuring beta-lactam antibiotic exposures attain desired pharmacodynamic (PD) targets7. Therapeutic 

drug monitoring (TDM) offers a potential solution to ensure antibiotic concentrations are maintained at 

target exposures throughout the treatment period. This intervention may help improve treatment failure 

rates and reduce the risk of exposure-related drug toxicity. 

However, the wider adoption of beta-lactam TDM in ICUs is impeded by several challenges, including 

limited availability, operational complexities that can delay turnaround times for reporting results, as well 

as cost considerations8. As a result, healthcare professionals are compelled to carefully assess the optimal 

allocation of resources and prioritize patient groups that are likely to derive the greatest benefits from 

beta-lactam TDM9. 
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Figure 1. Quantifying effect of TDM by a similarity-based state-space approach. a, Data processing and feature 

selection pipeline for patient status analysis using the in-house data mining code. The heterogeneous medical 

database collected from hospitals is transformed into digital patient cards, followed by the selection of the top 28 

representative features through feature engineering. A similarity-based state tracking approach is employed to 

compare the impact of TDM on patient status. The integration of biosensors for frequent sampling and enhanced 

drug dosage control is proposed to complete the loop and further optimize patient care. b, Feature selection 

workflow utilizing genetic algorithm (GA) implementation. The process involves leaving out 10 patients for 

generalizability testing, train/test split for feature selection evaluation, feature scaling/transformation, and iterative 

refinement with GA with cross-validation. The final feature set is determined through a frequency analysis of 100 

repetitions. c, Visualization of travelled distance analogy in a 2D feature space to assess patient state dissimilarity. 

The blue and orange points represent TDM and control group patients, respectively. The distance to the reference 

health state (d1) indicates the degree of dissimilarity from the "healthy" state. Patients in both groups start their 

recovery trajectory in a specific sub-space of the 2D state space and are expected to move towards the reference 

state over time. The rate of recovery is determined by how quickly the groups progress from their initial states to 
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the reference "healthy town" of Sequential Organ Failure Assessment (SOFA) score of 1. The cumulative sum of 

Mahalanobis distances is calculated to quantify the difference between TDM and control groups' proximity to the 

healthy zone for each day. 

Despite several randomized controlled trials investigating the impact of beta-lactam antibiotic TDM in the 

ICU2,10–13, none have yet demonstrated a significant difference in patient outcomes. To address this gap, 

it is important to approach the problem from a broader perspective, considering its multi-dimensional 

nature. This involves examining a wider range of outcomes including clinical cure, microbiological 

eradication, development of antibiotic resistance, patient morbidity and mortality, as well as conducting 

rigorous cost-effectiveness analyses. By considering and analyzing such multifaceted information, a 

deeper understanding of how to optimize beta-lactam antibiotic dosing strategies in critically ill patients 

can be obtained5,7,14. 

However, understanding and processing such large dimensional and heterogeneous data is not 

straightforward with conventional methods. In this context, machine learning (ML) emerges as a powerful 

tool to navigate these complexities. By harnessing ML, informative features can be identified from the 

collected multi-dimensional, temporal patient data, enabling the creation of a comprehensive patient 

state representation. This learned representation facilitates the distinction between healthier and 

relatively sicker states by comparing informative measured features over time within a patient and across 

different patients. Such data-driven analyses offer the means to monitor patients' recovery trajectories 

and treatment responses, shedding light on the intricate interplay between therapy, patient dynamics, 

and outcomes. Inclusion of ML-based methodologies thus provides a crucial lens through which to 

quantify the impact of TDM on patient recovery, enhancing our ability to derive meaningful insights from 

the intricate web of clinical data. The objective of this work is to quantitatively analyze the influence of 

TDM on recovery trajectories, with specific attention to three key aspects: (i) quantification of the patient 

state during Piperacillin/Tazobactam antibiotic therapy, (ii) the impact of Piperacillin/Tazobactam 

antibiotic TDM on patient state dynamics and (iii) the effect of Piperacillin/Tazobactam TDM on the 

survival of patients. 

