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Abstract 

Background 

Accurate and representative data is vital for precisely reporting the impact of influenza in 

healthcare systems. Northern hemisphere winter 2022/23 experienced the most substantial 

influenza wave since the COVID-19 pandemic began in 2020. Simultaneously, new data 

streams become available within health services because of the pandemic. Comparing these 

data, surveillance and administrative, supports the accurate monitoring of population level 

disease trends.  

Methods  

We analysed admissions rates per capita from four different collection mechanisms covering 

National Health Service hospital Trusts in England over the winter 2022/23 wave. We adjust 

for difference in reporting and extracted key epidemic characteristics including the 

maximum admission rate, peak timing, cumulative season admissions and growth rates by 

fitting generalised additive models at national and regional levels. 

Results 

By modelling the admission rates per capita across surveillance and administrative data 

systems we show that different data measuring the epidemic produce different estimates of 

key quantities. Nationally and in most regions the data correspond well for the maximum 

admission rate, date of peak and growth rate, however, in subnational analysis 

discrepancies in estimates arose, particularly for the cumulative admission rate.  

Interpretation 

This research shows that the choice of data used to measure seasonal influenza epidemics 

can influence analysis substantially at sub-national levels. For the admission rate per capita 

there is comparability in the sentinel surveillance approach (which has other important 

functions), rapid situational reports, operational databases and time lagged administrative 

data giving assurance in their combined value. Utilising multiple sources of data aids 

understanding of the impact of seasonal influenza epidemics in the population.     

 

 

 

Introduction 
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Surveillance of influenza is crucial to monitor epidemiological trends and assess current and 

future pressures on primary and secondary health care services. A key aspect of influenza 

surveillance is the monitoring of hospitalisation rates, which require timely estimations of 

the number of patients admitted to hospital and the population those admitted draw from. 

Monitoring these rates is important as they give a measure of season severity, indicators of 

pressure that allow healthcare systems to adjust care delivery and the ability to compare 

the disease dynamics through time and across locations. Influenza hospitalisations in 

England are measured and monitored in several ways across different administrative data 

sources and active surveillance systems. These data are collected for a range of purposes, 

some are explicitly for influenza surveillance such as SARI Watch [1] or for example 

managing hospital payments, such as the Secondary Use Services (SUS) database [2]. 

Influenza is a transmissible respiratory virus that causes seasonal epidemics worldwide, 

leading to a high morbidity [3, 4] and mortality [5] as well as pressures on primary and 

secondary care services [6, 7]. The influenza virus has 4 types, only two of which, influenza A 

and B, tend to cause seasonal epidemics [8]. The most common symptoms of influenza are 

fever, body aches, fatigue, dry cough, sore throat, headaches [9] and the disease can cause 

life threatening complications, with greatest risk for those over 65 and under 2 years of age 

or with chronic health conditions [10, 11, 12]. Since the onset of the COVID-19 pandemic 

influenza transmission was limited by the impacts of non-pharmaceutical-interventions 

(NPI) [13, 14, 15], changes to contact networks [16], and increase in the size of the 

susceptible population [17], making a resurgent influenza epidemic wave of key importance 

for healthcare operational demands. The joint healthcare pressure of an influenza wave and 

a COVID-19 wave at the same time, co-circulating [18], posed an at the time unseen 

scenario for care providers in 2022, with a considerable risk of overstretched intensive care 

unit capacities [19].  

In this research we compare four data sources of influenza hospitalisations over the winter 

2022/23 season in England and explore the different characterisations of the epidemic wave 

they produce by modelling each data source. We produce estimates of key metrics including 

the size, timing, and rate of change of the influenza admissions rates at national and 

National Health Service (NHS) regional geographies. 

Methodology 

This study focuses on the comparison of different data and surveillance sources for 

influenza admission rates, below we outline the different data and their key distinctions in 

measurement and purpose. Furthermore, in this study we compare different key epidemic 

qualities of interest across data sources. These metrics include the timing and magnitude of 

the wave peak, point of maximum growth rate and timing as well as the cumulative season 

admission rate. This is achieved by modelling the different data sources to adjust for 

differences in their temporal granularity, sample size and extract the key metrics from these 

models.  

