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List of eGeMAPs features

Here is a list of features used from eGeMAPS (see main manuscript for citation and
source code):
F0semitoneFrom27.5Hz_sma3nz_amean,
F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope,
F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope,
F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2,
F0semitoneFrom27.5Hz_sma3nz_percentile20.0,
F0semitoneFrom27.5Hz_sma3nz_percentile50.0,
F0semitoneFrom27.5Hz_sma3nz_percentile80.0,
F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope,
F0semitoneFrom27.5Hz_sma3nz_stddevNorm,
F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope, F1amplitudeLogRelF0_sma3nz_amean,
F1amplitudeLogRelF0_sma3nz_stddevNorm, F1bandwidth_sma3nz_amean,
F1bandwidth_sma3nz_stddevNorm, F1frequency_sma3nz_amean,
F1frequency_sma3nz_stddevNorm, F2amplitudeLogRelF0_sma3nz_amean,
F2amplitudeLogRelF0_sma3nz_stddevNorm, F2bandwidth_sma3nz_amean,
F2bandwidth_sma3nz_stddevNorm, F2frequency_sma3nz_amean,
F2frequency_sma3nz_stddevNorm, F3amplitudeLogRelF0_sma3nz_amean,
F3amplitudeLogRelF0_sma3nz_stddevNorm, F3bandwidth_sma3nz_amean,
F3bandwidth_sma3nz_stddevNorm, F3frequency_sma3nz_amean,
F3frequency_sma3nz_stddevNorm, HNRdBACF_sma3nz_amean,
HNRdBACF_sma3nz_stddevNorm, MeanUnvoicedSegmentLength,
MeanVoicedSegmentLengthSec, StddevUnvoicedSegmentLength,
StddevVoicedSegmentLengthSec, VoicedSegmentsPerSec, alphaRatioUV_sma3nz_amean,
alphaRatioV_sma3nz_amean, alphaRatioV_sma3nz_stddevNorm, equivalentSoundLevel_dBp,
hammarbergIndexUV_sma3nz_amean, hammarbergIndexV_sma3nz_amean,
hammarbergIndexV_sma3nz_stddevNorm, jitterLocal_sma3nz_amean,
jitterLocal_sma3nz_stddevNorm, logRelF0-H1-A3_sma3nz_amean,
logRelF0-H1-A3_sma3nz_stddevNorm, logRelF0-H1-H2_sma3nz_amean,
logRelF0-H1-H2_sma3nz_stddevNorm, loudnessPeaksPerSec, loudness_sma3_amean,
loudness_sma3_meanFallingSlope, loudness_sma3_meanRisingSlope,
loudness_sma3_pctlrange0-2, loudness_sma3_percentile20.0, loudness_sma3_percentile50.0,
loudness_sma3_percentile80.0, loudness_sma3_stddevFallingSlope,
loudness_sma3_stddevNorm, loudness_sma3_stddevRisingSlope, mfcc1V_sma3nz_amean,
mfcc1V_sma3nz_stddevNorm, mfcc1_sma3_amean, mfcc1_sma3_stddevNorm,
mfcc2V_sma3nz_amean, mfcc2V_sma3nz_stddevNorm, mfcc2_sma3_amean,
mfcc2_sma3_stddevNorm, mfcc3V_sma3nz_amean, mfcc3V_sma3nz_stddevNorm,
mfcc3_sma3_amean, mfcc3_sma3_stddevNorm, mfcc4V_sma3nz_amean,
mfcc4V_sma3nz_stddevNorm, mfcc4_sma3_amean, mfcc4_sma3_stddevNorm,
shimmerLocaldB_sma3nz_amean, shimmerLocaldB_sma3nz_stddevNorm,
slopeUV0-500_sma3nz_amean, slopeUV500-1500_sma3nz_amean,
slopeV0-500_sma3nz_amean, slopeV0-500_sma3nz_stddevNorm,



slopeV500-1500_sma3nz_amean, slopeV500-1500_sma3nz_stddevNorm,
spectralFluxUV_sma3nz_amean, spectralFluxV_sma3nz_amean,
spectralFluxV_sma3nz_stddevNorm, spectralFlux_sma3_amean,
spectralFlux_sma3_stddevNorm.

RESULTS

Visualization of Redundant Features

See Figure S1–S9 for a visualization of redundant features for all participants, patients, and

controls and for reading, vowel, and reading+vowel tasks. Top 5 features are highlighted in bold

and their rank is displayed before the feature name with the corresponding leaf marked with an

"x". When stratifying samples by disorder and task, clustering becomes more homogenous

(clusters tend to contain a single feature type) in comparison to when all participants or both

tasks are included as in Figure S3. Even in Figure S3, the chosen color-coded classification of

features appears to be empirically replicated in this dataset given most low-level clusters (i.e.,

have higher dependency) are for the most part homogenous (i.e., of the same color). This also

allows us to observe exceptions (e.g., mean spectral flux clusters with loudness features) which

could otherwise be missed if using only a priori theoretical knowledge.