Results 

Data Driven Assessment of TDM and Control Group Split 

We first computed the mean pairwise Euclidian distances in the original feature space, which yielded no 

difference between the TDM and control group patients (Figure S2). Considering the small number of 
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patients in the study (n=248), we further extended the similarity analysis in lower dimensional 

representation generated by two dimensionality reduction techniques, t-distributed stochastic neighbor 

embedding (t-SNE) and linear Principal Component Analysis (Figure 2a-b). In both cases, computed 

pairwise distance statistics and their distribution were the same. The analysis of the pathogen reports for 

the first day were also aligned with this data driven deduction. Figure 3d demonstrates the presence of 

distinct pathogen types in both the TDM and control group on day 1 (following randomization). Notably, 

the pathogen distributions exhibited similarity between the two groups. Furthermore, the distribution of 

piperacillin-resistant (Figure 3d) and sepsis-causing pathogens (Figure 3e) followed the same pattern. 

Therefore, it was deduced that patients in both the TDM and control sub-populations started treatment 

in similar conditions, enabling the conduction of proposed state space trajectory analysis objectively. 

Figure 2. Data driven assessment of TDM and impact of TDM on patient state trajectory. The underlying hypothesis 

of this study is that the medical data collected daily during the clinical study holds valuable information regarding 

the patients' health states. By employing mathematical techniques of similarity, the gradual changes in patient states 
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based on the distribution of their health states were quantified. Mathematical similarity of patient groups on day 1 

is demonstrated using two dimensionality reduction techniques: a, t-distributed stochastic neighbor embedding (t-

SNE) and b, Principal component analysis. Both t-SNE and PCA embeddings indicate that patient states were 

homogenously distributed on the day of admission, validating the random TDM and control split. Quantitative 

comparison in high dimensional feature space is given in the Supplementary Information. c, The concept of "traveling 

to a healthier state," which is evaluated by calculating the normalized Mahalanobis distance between the patient's 

health status on each day and the reference state. d, Randomly sampled individual patient trajectories from both 

the control and TDM groups, revealing the disparity in mathematical distance towards the SOFA 1 state. 

Impact of TDM on Patient State Trajectory 

The evolution of the patient states for the TDM and control group populations revealed three important 

outcomes (Figure 2c). At the beginning of the study, both the TDM and control groups demonstrated a 

comparable proximity to the reference state space (i.e., patients with SOFA score = 1), indicating similar 

feature distributions within this patient group. This finding aligned with the results illustrated in Figure 2a-

b, emphasizing the resemblance in patient statuses between the control and TDM groups during the initial 

phase of the study. Secondly, as treatment continued, the TDM groups “moved” faster towards the 

reference state compared to the control group. In particular, the distance between the TDM and control 

groups were found to be the greatest 48 and 72 hours after the randomization. It should be noted that all 

patient received the same dosage at the beginning of the clinical study (Day 1), and dose adjustments 

were made once the data is available for TDM group on Day 2. The movement after dose adjustment 

(Day 3 and 4) towards the reference state quantitatively demonstrated that the effective distance 

travelled per day was much higher for the TDM group. Thirdly, the movement of TDM and control groups 

to a healthier state were similar after Day 10, corresponding to the day that TDM guided dose adjustment 

ceased for all TDM patients. In other words, the treatment of the patients in the TDM and control groups 

were conducted in the same way after Day 10, and the patient state trajectories also reflected this applied 

procedure. These observations indicate the capability of the state trajectory approach to assess different 

stages of the treatment process. Moreover, randomly sampled individual patient trajectories from the 

TDM and control group (Figure 2d) revealed unique responses to the therapy, highlighting the 

individualistic nature of the treatment process and the need for an individualized therapy management 

for a better recovery. 
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Figure 3. Effect of TDM on patient recovery trajectories. a, Number of people left the study alive in both control 

and TDM groups. b, Number of people left the study dead in both control and TDM groups. c, Last recorded SOFA 
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scores (median) for patients left the study alive in both TDM and control groups. d, The presence of distinct pathogen 

types (red) with the distribution of piperacillin resistant pathogen (blue) in both the TDM and control group on Day 1 

(following randomization). e, The presence of distinct pathogen types (red) with the distribution of sepsis-causing 

pathogen (blue) in both the TDM and control group on Day 1 (following randomization). Pathogen distributions, the 

distribution of piperacillin resistant and sepsis-causing pathogens exhibit similarities between the two groups, 

indicating that the patients in TDM and control sub-populations started the treatment in similar conditions. 