Data 

Secondary Uses Service – All Patient Care 
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The secondary uses services data set is created from information relating to payment for 

activity undertaken whilst a patient is admitted to hospital. The administrative data is 

published monthly for the financial year so far and allows for additional data to be added to 

pre-existing patient records [20]. There are five data sets within Secondary Uses Services 

(SUS) database: Accident and Emergency (ECDS), admitted patient care (APC), Adult Critical 

Care, Outpatients and Maternity. The focus for this paper is the SUS APC data, which is 

made available with a 2-3 month reporting lag. The data is on a per consultant episode per 

trust basis and includes geographical information about the treatment site, as well as 

patient demographic information (such as age and patient residence). The data includes 

admission/discharge date, diagnosis, and procedure codes, so it is possible to identify the 

reasons a person is admitted and what procedures took places during their stay. This data 

covers all Integrated Care Boards in England [2, 21]. Influenza patients are identified using 

ICD-10 codes J09, J10 and J11 [22] as either primary or secondary diagnosis. Patients with 

COVID-19 emergency code (U071), or those individuals who tested positive for COVID-19 

between fourteen days before, and one day after admission were classified as COVID-19 

patients and excluded from this analysis. The COVID-19 tests were linked from the UKHSA 

Second Generation Surveillance Service (SGSS) [23]. The APC data is not necessarily always 

complete, reports are filed after discharge and episodes statistics may be backfilled, and 

diagnosis codes may not be recorded, so the quality of the data will vary across trusts [24]. 

Data was obtained on the 28 August 2023. Patients who receive an influenza diagnosis 

should have tested positive for the disease based on guidance [25], though without direct 

data linkage between patient and test this is challenging to verify. This data source tells us 

granular information about the patient; however, it tells us little about the disease itself, 

with no typing or sub-typing information recorded. 

SARI Watch 

UKHSA SARI Watch is a surveillance system designed to monitor respiratory disease 

hospitalisations. It includes weekly data for test confirmed influenza, RSV and COVID-19, 

and differentiates between hospital admissions to all levels of care and admissions to critical 

care (intensive care unit/high-dependency units ICU/HDU) [26] and provides the patient age 

range. The main difference between SARI Watch and SUS APC reporting is that SARI Watch 

is based on reporting within a week of admission for near real time surveillance whereas 

APC is upon completion of an admission. There are also important differences in the 

availability of subtyping information which is collected in SARI Watch to inform severity 

assessment and vaccine policy decision. There are also difference in definitions of influenza 

patients, in part this due to testing. SARI Watch contains patients which test positive for 

these diseases either through a point of care or laboratory test, as well as having clinical 

symptoms [26]. SUS APC definition is determined by clinical coding, which may have an 

associated test. SARI Watch provides additional information, including the influenza A 

subtype and type detected, which can support understanding of the current influenza virus 

landscape [26]. The SARI-Watch Sentinel admissions data is collected from a subset of trusts 

in England forming a sentinel network. In comparison to the passive collection of other data 

sources through administrative collection, the SARI data relies on recruitment of 

participating trusts and engagement to maintain the high quality of collection. The SARI 
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Watch Sentinel influenza admissions data we explore in this study contains a week identifier 

based on the ISO week system, trust identifier, as well as admission counts for influenza 

stratified by age band and influenza sub-type or type. Sentinel Trusts are re-recruited 

annually, with some joining and leaving each year, though there is inter-year consistency 

and sites were initially recruited using stratified sampling to ensure a representative sample 

of the whole of England [26]. This data is used as the accepted estimate of admissions rates 

as the UK Official Statistics, with a history of utility for monitoring respiratory illness. The 

near real time epidemiological data is also used for public health responsiveness throughout 

the season. 

National Health Service England Urgent and Emergency Care Situational Report 

National Health Service England (NHSE) urgency and emergency care data is provided by 

individual NHS trusts who deliver a daily situation report (SitRep) on urgent and emergency 

care (UEC) by 11am each day covering the previous 24 hours [27]. The administrative 

reporting process for many trusts is automated and is completed via web form [28]. 

Information on both hospital bed occupancy and patients in the past 24 hours who test 

positive for influenza and made available weekly. For comparison, we assume positive test 

patients in the last 24 hours are analogous to admissions. The occupancy counts are based 

on the latest snapshot in the previous 24 hours on the day of reporting (~8am) [29], which 

are divided into two categories: critical care (ICU/HDU beds) as well as general and acute. 

