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ABSTRACT 

In IVF treatments, accurate assessment of the developmental potential of embryos to implant is 

essential for reaching reasonable pregnancy rates while shortening time-to-pregnancy. Hence, 

clinical guidelines recommend extended incubation to blastocyst transfers, which provide better 

evaluation of embryo developmental potential. However, cleavage stage transfer is often favored 

owing to various clinical considerations. To improve embryo assessment of cleavage stage 

embryos without extended incubation, we present a computational strategy for forecasting future 

morphokinetic events. Motivated by the advances in language modeling, we adapt generative pre-

training to forecast future morphokinetic events based on the sequence of present events. We 

demonstrate < 12% forecasting error in forecasting up to three consecutive events. A new policy 

is proposed that combines morphokinetic forecasting and assessment of the risk of embryo 

developmental arrest. Using this policy, we demonstrate an improvement in the prediction of 

known implantation outcome of day-3 embryos from AUC 0.667 to 0.707. We expect 

morphokinetic forecasting to address the inherent hurdles in the selection of cleavage-stage 

embryos for transfer. In addition, we hope that demonstrating for the first time the utilization of 

language modeling on non-textual data in healthcare will stimulate future applications in 

reproductive medicine and other disciplines. 

 

Key words: IVF; Embryo Transfer; Assisted Reproductive Technologies; Machine Learning; 

Embryo Morphokinetic; Language Modeling; Generative Pre-Training. 
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INTRODUCTION 

Most human embryos do not possess the capacity to implant and generate live birth. Hence, in in 

vitro fertilization – embryo transfer (IVF-ET) procedures, superovulation treatments are performed 

to eventually generate multiple embryos that will potentially serve as candidates for transfer. 

Maintaining reasonable pregnancy rates while shortening the time to pregnancy requires means 

for assessing the developmental potential of the embryos to implant and generate live birth. The 

utilization of time-lapse incubation systems in IVF clinics continuously generates high-quality 

visualization of the embryos during preimplantation development, which is exploited by various 

algorithms to assess embryo developmental potential1–3. In particular, machine learning models 

have been trained using the series of morphokinetic events as embryo input to predict implantation 

outcome. These morphokinetic features correspond to the time points that the embryo transitions 

between one developmental state to the next as extracted from time-lapse recordings following 

specific protocols. With respect to feature size, morphokinetic annotation effectively allows 

massive and interpretable dimensional reduction of the original video raw data (~200 Mb per 

embryo). In addition, morphokinetic prediction models a-priori offer non-invasive real time 

developmental assessment, thus alleviating potential risks of biopsy collection and allowing fresh 

transfers4. Indeed, morphokinetic embryo assessment has been clinically tested via prospective 

studies and was approved for clinical applications5.  

Recent medical guidelines recommend adopting extended incubation to single-blastocyst transfer 

policies worldwide. However, in many cases day-3 cleavage stage transfers are favored owing to 

the risk of transfer cycle cancelation due to the potential developmental arrest and lack of 

blastulation6. To increase confidence in embryo selection for transfer at cleavage stage, we 

hypothesized that future morphokinetic can be accurately and robustly forecasted. If so, the 

assessment of the potential of the embryos to implant using morphokinetic-based classifiers can 

be improved without extending incubation. To address morphokinetic forecasting, we realized that 

embryo representations via profiles of morphokinetic events is analogous to textual sentences. 

Specifically, the temporal associations between the morphokinetic events, which are defined by 

developmental constraints, are analogous to the associations between textual “tokens” and can thus 

satisfy the requirements for forecasting the subsequent event. This task has been actively 
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researched and optimized, particularly during the past decade in the field of Natural Language 

Processing (NLP)7–9.  

Here we employed a recently designed transformer-based auto-regressive GPT architecture, which 

is the current state-of-the-art NLP model. We trained this model using a multicenter dataset of 

67,707 morphokinetically annotated embryos. Specifically, we used partial morphokinetic series 

as input (each series starts with the first developmental event) and assessed the accuracy of 

forecasting the next event against the existing annotated ground truth. In addition, we assess the 

risk of embryo developmental arrest by training a dedicated machine learning model using the 

morphokinetic profiles as input. Similarly, a third model was trained using embryo morphokinetic 

profile input to assess the potential to implant. Using these three classification models, we propose 

a new policy for evaluating the potential of embryos to implant which consists of the following 

steps: (A) Assess the potential of embryo developmental arrest. (B) For embryos with low risk of 

developmental arrest, forecast future morphokinetic events. (C) Evaluate the potential of the 

embryo to implant using the extended morphokinetic profile. Using a test set of 398 embryos, we 

demonstrate a significant improvement in the implantation prediction of cleavage-stage embryos 

three days from fertilization. In comparison with the standard policy of using the morphokinetic 

profiles of the recorded events (AUC 0.677), the proposed three-event forecasting policy predicted 

implantation outcome with AUC 0.707.  
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METHODS 

Embryo database 

We assembled a large multicenter database of video files of preimplantation embryo development 

that were morphokinetically annotated and clinically labeled as specified in a former publication1. 