Patient Recovery Analysis 

Although TDM and control patients started the therapy at similar conditions as a group, the individual 

states of the patients demonstrated a variance. Therefore, instead of looking at the statistics of the whole 

patients independent of the time frame, we examined the data of the last day recorded. The total number 

of patients left the study as alive (Figure 3a) was typically higher with TDM, particularly in the period of 

dose adjustment (between Day 2 and 10). More importantly, the slope for the curve of patients died 

during this study (Figure 3b) was noticeably smaller for patients with TDM-guided therapy during the dose 

adjustment period, resulting in a lower mortality rate. When the status of the patients leaving the study 

alive was further examined (Figure 3c), it is seen that the last recorded SOFA scores were also lower for 

the TDM group for the first 10 days, with the exception of Day 1 in which 2 patients left the study with a 

high SOFA score. This is also consistent with the fact that in the original statistical analysis of the study, a 

lower mortality rate and a higher clinical and microbiological cure rate were observed in patients receiving 

TDM-guided therapy, although these differences were not statistically significant. 

We postulate that the observed ‘spike’ in SOFA scores between Day 12 to 14 among patients who left the 

clinical study alive within the TDM group can be attributed to two interrelated factors. Firstly, the 

remaining smaller population size in TDM group could potentially magnify the impact of individual 

variations in patient responses. Secondly, a relatively higher proportion of critically ill individuals remained 

in the TDM group compared to the control as a result of the TDM group's overall lower mortality rate 

throughout the first 10 days. 

 

Discussion 

TDM is the practice of measuring, analyzing and adjusting the drug levels in a patient's blood to achieve 

the desired therapeutic outcomes while avoiding adverse effects. Herein, the drug concentrations 

measured at specific intervals provide valuable information about a patient's individual PK/PD, allowing 
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the healthcare providers to tune treatment regimens based on the individual state and make “informed” 

decisions regarding dosage adjustments or changes in medication. Therefore, the success of the TDM 

practices strongly depends on how frequently and accurately the drug concentrations are measured, and 

how the patient current state is correlated with the therapeutic window. Our study utilizes data collected 

in a clinical trial conducted across 13 sites, where half of the patients were subjected to dose adjustment. 

Notably, our findings demonstrate the capability of machine learning algorithms to discern meaningful 

features, allowing us to quantitatively capture the patient recovery process and gain valuable insights into 

therapy progression. 

Despite the rich clinical data regarding patient state (199 features), however, the dynamic TDM process 

was only run using a daily granularity. That is, the dose adjustment in the beta-lactam TDM group was 

made once a day, thus smaller time interval fluctuations in drug concentrations could not be captured. 

Likewise, of the piperacillin concentrations measured in the TDM group, 88.1% (n = 510) were reported 

on the same day, while 10.0% (n = 58) were reported at a later date and 1.9% (n = 11) were never 

reported2. As a result of this “process delay”, TDM feedback cycle used to adjust the dosage regimen was 

potentially slower when compared to the evolution of the patient state, which can be seen in the daily 

SOFA score fluctuations (Figure S6). Another limitation of the clinical study was the limited number of 

dosage adjustments in the TDM group. Hence, the dose adjustment may not have been made at the 

optimum time for the patients. For instance, at day 1, for only 70% of the TDM patients dose adjustment 

was considered necessary, followed by an average of 48% during treatment, and ended with less than 

30% for Day 9 and Day 10. Four patients in TDM group had never received a dose adjustment2. 