This system was created as a wider situation report for more than influenza; however, we 

have restricted this analysis to only this virus. The data collection of influenza was started in 

2021 and so does not contain historic influenza pre-COVID-19 comparison benchmarks. The 

data source provides aggregate patient counts, rather than information of the disease itself, 

such as typing or sub-typing produced by tests, or relevant patient characteristics like age. 

Second Generation Surveillance System 

The Second Generation Surveillance System (SGSS) is an administrative database storing 

infectious disease test results in the UK [23]. Within the UK influenza is a notifiable causative 

agent according to the Health Protection (Notification) regulations (2010) [30]. Both positive 

and negative tests are required to be reported within seven days to SGSS by laboratories in 

2022 [31], we are particularly interested in those reported by hospitals in this work. , 

including those of interest for this research within hospitals. The SGSS data was obtained on 

12 September 2023. Within SGSS there are identifiers for the category of test (such as a 

rapid test or PCR), the influenza type (A or B, where the test allows this), the setting of the 

test (such as primary care, inpatient or emergency care), which organisation requested the 

test and some patient characteristics. We selected only tests requested by NHS Trusts, and 

within an inpatient setting as well as deduplicating the tests to be one per patient episode 

to get the date a patient first tested positive for influenza, giving a proxy for an influenza 

hospitalisation. This approach relies on complete records where the NHS Trust and setting 

can be identified, which is not always the case. The completeness of fields that may be used 

to link tests and accuracy of these identifiers varies by NHS Trust and over time. The SGSS 

data provides some information on the disease itself, such as influenza A or B and on the 

patient characteristics such as age.  
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Data Source Label Admission Definition  

Secondary Use 
Services – 
Admitted Patient 
Care 

APC Patient admitted to hospital with a primary or secondary diagnosis 
code of influenza. Excluding patients that have a primary or 
secondary diagnosis of COVID-19 or positive COVID-19 test within 
14 days of admission. 

NHS England 
Urgent and 
Emergency Care 
Situational Report 

UEC New inpatients in the past 24 hours with a laboratory confirmed 
positive influenza test. This will include both admissions due to 
influenza, and patients with influenza. 

SARI Watch 
Sentinel 

SARI Patient admitted to hospital which meets clinical symptom 
criterion and has a confirmed positive influenza test.  

Second Generation 
Surveillance 
System 

SGSS First positive test for an individual while an inpatient within a 
hospital. 

Table 1. Definition of an influenza admission across APC, UEC, SARI and SGSS data. Admissions are considered as patients 
admitted into the acute hospital in either a general ward or critical care. Both PCR and molecular point of care tests are 
included. 

Population Catchment Estimates 

To determine admission rates per capita, allowing us to compare aggregate estimates of 

admissions across disparate hospital groups, we need a population denominator. NHS Trusts 

do not have a clearly defined population they service, with multiple providers placed within 

administrative regions. Which hospital a patient attends emergency care in is dependent on 

location and choice [32]. This health seeking behaviour changes across age groups [33] and 

will vary for different infectious diseases.  

To calculate the effective population of an NHS Trust we produced a proportionate mapping 

between NHS Trust and lower-tier local authorities (LTLA) utilising the same structure from 

the Office of Health Improvement and Disparities NHS Acute (Hospital) Trust Catchment 

Population experimental statistics [34]. We queried the APC database for all patients and 

then aggregated by trust and LTLA to produce the proportionate mapping.  

With this mapping, we used the ONS 2019 local authority population estimates to produce a 

weighted sum of populations across trusts of their feeder LTLAs, giving an effective 

population catchment size for each hospital trust.  

Processing 

To compare across different datasets, were transformed into a consistent structure. Each 

dataset is transformed into a count of influenza admissions per day per NHS Trust that 

reported to the respective system. The population estimate for each NHS Trust is joined 

onto the conformed data. We define the influenza season as 02 October 2022 to 21 May 

2023, epidemiological weeks 40 to 20. 

The SARI Watch data are weekly counts; therefore, we convert to days by dividing by 7. As 

the collection is Monday-Sunday, the date is selected as the midpoint, Thursday. The NHS 

Trusts included are acute secondary care providers defined in the Estates Returns 

Information Collection data [35], with specialist Trusts removed. As the different sources are 
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a mix of opt-in surveillance (SARI Watch), administrative secondary purpose collections 

(SUS, SGSS) and a newly set up reporting system (UEC), there are varying levels of Trust 

participation. We define an inclusion criteria for Trusts to ensure a minimum level of quality 

to reduce bias in the estimate. Trusts are excluded from the analysis using the following 

criteria: 

1. The Trusts reported missing values over the whole study period (aggregate reports 

count: UEC, SARI). 