In brief, the database includes a total 67,707 embryos that fertilized via intracytoplasmic sperm 

injection (ICSI) and were recorded on eleven time-lapse incubation systems (Embryoscope, 

Vitrolife) located in four medical centers. Time-lapse images were recorded with an average 18 

min time interval typically for 3-to-6 days from fertilization. At each time point, seven Z-stack 

frames were recorded. Manual morphokinetic annotation was performed to 20,253 embryos as 

reported recently1. Five hospitals provided anonymized time-lapse video files along with 

corresponding metadata.  Data were imported under the approval of the Helsinki ethical committee 

in each hospital. A qualified and experienced embryologist performed morphokinetic annotations 

in each IVF clinic according to established procedures5,10. We performed quality assurance by 

comparing the morphokinetic annotations of 253 randomly selected embryos with expert 

annotations by an embryologist in a blind manner. 

To maximize the dataset size, automatic morphokinetic annotation was performed to additional 

47,454 embryos. We used an automatic annotation algorithm that we recently developed with near-

perfect accuracy, R-square 0.9944. The embryos were divided into a train-validation set (65376 

embryos) and test set (2331 embryos). Importantly, all test set embryos were manually annotated 

using established protocols as described above. 

 

Prediction of embryo developmental arrest 

We trained two CatBoost11 classification models for predicting embryo arrest at five-to-eight cells 

cleavage stages, and arrested morulae. Input data consists of the profile of morphokinetic events 

per embryo, and both models predict the potential of arrest at the most advanced input embryo 

state, namely the likelihood that the embryo will not reach the successive state. Since we 

encountered a significant imbalance between the arrested and non-arrested embryos in the test set, 

we randomly removed non-arrested embryos. The remaining test set included 39 five-to-eight cells 

cleavage stages and morula arrested embryos, and 68 non-arrested embryos. The CatBoost models 

were implemented using CatBoost Python library together with the default hyper-parameters. At 
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inference time, the prediction of developmental arrest is done using one of the aforementioned 

classifiers, depends on the last event of the morphokinetic profile. 

 

Morphokinetic forecasting 

Morphokinetic forecasting of embryo development was performed by training a Generative Pre-

Training (GPT) model.9 The network architecture included 32 self-attention transformer blocks, 

each consisting of 32 self-attention heads. We defined the transformer token representation based 

on hourly rounding of embryo development from time of fertilization. For a given embryo with a 

given morphokinetic profile, the transformer tokens are encoded via hourly rounding of the series 

of morphokinetic events. The GPT model was implemented using PyTorch package with a cross-

entropy loss function on predicting the next morphokinetic event.12 We used 65,376 train set 

embryos, and evaluated morphokinetic forecasting using 2,331 test-set embryos, using 

(normalized) mean absolute difference with varying sizes of input morphokinetic profiles. 

Eventually, every morphokinetic profile was enriched by 3 morphoknetic events forward using the 

optimized GPT. 

 

Embryo implantation prediction 

Nowadays, implantation potential is commonly predicted using the morphokinetic profile of the 

embryo, via training of data-driven machine learning classifiers. As an alternative, we suggest to 

boost the classifier performance, by using auxiliary  enrichment as a pre-processing of the training 

data. A forecasting model predicts one morphokinetic at most three forward, followed by an 

estimation of the arrest classifier. Whenever an embryo is identified as developmentally arrested, 

we discard it and set its probability of implantation to zero. Finally, a CatBoost model is trained 

with the extended morphokinetic profiles to evaluate the implantation potential. 