The other limitation of the TDM workflow applied was its dependency on the minimum inhibitory 

concentration (MIC)2, which represents the lowest concentration of a drug that is required to inhibit the 

growth of the microorganism in a laboratory setting. In the TDM patients, the dose adjustment was based 

on the most recent pathology report and the corresponding MIC values. Nonetheless, setting the 

therapeutic window based on MIC has two important limitations: (i) serum drug concentrations do not 

necessarily represent the concentration at the site of infection, hence the drug concentrations above MIC 

may not been reached at the site15, (ii) complex PK/PD of the patient status may demand a drug 

concentration different than the MIC. As MIC value only distinguishes between growth and suppression 

of pathogen under the lab conditions, the drug concentration recommended by MIC may not be sufficient 

to kill the pathogen at the site of infection. In an ideal scheme, MIC values can be used to set the initial 

therapeutic window, which is continuously updated based on an individualized patient model stemming 
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from the site of infection8,16. However, despite these challenges, ML-augmented analysis of the patient 

data conclusively demonstrated that implementing dose adjustment policies had a significant and 

favorable impact on the overall recovery of patients in the TDM group. In particular, dose adjustment 

based on TDM had the largest impact within the first 72 hours of admission, which is noted as an important 

treatment window in the management of patients with sepsis.  

By quantifying the effects of TDM, it becomes evident that aligning antibiotic exposure with the patient's 

instantaneous state has the potential to optimize treatment outcomes. In the clinical case being 

examined, for instance, updating patient data on an hourly basis, rather than daily, could significantly 

amplify the impact of TDM, especially within the first 72 hours. In this regard, use of biosensors can 

potentially provide accurate, on-site and rapid detection of the drug concentration from both blood and 

non-invasive bodily fluids including sweat, saliva, tear and breath, providing a chance to accelerate the 

response time of the TDM cycle17–22. Additionally, this sensor data can be utilized to build digital patient 

models, which can further enable model predictive control policies via simulating the patient response 

with individualized PK/PD parameters. Herein, trainable model parameters can be learnt during therapy 

with the rapid, continuous stream of sensor-based measurements of drug concentrations. By integrating 

population-specific antibiotic PK models with patient-specific information such as kidney function, weight, 

pathogen data, and TDM results, tailored dosing regimens can be calculated via model informed precision 

dosing (MIPD) software 8,16,18. Preliminary findings indicate that such a personalized approach improves 

the attainment of PK/PD targets, particularly for patients at high risk of mortality from infections23. 

In therapeutic drug management, it is vital to quantify the impact of the defined drug concentration on a 

patient's recovery trajectory. The analysis provided in this study can facilitate the identification of the 

optimal free drug concentration for a specific individual during a particular phase of treatment. By doing 

so, it would be possible to determine the most effective drug concentration to administer, ensuring the 

best possible outcomes for the patient. This, however, requires a quantitative description of the patient 

state. In this study, we showed that improvement in the patient state can be quantified, if the proper 

measured features are available. Recent developments in the wearable body area network24, where 

multiple wearables mounted on different parts of the body to concurrently analyze various physiological 

markers, and the integration of internet of things (IoT) devices into healthcare monitoring25 are enabling 

such continuous feature collection possible. By leveraging ML capabilities, voluminous sensor data, 

together with the previous medical records, genetic information and individualized healthy reference 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.23297424doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.23.23297424
http://creativecommons.org/licenses/by-nc-nd/4.0/


state, data driven algorithms can continuously adapt and refine dose adjustment strategies and the 

pharmacokinetic models in real time. 

Another key role that wearable technology can play is the definition of an individualized reference healthy 

state. Our analysis showed that patient states can be defined from measured physiological parameters 

and observations, and the effect of therapy can be quantified by comparing the instantaneous patient 

state with a reference “healthy state”. In the current implementation, we used the SOFA=1 patient states 

as reference distribution, and closeness to this reference distribution provided a proxy measure for “being 

healthy” for all patients. In a 4P (predictive, preventive, personalized and participatory) medicine concept 

enabled by wearable sensors24,26, individualized healthy states for patients can be learned, which would 

further increase the accuracy of state space tracking of health status. 