2. The Trust reported a value of 0 for more than 90% of dates in the study period 

(aggregate reports: UEC SARI). The Trust did not report a test or admission for over 

90% of dates in the study period (individual reports: APC, SGSS). 

Criteria 1 is used to remove non-participating Trusts in aggregate reporting and criteria 2 is 

used to remove incorrect null returns, which bias downward the admission rate or Trusts 

that did not provide identifying details in individual details, such as an organisation code. 

The choice in threshold value for criteria 2 is shown in Supplementary Figure 1.  

Model 

To infer characteristics of the epidemic wave we need to quantify uncertainty due to sample 

sizes and adjust for reporting effects. Three of the four data sources within the analysis are 

daily, which introduces a day-of-week effect, with hospital admissions and/or tests dropping 

over weekends. We estimated the admissions per capita as a smooth function of time (s(t)) 

using a generalised additive model (GAM). The GAM used thin-plate splines through time 

with a negative binomial error structure, log-link function and model offset of the 

population size. A random effect 𝑓2 was used to adjust for the day-of-week effects dow) in 

reporting for APC, UEC and SGSS data sources, but this was not needed for the weekly SARI 

data. The thin-plate spline 𝑓1 is fit over time points 𝑡. The national models are defined in 

Equation 1 and 2, with the regional models defined by Equation 3 and 4, where i  denotes 

the region, producing an independent spline fit for each region, with a complete pooled 

day-of-week adjustment. The population size is given as 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒(𝑡) which is the 

sum of Trust catchment populations that reported admissions at 𝑡. 

𝑠(𝑡) = 𝑙𝑜𝑔(𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑡)) = 

𝛽0 + 𝑓1(𝑡) + 𝑓2(𝑑𝑜𝑤) + 𝑙𝑜𝑔 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒(𝑡))        Equation 1 

𝑠(𝑡) = 𝑙𝑜𝑔(𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑡)) = 

𝛽0 + 𝑓1(𝑡) + 𝑙𝑜𝑔 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒(𝑡))              Equation 2 

𝑠(𝑡) = 𝑙𝑜𝑔 (𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑡)) 

𝛽0 + 𝑓1(𝑡, 𝑖) + 𝑓2(𝑑𝑜𝑤)  + 𝑙𝑜𝑔 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒(𝑡, 𝑖))      Equation 3 

𝑠(𝑡) = 𝑙𝑜𝑔(𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑡)) = 

𝛽0 + 𝑓1(𝑡, 𝑖)  + 𝑙𝑜𝑔 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒(𝑡, 𝑖))        Equation 4 
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The models are fit using the R package mgcv [36]. From the models we extracted samples of 

the fit to quantify both model and data uncertainty as well as the first derivative of the 

epidemic wave, the growth rate, using a central finite difference approach with the R 

package gratia [37]. By taking the estimated smooth function of time s(t), its derivative the 

daily growth rate 
d s(t)

𝑑𝑡
 we calculate the instantaneous doubling time as 

log (2)
d s(t)

𝑑𝑡

. 

Comparison Metrics 

Day of week effects in admissions are confounders of the true underlying epidemic growth 
rate. As these are modelled as random effects in equations 1 and 2, we omit these weekly 
cycles in admission numbers from our presented per capita admission rates and growth 
rates. From the fit models we generate 1000 posterior samples for the admissions per capita 
and growth rate via an approximate multivariate normal method, using the gratia package 
[37]. From these posterior samples we calculate summary statistics across the draws from 
the model fit and use quantiles to capture the uncertainty. For each summary metric of the 
epidemic wave by data source, we produced a median estimate and 95% confidence 
interval.  

To characterize the epidemic wave we produce estimates of key metrics of interest for the 
size, timing and rate of change of the influenza admissions. The maximum admission rate is 
the maximum value of each set of posterior draws across the wave. The peak date is the 
date at which the maximum admission rate occurs across the posterior draws. The 
cumulative admission rate is the sum of the daily admission rate over the wave for each set 
of posterior draws. We also perform inference on qualities of the epidemic wave first 
derivative, extracting the maximum growth rate, timings of change points and the length of 
peak, defined as the difference between the maximum and minimum growth rate. 