The CatBoost model was implemented using CatBoost Python library. The hyper-parameters were 

selected using a grid search, implemented using sklearn13 Python package on the following 

parameters: Number of trees (taken from [30, 50, 70, 80 90, 100, 120, 140, 160]), depth of each 

tree (sampled from range [2,5]), and learning rate (taken from [0.01, 0.03, 0.1, 0.2]). The objective 

of the grid search was to select the model with the maximal AUC. 
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Statistical analysis 

We evaluated the statistical significance of the difference between the ROC AUC of the baseline 

classifier, and with our suggested policy of forecasting-arrest of 3-events forward using DeLong 

test14,15, p-value < 0.1. The 95% Confidence Interval of the ROC-AUC was (0.6-0.73) of the 

baseline classier and (0.63-0.77) with our suggested policy, and were calculated using 

Bootstrapping15. 
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RESULTS 

Improving assessment of embryo quality by forecasting future morhokinetic events 

Algorithms that predict embryo implantation outcome using a morphokinetic description of 

preimplantation development have demonstrated relatively high accuracy and robustness, were 

validated in prospective clinical trials, and gained regulatory approval. Current policy requires 

morphokinetic annotation of the video files that are recorded using time-lapse incubation systems 

according to established criteria. To eliminate inter- and intra-observed variation due to manual 

annotation and improve clinical workload management, algorithms that perform fully automatic 

annotation were recently published by us4 and others16,17. The temporal profiles of morphokinetic 

events are the input to implantation classification models that assess implantation potential (Fig. 

1). With increasing incubation time, additional morphokinetic events can potentially add up, thus 

allowing the disqualification of developmentally arrested embryos and the improvement of 

prediction accuracy. However, various clinical considerations often require early transfer of the 

embryos. Here we hypothesized that assessment of the developmental potential of the embryos 

can be improved without extending incubation by predicting future developmental arrest and 

forecasting successive events (Fig. 1). 

Predicting embryo developmental arrest 

An arrested developmental event is defined per the most advanced embryo state reached such that 

advancing to the consecutive state fails despite allowing a sufficient culture time in the incubator. 

Hence, embryo arrest labeling requires defining the time windows for the occurrence of each 

morphokinetic event. To eliminate outlier contributions, we set the upper limits of these time 

windows to be the 97.5 percentile of the temporal distributions of the morphokinetic events. We 

have previously generated the most accurate statistical description of embryo preimplantation 

potential using 20,253 annotated embryos4 and used it here to calculate the temporal distributions 

of each event. In this manner, we were able to label arrested events as follows: An embryo is 

arrested at morphokinetic event tN if it failed to morphokinetically advance by the time of the 97.5 

percentile of the t(N+1) event. Hence, labeling arrested events requires a sufficiently long 

recording of the embryos. Despite this limitation, we identified a total of 5,945 arrested embryos 

as specified in figure 2A. 
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Figure 1 | Scheme of embryo implantation prediction using extended morphokinetic profile. 
Current policy for implantation prediction using morphokinetic annotation of time-lapse videos is 
depicted in red. We propose improving implantation prediction by extending the current morphokinetic 
profiles via forecasting future morphokinetic events (blue). A machine-learning model is used in order 
to screen developmentally-arrested embryos. 

 

 The transfer of embryos on day-3 from fertilization or extended incubation to blastocyst transfer 

on day-5 are the two main transfer protocols in most IVF clinics. Embryos that reached four cells 

stage or earlier by day-3 are considered poor quality and are likely to be discarded. Day-3 embryos 

that reached six cells or more are favorable candidates for transfer. Extended incubation to 

blastocyst transfer is positively considered in the case that the number of high-quality day-3 

embryos is sufficiently high, thus minimizing the risk of transfer cycle cancelation due to 

developmental arrest and lack of blastulation6. Consistent with current clinical practice and aiming 

at improving the decision on pursuing day-5 transfers, we developed classification models that 

predict developmental arrest at five-cells or more advanced stages. Particularly, we trained two 

classification models for assessing the potential of embryos to become arrested at five – to – eight 

cells cleavage stages and arrested morulae (Methods). We explored the prediction performance of 

multiple classification models and concluded that CatBoost11 provided highest performance. 

Satisfyingly, we predict embryo arrest at five – to – eight cells cleavage stages and morula arrest 

with AUC 0.89 (Fig. 2B). 
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Figure 2 | Predicting developmental arrest of embryos. A, The morphokinetic events at which the 
embryo became developmentally arrested are plotted as a function of the recorded video length. Top 
curves highlight the temporal densities of embryo arrest and the number of arrested embryos are shown 
on the right. B, A CatBoost model was trained using input morphokinetic profiles to predict embryo 
arrest at cleavage stage (CA) and at morula stage (MA). Quality of CA and MA classification models is 
demonstrated by the ROC curves and AUC values.  ROC: Receiver operating characteristics. AUC: Area 
under the ROC curve. 