The proposed analysis in this study reveals an intriguing finding regarding the clinical relevance of the 

selected feature set and its relationship to the SOFA score. The features commonly used to calculate the 

SOFA score in clinical practice, such as thrombocytes, urine, creatinine, GCS, and encephalopathy, were 

also found to be informative in this study. From a data science perspective, the calculation of the SOFA 

score can be viewed as a rule-based technique that reduces the dimensionality of the data, transforming 

a 28-dimensional vector into a single scalar value. This interpretation leads to two practical outcomes. 

First, it highlights the need to understand the limitations of the SOFA score analysis and how it can be 

interpreted. Second, it sheds light on the proposed state space patient trajectory analysis, which can be 

seen as a high-dimensional, continuous version of the SOFA score. 

At the first glance, reduction of all clinically relevant data as the SOFA score can be considered as a 

practical way for interpretation. However, the way SOFA scores are calculated in current practice can 

result in inaccurate clustering or classification of patients with different status. The SOFA score assesses 

the functionality or degree of failure in six key systems: respiratory, cardiovascular, hepatic, coagulation, 

renal, and neurological. It's important to recognize that while two patients may have the same SOFA score, 

their clinical situations differ significantly. For instance, one patient may have impaired renal function 

resulting in their score of 4, whereas another patient may experience minor issues across four different 

major systems. Therefore, interpreting SOFA scores requires careful consideration of the specific organ 

systems involved to obtain a comprehensive understanding of each patient's condition. 

To address these limitations, our analysis provides a way to maintain a "multidimensional" SOFA score 

based on Euclidean distances. This allows for a quantitative assessment of the mathematical similarity 
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between patient states while preserving the maximum amount of information. Hence, the method 

proposed in this study can be interpreted as a continuous and extended form of the SOFA score analysis. 

By utilizing this approach, it becomes possible to distinguish between patients with the same SOFA score 

but different physiological states. This enhanced level of differentiation provides valuable insights for 

clinical decision-making and patient management. 

Our study has revealed significant findings with implications for ML-augmented disease classification, 

patient stratification, and monitoring treatment response. Features identified with ML techniques 

accurately reflected the recovery process of sepsis patients in ICUs, providing valuable insights into 

therapy progression and effectiveness. Importantly, continuous monitoring of these features enabled 

precise measurement of the recovery rate, emphasizing their potential as indicators of treatment 

response. By using artificial intelligence, we demonstrated for the first time quantitively that beta-lactam 

antibiotic TDM implementation leads to higher recovery rates and optimized patient outcomes. Our 

findings highlight that the state between healthy and sick individuals can be differentiated from the 

temporal data, which in turn can be used to quantify the recovery process as a reliable measurement of 

the recovery rate. Additionally, TDM-guided dosing was found to significantly alter the trajectory of 

recovery, underlining its potential for personalized medicine and enhanced patient care. 
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Methods 

The data source used in this work involved patients admitted with severe sepsis or septic shock and aimed 

to compare the clinical effectiveness of TDM-guided Piperacillin/Tazobactam antibiotic therapy versus a 

fixed dosing strategy. The working hypothesis here is that the information regarding the recovery process 

is embedded into the measured features. In other words, healthier states should be distinguishable from 

relatively sick states by comparing informative measured features at different times for a patient, or in 

between patients. Such an approach converts the problem of quantifying the effect of TDM into a state 

trajectory analysis; that is, via monitoring the change in these features, recovery rate can be measured in 

the state space. More importantly, it becomes possible to quantify relative recovery rates with or without 

TDM, as a more effective therapy will change the recovery trajectory for the patient. 

Details of the clinical study 

A clinical trial was conducted to compare the effectiveness of TDM-guided antibiotic therapy with fixed 

dosing in improving clinical outcomes in sepsis patients treated with piperacillin/tazobactam2. The trial 

included 248 adult patients with severe sepsis or septic shock who had received the therapy within the 

last 24 hours before enrollment. It took place in 13 different locations in Germany between January 2017 

and December 2019 and was randomized, controlled, and patient blinded. 