Figure S1. All participants, reading task: Visualization of features with shared information using pairwise
distance correlation across the 88 eGeMAPs features. Squares are clusters of redundant features.



Figure S2. All participants, vowel task: Visualization of features with shared information using pairwise
distance correlation across the 88 eGeMAPs features. Squares are clusters of redundant features.



Figure S3. All participants, reading+vowel tasks: Visualization of features with shared information using
pairwise distance correlation across the 88 features. Squares are clusters of redundant features.



Figure S4. Patients, reading task: Visualization of features with shared information using pairwise
distance correlation across the 88 eGeMAPs features. Squares are clusters of redundant features.



Figure S5. Patients, vowel task: Visualization of features with shared information using pairwise distance
correlation across the 88 eGeMAPs features. Squares are clusters of redundant features.



Figure S6. Patients, reading+vowel tasks: Visualization of features with shared information using pairwise
distance correlation across the 88 eGeMAPs features. Squares are clusters of redundant features.



Figure S7. Controls, reading task: Visualization of features with shared information using pairwise
distance correlation across the 88 eGeMAPs features. Squares are clusters of redundant features.



Figure S8. Controls, vowel task: Visualization of features with shared information using pairwise distance
correlation across the 88 eGeMAPs features extracted. Squares are clusters of redundant features.



Figure S9. Controls, reading+vowel tasks: Visualization of features with shared information using
pairwise distance correlation across the 88 features. Squares are clusters of redundant features.



Performance with and without redundant features

While removing redundant features is important for explainability, it should not be at the expense
of predictive performance. Therefore, we trained and evaluated models and progressively
removed redundant features to observe how performance dropped with fewer and fewer
features. For each data type (reading, vowel, reading+vowel), through visual inspection of
Figure S10, we chose the smaller feature set size that had similar performance to the full
feature set size of 88 features: 39 features for reading, 13 features for vowel, and 19 features
for reading+vowel.



Figure S10. Performance as a function of feature set size using Independence Factor method for
reducing feature redundancy. The feature sets remove features with distance correlation ≥ 0.2 up to 1.0
(i.e., keeping all features) in increments of 0.1.



Feature Selection

To make sure information from the test sets is not having a strong influence on feature selection,

we tested feature selection on 50 random train sets (80% of samples to match how models

were trained) to make sure similar features were selected through this nested approach. If

feature selection is relatively consistent across samples, removing features on the entire dataset

should not be overfitting and is preferred for the explainability analysis to compare the same

features. As seen in Table S1, all or most of the features used by selecting on the data set were

also the most common across 50 splits and were selected in 91%, 83% and 76% of splits for

reading, vowel and reading+vowel, respectively. Therefore, similar features are selected using

both methods, but selecting on the entire dataset is preferred for explainability purposes (i.e., to

rank the same features by their importance across all bootstrapping splits).

Selection using Reading Vowel Reading+Vowel

Entire dataset Optimal threshold
and selected
features

0.5 0.3 0.4

Selected features 39 13 19

50 bootstrap train
sets

Selected features
(mean [95% CI])

35.8 [34–38] 12.3 [11–14] 17.9 [16–20]

Match between
both methods
(entire dataset /
most common
across 50 train
sets)

39/39 12/13 16/19

Selected in
percentage of
runs

91% 83% 76%

Table S1. Comparison of selecting features on the entire dataset (useful for explainability) versus
selecting on 50 bootstrap (80–20) train splits. Original total features are 88. CI = Confidence Interval.



Performance removing participants that used other recording

system

Given 24 patients were recorded using an iPad, we trained models without their samples to

make sure these differences in recordings were not driving performance. 66, 72, and 138

samples were removed from the reading, vowel, and reading+vowel datasets, respectively.

Given the observed performance drop can also be due to removing training samples, the drop is

not large enough to suspect that differences in recording are driving performance when using

the full datasets (see Supplementary Table S2).

Features LogisticRegression MLP RandomForest SGD

Reading 88 .82 (.71–.87; .50) .82 (.73–.88; .51) .80 (.72–.88; .53) .79 (.66–.87; .50)

Vowel 88 .78 (.71–.89; .50) .79 (.68–.90; .54) .81 (.73–.90; .52) .74 (.60–.85; .45)

Reading+Vowel 88 .79 (.70–.87; .50) .81 (.74–.88; .52) .81 (.73–.88; .52) .77 (.67–.84; .50)

Table S2. Performance of models without 24 patients recorded on iPad. Median ROC AUC score from 50
bootstrapping splits (90% confidence interval; median score of null model). The control group represents
60% of the training samples. MLP: Multi-Layer Perceptron; SGD: Stochastic Gradient Descent Classifier.