 

Embryo morphokinetic forecasting of preimplantation development 

Following the assessment of arrested embryos, we set out to forecast future morphokinetic events 

based on the existing profiles of the morphokinetic events of the embryos, which may effectively 

substitute for extended incubation. To this end, we trained a forecasting Generative Pre-Training 

(GPT) model9 using a dataset of the morphokinetic profiles of 67,707 embryos (Methods). GPT 

models permit input morphokinetic profiles (sentences) with varying lengths as demonstrated in 

figure 3A. A representative embryo that was incubated for five days and reached blastulation at 86 

hours from fertilization is shown. Full-range forecasting was performed using the existing profiles 

at t2, t4, t6 and t8 stages. We find that forecasting accuracy was improved with the length of input 

profiles and that time differences between forecasted and actual events were < 2 hours for cleavage 

stage events, < 3 hours for morula compaction, and < 4 hours for early blastulation (Fig. 3A).   

Next, we statistically assessed the temporal forecasting errors across the test set embryos. The 

mean of the absolute time differences between forecasted and actual events was evaluated for an 

increasing series of forecasted events using a range of forecasted input profiles from tPNa to tM 

(Fig. 3B-i). In parallel, we assessed the mean forecasting errors normalized to the actual time of 

event per each embryo (Fig. 3B-ii). We find that first cleavage-stage event forecasting error 
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typically ranges between 2 to 4 hours accounting for 5% normalized error (with the exception of 

tPNf-to-t4 input profiles). tPNa-to-tPNf, tPNa-to-t3, tPNa-to-t5 and tPNa-to-t7 input profiles 

generated superior forecasting accuracy such that forecasting within the t2-to-t4 and t5-to-t8 

blocks was more accurate than outside these blocks. Our analysis reflects the synchronized 

developmental blocks: Once t2 event is set, the certainty in predicting t3 is lower than predicting 

t2 given tPNf. Once t4 event is set, the certainty in predicting t5 is lower than predicting t4 given 

t3. Similarly, once t8 is set, the certainty in predicting tM is lower than predicting t6, t7 and t8 

given the corresponding preceding input profiles. Within these developmental blocks, accuracy is 

relatively high for the forecasting of up to three-events. 
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Figure 3. Morphokinetic forecasting of preimplantation embryo development. A, A staircase plot 
of the morphokinetic events, as defined by the discrete times of vertical developmental transitions, is 
demonstrated for a representative embryo (gray). Morphokinetic profiles of the same embryo were 
forecasted using tPNa-to-t2, tPNa-to-t4, tPNa-to-t6 and tPNa-to-t8 input events. B, (i) The mean absolute 
time differences between the forecasted and the actual morphokinetic events are shown. The rows specify 
the forecasted events and the columns represent the input morphokinetic profiles, from tPNa to tM. (ii) 
The mean absolute time differences were normalized to the time of event for each individual embryo. 
Forecasting errors were averaged across 1407 to 2311 test-set embryos per condition. 

 

Designing an arrest-forecasting policy for improving implantation potential prediction 
Current decision support tools for assessing the implantation outcome utilize various machine learning 

models that are based on the morphokinetic profiles of the embryos as an input3,18–20. Here we employed 

our dataset consisting of 2497 day-3 transferred embryos labeled by known implantation outcome to train 

a CatBoost model (Methods). Again, this classification model was chosen owing to its superior prediction 

performance as evaluated based on ROC-AUC metric. Our model predicts the implantation outcome of 

day-3 transferred embryos with AUC 0.667 (Fig. 4 black ROC curve), which is comparable with the most 

accurate cleavage stage classifiers.  

Current policies for the prediction of embryo implantation outcome are based on the dimensionality-

reduced representation of the available morphokinetic events as visualized by the time-lapse recordings. 

Here we propose to improve the prediction of implantation outcome by extending the series of 

morphokinetic events beyond the recorded history. The first step of the proposed policy is to evaluate the 

risk of developmental arrest at the current state using the classification model that is described above. This 

allows for deselecting the embryos that possess a high risk to become developmentally arrested. Next, we 

apply the GPT model for forecasting the time of the subsequent morphokinetic event. To test whether this 

step contributes to assessing embryo developmental potential, we applied the implantation outcome 

prediction model using as an input the morphokinetic series of the embryos after extending it with one 

forecasted event. Optionally, the developmental arrest – morphokinetic forecasting step can be repeated 

multiple times. With increasing the number of forecasted events, the accuracy of implantation outcome 

prediction is expected to improve, however morphokinetic forecasting accuracy is decreasing. To explore 

these contradicting contributions, we compared embryo implantation outcome prediction by the proposed 

policy of one, two and three event forecasting with the current no forecasting policy (Fig. 4). Current policy 

generated to lowest AUC score. The forecasting of one, two, and three events increased the AUC score, 

such that three-events forecasting demonstrated the highest prediction accuracy (AUC 0.707).  
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Figure 4. Improving embryo implantation prediction via arrest-forecasting policy. Prediction of 
implantation outcome was performed by training a CatBoost model using the morphokinetic profiles of 
the embryos at Day-3 from fertilization. The prediction of embryo implantation was improved by 
applying the embryo arrest – morphokinetic forecasting policy. ROC curves were evaluated for all 398 
test set Day-3 transferred embryos. 
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DISCUSSION 