The study recorded clinical, microbiological, and laboratory data from the day prior to randomization and 

then throughout the following time points: day 14 post randomization, at the end of therapy, at discharge 

from the ICU, and at day 28. Patients were randomly assigned (1:1) to either the TDM group or to the 

control group (no-TDM). Following randomization, both the control and TDM groups were given an initial 

loading dose of 4.5 g of piperacillin/tazobactam, followed by a continuous infusion of the same antibiotic. 

The total daily dose was 13.5 g (9 g in patients with an estimated glomerular filtration rate 

(eGFR) < 20 mL min-1). In the TDM group, dosing of piperacillin/tazobactam was guided by daily 

monitoring of piperacillin, starting on Day 1 post randomization (or Day 0 if the piperacillin concentration 

had already reached a steady state) for a maximum of 10 days. Use of antimicrobial combination therapy, 

termination or (de-) escalation of antimicrobial therapy was allowed at any time and at the discretion of 

the treating physicians. The target plasma concentration of free piperacillin was set to four times (with a 

range of ±20%) the minimal inhibitory concentration of the pathogen responsible for sepsis. In patients 

receiving TDM-guided therapy with piperacillin/tazobactam, a dose adjustment was made on 53.9% 

(312/579) of the treatment days. In the control group, daily dose adjustments were based on patient renal 

function and did not utilize any TDM. Both patient cohorts had blood samples taken daily to measure 
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piperacillin concentrations. The TDM group received same-day analysis, reporting, and dose adjustments, 

while analysis in the control group could be performed on the same day or later, with samples kept at -

80°C until analyzed. Total piperacillin concentration measurements were performed on-site in study 

centers using either high-performance liquid chromatography (HPLC) or liquid chromatography mass 

spectrometry (LC–MS/MS). The trial protocol was approved by institutional review boards, published 

previously, and Germany’s Federal Institute for Drugs and Medical Devices (EudraCT: 2016-000136-17, 

ref: 4041358). The primary endpoint was sepsis-related organ dysfunction measured by the mean daily 

total SOFA scores over 10 days, discharge from the ICU or death, whichever occurred first. The mean SOFA 

score was calculated as the mean of all daily SOFA scores for each patient.  

In the clinical trial no significant beneficial effect of TDM- guided piperacillin/tazobactam therapy with 

regard to the 10-day mean total SOFA score compared to fixed dosing was observed (7.9 points (95% CI 

7.1–8.7) in the TDM group vs. 8.2 points (95% CI 7.5–9) in the control group, in between group difference 

0.3 points, 95% CI − 0.4 to 1, p=0.39). However, patients who underwent TDM- guided therapy displayed 

a 4.2% lower 28-day mortality and a higher rate of microbiological and clinical cure during therapy, but 

these differences were not statistically significant.  

Patient state and measure of similarity 

Mahalanobis distance is a statistical measure used to assess the dissimilarity between a sample point and 

a distribution in a multidimensional space, considering the structure of the data. The Mahalanobis 

distance from a patient state vector A to a reference distribution R with mean 𝜇 and covariance 𝛴 is 

calculated as: 

𝐷(𝐴, 𝑅) = ((𝐴 − 𝜇)𝛴!"(𝐴 − 𝜇)#)"/% 

Where 𝛴!" is the inverse of the covariance matrix of the reference distribution R. The Mahalanobis 

distance accounts for the correlation between different measured variables by scaling the differences 

with the inverse covariance matrix27. Considering the inter-patient variance in the measured 

physiologically relevant features, it is considered that the Mahalanobis distance would be the best fit to 

describe the dissimilarities between the patient states. 