Furthermore, we tested how well a model trained on all participants except those using the iPad

and tested on the 24 UVFP patients that used the iPad (see Table S3) to assess generalizability

of the model to different recording settings. However, since the iPad recordings were all patients

we can therefore only measure false negative rate but not ROC AUC. We used only the controls

matched in age and sex to the remaining UVFP patients for training the models to maintain a

balanced dataset (i.e., 53 UVFP patients and 53 matched controls).



Features LogisticRegression MLP RandomForest SGD

Reading 88 0.08 0.26 0.09 0.39

Vowel 88 0.1 0.11 0.36 0.12

Reading+Vowel 88 0.12 0.2 0.12 0.12

Table S3. False negative rate (FNR) of training on one recording device and testing on 24 UVFP
patients that used iPad. FNR is generally quite low. Performance can also be influenced by
having a smaller training set in order to balance the classes.

Biased features

We identified features that are biased (differ between groups not due to the intrinsic nature of
UVFP, equivalentSoundLevel_dBp, and the other intensity-related features it is srongly
associated with: loudness_sma3_amean, loudness_sma3_stddevNorm,
loudness_sma3_percentile20.0, loudness_sma3_percentile50.0,
loudness_sma3_percentile80.0, loudness_sma3_pctlrange0-2,
loudness_sma3_meanRisingSlope, loudness_sma3_stddevRisingSlope,
loudness_sma3_meanFallingSlope, loudness_sma3_stddevFallingSlope,
loudnessPeaksPerSec, equivalentSoundLevel_dBp, HNRdBACF_sma3nz_amean, and
HNRdBACF_sma3nz_stddevNorm.

We correlated these intensity features with all other features and removed the 43 features that
had a distance correlation > 0.3 as seen in Table S4. We correlated the audio duration with all
other features and removed the 44 features that had a distance correlation > 0.3 as seen in
Table S4.

Features associated with intensity features dcor

spectralFluxV_sma3nz_amean 0.9

spectralFlux_sma3_amean 0.89

F0semitoneFrom27.5Hz_sma3nz_amean 0.88

F0semitoneFrom27.5Hz_sma3nz_percentile20.0 0.88

F0semitoneFrom27.5Hz_sma3nz_percentile50.0 0.86

F0semitoneFrom27.5Hz_sma3nz_percentile80.0 0.82

spectralFluxUV_sma3nz_amean 0.78

slopeUV500-1500_sma3nz_amean 0.7

F0semitoneFrom27.5Hz_sma3nz_stddevNorm 0.57



slopeV500-1500_sma3nz_amean 0.57

spectralFlux_sma3_stddevNorm 0.54

shimmerLocaldB_sma3nz_amean 0.53

shimmerLocaldB_sma3nz_stddevNorm 0.48

slopeV0-500_sma3nz_amean 0.47

F3frequency_sma3nz_amean 0.46

VoicedSegmentsPerSec 0.45

F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2 0.44

F1bandwidth_sma3nz_amean 0.43

F2frequency_sma3nz_amean 0.43

MeanUnvoicedSegmentLength 0.42

F2amplitudeLogRelF0_sma3nz_amean 0.4

F3amplitudeLogRelF0_sma3nz_amean 0.4

jitterLocal_sma3nz_amean 0.39

F2amplitudeLogRelF0_sma3nz_stddevNorm 0.39

F3amplitudeLogRelF0_sma3nz_stddevNorm 0.39

F1frequency_sma3nz_amean 0.38

jitterLocal_sma3nz_stddevNorm 0.38

MeanVoicedSegmentLengthSec 0.37

F1frequency_sma3nz_stddevNorm 0.37

mfcc1_sma3_amean 0.37

F1amplitudeLogRelF0_sma3nz_amean 0.36

spectralFluxV_sma3nz_stddevNorm 0.35

F1amplitudeLogRelF0_sma3nz_stddevNorm 0.35

F2frequency_sma3nz_stddevNorm 0.35

StddevUnvoicedSegmentLength 0.34

mfcc4_sma3_amean 0.34

alphaRatioV_sma3nz_stddevNorm 0.33

mfcc4V_sma3nz_amean 0.33



hammarbergIndexV_sma3nz_stddevNorm 0.32

F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope 0.32

F3bandwidth_sma3nz_stddevNorm 0.31

F3frequency_sma3nz_stddevNorm 0.31

F2bandwidth_sma3nz_amean 0.31

mfcc2_sma3_amean 0.3

Table S4. Features with distance correlation (dcor) > 0.3 with biased intensity-related features.