Counter to existing guidelines recommending extended incubation to blastocyst transfer, the 

majority of embryo transfers to date are performed at cleavage stage owing to various clinical 

considerations. The selection of embryos for transfer can be guided by classification models that 

predict the developmental potential of the embryos to implant using different types of input data, 

ranging from single-frame morphology scoring21 to whole-video raw data1. In particular, 

morphokinetic events can serve as such input features that provide a dynamic characterization of 

preimplantation development and maintain low dimensionality, thus decreasing the risk of 

overfitting. For day-3 transfers, the morphokinetic information that can be extracted remains 

insufficient for accurately predicting embryo implantation outcome. As a result, day-3 fresh 

transfer implantation rates are significantly lower than day-5 transfers. To improve the assessment 

of day-3 embryos without extended incubation, we aimed at expanding the existing morphokinetic 

profiles by computationally forecasting future morphokinetic events. The overall goal is to 

contribute to accurate evaluation of embryo implantation potential, thus improving the selection 

of embryos for transfer to increase implantation rate.  

Forecasting is a challenging problem across scientific and medical disciplines22. However, the 

advances in machine learning, the storage and processing of massive amounts of clinically labeled 

data, and the upscaling in computational power provide means for accomplishing forecasting tasks 

also in clinical settings23–26. Particularly, the incorporation of time-lapse incubators in IVF clinics 

has allowed the generation and accumulation of preimplantation videos of entire transfer cycles, 

including non-transferred embryos, transferred embryos, and transferred embryos with known 

implantation outcome labels. Standard approaches for designing machine learning classification 

models require the assembly of morphokinetic datasets of transferred embryos with known 

implantation outcome for training. However, such labeled datasets are relatively small as 

compared with the datasets of transferred and non-transferred embryos. In addition, there are 

inherent problems that are associated with manual morphokinetic annotation of a large number of 

embryos, including intra- and inter-observer variations and the workload resources that should be 

dedicated. These hurdles can be overcome using the now-available automatic morphokinetic 

annotation algorithms4,16. Akin to transfer learning approaches, we exploit the large datasets of 

morphokinetically-annotated datasets of non-transferred embryos and embryos that lack known 
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implantation outcome labels for training a morphokinetic forecasting model. Forecasting is then 

applied to embryos with known implantation outcome. 

An analogy exists between language sentences and morphokinetic sentences: (1) Morphokinetic 

profiles are series of discrete developmental events, just like linguistic sentences are series of 

discrete words. (2) In both cases, a governing mechanism exists that generates dependence 

between the present series and the consecutive element: biological regulatory processes of embryo 

development and language. (3) Despite these molecular regulatory processes and the verbal 

context, uncertainty exists in the identity of the consecutive element in both cases. In the past 

decade, significant advances in Linguistic Modeling have been achieved that provide highly 

accurate sentence completion7,9. To date, Natural Language Processing (NLP) has been 

implemented in healthcare only in relation with the textual domain in order to process written 

medical records27,28. Here we harnessed GPT-based modeling for performing non-textual 

morphokinetic forecasting. The inaccuracy that we demonstrate in forecasting up to three events 

is < 12% of the time of event, which is sufficient in order to improve the AUC for the prediction 

of embryo implantation from 0.667 to 0.707. This increase in AUC should be considered with 

respect to the highest reported prediction of embryo implantation outcome19, which did not exceed 

AUC 0.650.  

In summary, we present a new policy for embryo selection for transfer that is based on a 

morphokinetic forecasting model. It combines deselecting embryos with high risk of 

developmental arrest and favoring the embryos with the highest potential to implant as evaluated 

for the extended profile with forecasted events. The clinical implementation of this policy is 

expected to serve as a decision support tool in IVF clinics that utilize time-lapse incubation 

systems. By improving assessment of embryo quality, our algorithm is expected to increase 

implantation rates while shortening time-to-pregnancy. Finally, to the best of our knowledge, we 

demonstrate for the first time the utilization of Language Modeling of non-textual data in 

healthcare, which we hope will stimulate future work in reproductive medicine as well as in other 

medical fields. 
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