In particular, we used the Mahalanobis distance to measure dissimilarity between the patient state at a 

given time and a reference “healthy state distribution” based on the SOFA score. Firstly, we investigated 

the uniqueness of the SOFA scores during the Exploratory Data Analysis (EDA) phase, revealing that only 

six patient states have a score of SOFA = 0. As a result, second best SOFA score, SOFA = 1 is used as a filter 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.23297424doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.23.23297424
http://creativecommons.org/licenses/by-nc-nd/4.0/


to create a state vector group as the reference distribution. Figure 1c depicts the measurement of 

Mahalanobis distances for each patient state at each day in a 2D feature space. Herein, blue and orange 

points mark the state vectors of the patients in a 2D state space for the TDM and control groups, 

respectively. In both groups, patients start their recovery trajectory at a certain sub-space of the 2D state 

space. The distance to the reference health state (for example, d1) is expected to be correlated with the 

degree of dissimilarity with the state of “being healthy”. As the therapy continues successfully, the patient 

should “move” in the feature space towards the reference state and the rate of recovery is correlated 

with how fast the groups move from their initial states (day of admission) to the reference zone, so called 

“healthy town”. In other words, if the dose adjustment within TDM is beneficial for the TDM group, there 

must be a distinct difference between how much closer they are to the healthy zone compared to the 

control group. This is quantified by calculating the cumulative sum of the Mahalanobis distance between 

the TDM/control groups and the reference states for each day (t): 

𝐶𝑢𝑚𝑆𝑢𝑚(𝑡) = 	1𝐷&'(')'*+,-.	!(𝑡)
0(2)

45"

 

Where p is the patient for which the distance (𝐷&'(')'*+,-.	!) is being calculated for day t and 𝑃(𝑡) the 

number of patients that are in the TDM/control group at day t. To ensure the statistical significance of the 

measured CumSum, daily values are normalized based on the mean pairwise distance of SOFA = 1. In other 

words, normalized distances shown in Figure 3c report how far away the TDM/control group to the 

reference state, if the distance between SOFA = 1 patients is equal to 1. 

It should be also noted here that since the feature set is heterogenous (i.e., consists of continuous, 

categorical and ordinal variables), discrete ones should be first transformed into a pseudo-continuous 

representation, and then all features should be scaled for an unbiased dissimilarity analysis. In this work, 

the features are first grouped into three sub-sets: continuous, discrete and discrete pathogen-related 

features (see Supplementary Information). Then, discrete features are transformed via CatBoost28 to have 

a continuous feature space. Next, all features are normalized with standard scaling before conducting the 

distance analysis. CatBoost and standard scaling methods are fit by using only the training data to prevent 

data leakage. 

Feature engineering and selection 

Mathematical similarity, which is type of unsupervised learning approach, relies on the measured 

distances in high dimensional feature space, which makes feature engineering and selection very critical, 
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particularly for the conducted analysis with limited number of patients and total number of daily 

observations (state vectors)28. In the current study, the primary clinical data is first analyzed in terms of 

feature variance, missing data, outliers, and any other unphysical abnormalities (Supplementary 

information). The data preparation steps (Supplementary Information) converted primary clinical data 

into 199 structured features for 248 patients (TDM:123, control:125) with variable trajectory lengths (i.e., 

duration of the treatment at daily granularity), consisting of 2376 state vectors in total. Since the clinical 

data is limited, high dimensional feature space (199 dimensions) is found to be extremely sparse, hence 

it has to be reduced to alleviate the dimensionality problem. In particular, the dimensionality of the 

problem has to be reduced, as the similarity analysis relies on distance, and the “signal/noise ratio” in 

distance-based (or error-based) approximations diminishes exponentially as the number of features 

increases28. Therefore, at the next step, we applied alternative approaches including dimensionality 

reduction, feature selection via filtering, implicit and wrapper methods. For this particular problem, using 

genetic algorithms (GA) for feature selection29 (i.e., as a wrapper) provided the best feature subset30, and 

the methodology for feature selection is described here only for the GA implementation. 

Firstly, we leave 10 patients out of the feature selection study to increase and test the generalizability of 

the similarity approach. The feature selection procedure is shown in Figure 1b. The process starts with a 

train and test split for the selected 238 patients. The training data is then passed to the Wrapper, which 

is a GA implementation with internal cross-validation (CV). A random forest model31 was used as the 

estimator of the feature selection wrapper. The score needed to iteratively refine the feature subset is 

taken as the SOFA scores, where the metric for the fitness and CV is selected as the negative mean 

absolute error. The number of feature subset is also scanned parametrically, starting from one to the 

maximum number of features to analyze the value of added information with increased number of 

features. The CV scores are then examined to determine the optimum number of features. As the GA 

involves randomness, the whole process is repeated 100 times, where 100 generations are created at 

each run. The frequency of the features selected by the last GA generations is given in Figure 4. It is seen 

that pathogen related data was rarely selected by the model, typically less than 10% of the time. For the 

final set, the features that were picked more than 10% of the time were unionized with a new GA iteration 

to cover potential multivariate correlations (Figure 4a-d, dark blue). More details about the feature 

selection scores are presented in Supplementary Information. 
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Figure 4. Features considered relevant by the evolutionary feature selection algorithm. Each bar denotes how 

many times a feature was picked by GA for SOFA score prediction. Features used in the patient state analysis is 

highlighted as dark blue. a, Continuous features encompass various demographic information (age, height, body 
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weight), laboratory (leukocyte count, hematocrit levels, creatinine levels), drug-related information (concentration, 

infusion rate), and physiological measurements (such as breathing rate, body temperature, and mean arterial 

pressure). b, Discrete features consist of yes/no questions and ordinal variables, such as the presence of metabolic 

acidosis, renal dysfunction, or the need for renal replacement. c, Whether, a pathogen could be detected in the 

patient. Microbiology reports cover 36 different pathogens, including gram-positive and gram-negative bacteria, 

fungi, and other pathogens such as Chlamydia species; d, Whether, a detected pathogen is resistant to piperacillin 

and e, Whether the pathogen type is responsible for the sepsis episode. 

SOFA score and patient analysis 

The cumulative Mahalanobis distance analysis described in the previous section provides a way to 

quantify the impact of TDM on the patient status in the form of mathematical dissimilarity between the 

current state and a reference distribution. To further analyze how the abstract distances translate into 

patient recovery, we examined the (i) temporal evolution of the patient SOFA scores, and (ii) mortality 

rate for both TDM and control groups. 

The SOFA score is a clinical tool utilized to evaluate the severity of illness and prognosis in critically ill 

patients. It involves assessing six organ systems: respiratory, cardiovascular, hepatic, coagulation, renal, 

and neurological. Each organ system is assigned a score ranging from 0 to 4, where higher scores indicate 

more severe dysfunction. The individual scores for each organ system are summed to obtain a total SOFA 

score, which can range from 0 to 24. A higher score indicates more pronounced organ dysfunction and a 

poorer prognosis for the patient. In the current study, SOFA scores are used in the supervised ML methods 

for feature selection, and to interpret and discuss the calculated Mahalanobis distances. We also 

conducted statistical analysis on the distribution of patient health status by examining the multivariate 

feature distributions on the day of admission, as well as on the last recorded patient data (state vectors). 

Patient analysis includes the comparison of the first day state vectors of the patients to justify the 

controlled clinical trial with dimensionality reduction techniques qualitatively and the Mahalanobis 

distances quantitatively. Pathogen tests of the TDM and control groups are also compared for the first 

day to ensure that TDM and control split of the patients is not biased towards any group. In other words, 

the pathogen distributions and their piperacillin resistances should also be distributed in a balanced way 

between the TDM and control group patients. Furthermore, for each day of the therapy, medians of the 

last recorded SOFA score for alive patients and the day patients leave the clinical study are extracted from 

the log files to discuss the results obtained by the similarity-based state analysis. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.23297424doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.23.23297424
http://creativecommons.org/licenses/by-nc-nd/4.0/


Code availability 

The code utilized in this study was tailored to the data collected in the clinical study and its unique data 

structure. As the code has little use without access to the data and, as such, has not been made publicly 

available. All data processing and modelling were conducted on Python 3 using standard libraries that are 

publicly available: pandas, numpy, scipy, scikit-learn, matplotlib, seaborn, plotly, category-encoders, deap, 

sklearn-genetic, statsmodels. 
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