Results 

Reporting Coverage 

Working with an admission rate per capita and changing Trust participation means the 

population denominator can change over time for some datasets as participation evolves. 

The national count of Trusts reporting over the season are shown in Table 1, along with raw 

counts of the peak and cumulative admissions to demonstrate the scale of data source 

unadjusted for reporting variation, regional breakdowns are given in Supplementary Table 

1. How the proportion of a population covered by the dataset changed through time is 

shown in Figure 1. APC consistently reports the highest coverage, at near 100% population 

catchment reporting, though this is not in real-time, with a three-month reporting lag. In 

England, the next highest is the UEC source which covers approximately 75% of the country. 

This proportion changes with time, with more Trusts starting to report part way through the 

season after the peak had passed driven by the Midlands and London regions. Regionally 

SGSS has reporting from 50% population coverage and above, though there is again regional 

heterogeneity. This proportion is driven by missing information in the database, causing 

exclusions due to criteria 2 – Trusts not reporting tests over 90% of the season. The SARI 
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dataset has lowest coverage which is expected from a sentinel surveillance approach aiming 

for a representative sample of Trusts, rather than full coverage.  

Dataset 
Trusts reporting 

(minimum – 
maximum) 

Peak Admissions 
Cumulative 
Admissions 

APC 115 - 115 1505 46043 

SARI 12 - 19 227 1236 

SGSS 78 - 78 1088 29606 

UEC 89 - 105 1028 32706 
Table 1. Unmodelled national summary of reported data across the different data sources. Counts are from the processed 
data after exclusion criteria are applied. Trust counts are the lowest and highest number of participating Trusts for a given 
report post exclusion criteria. Peak admissions are taken as the maximum admissions in each report and cumulative 
admissions the sum of all admissions reported. These metrics are not corrected for time varying participation and 
population catchment sizes. Regional breakdowns are given in Supplementary Table 1. 

 

Figure 1. The population catchment of trusts reporting to each data source over time as a proportion of the total population 
in that geography. As individual level data sources, APC and SGSS do not change over time and are lower than 1.0 due to 
the inclusion criteria for reporting. 

 

Modelled Admissions and Doubling Time 
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The winter 2022/23 seasonal influenza wave was early in the season with a fast growth and 

similarly fast decline. The modelled national admissions wave timing appears to correspond 

well between datasets shown in Figure 2A, though the magnitudes of the rates differ. There 

is high uncertainty in the admission rate for UEC, with SARI having consistently higher values 

outside of the peak wave period. There is a similar picture of agreement in the doubling 

times for the different datasets in Figure 2B. Each source is growing at a similar rate and had 

a fastest doubling time of approximately seven days. The unmodelled data with clear day-

of-week effects and stochastic noise can be found in Supplementary Figure 2. 
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Figure 2. National modelled admission per capita wave with weekly effect correction (sub-plot A) and the national 
admissions growth rate expressed as a doubling/halving time (sub-plot B) across the different data sources. Solid lines 
represent median model estimate and ribbons the 95% confidence interval. 

The estimated regional per capita rates in Figure 3 broadly show agreement in trend across 

the data sources. The exception to this is in London, where SARI estimates a notably higher 
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rate with a gap between confidence intervals for much of the peak. UEC and SGSS estimated 

admission rates are substantially below the other two sources and appear to be lower than 

the other regions. The APC estimate in London is between these two different trends, more 

in line with other regions. While it is important not to over interpret growth rates at low 

counts (the early and late season) there is regional uncertainty across datasets in Figure 5 in 

the beginning and end of the season. This high uncertainty in the growth rate means it takes 

longer into the season to determine when a growth phase has started which would be when 

the confidence interval no longer crosses a doubling time of zero. As expected from the 

smaller sample sized approach there is more uncertainty in the SARI growth rate, though 

the direction agrees with other data.  
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Figure 3. Regional modelled admission per capita wave with weekly effect correction (sub-plot A) and the regional 
admissions growth rate expressed as a doubling/halving time (sub-plot B) across the different data sources. Solid lines 
represent median model estimate and ribbons the 95% confidence interval. 

 

Epidemic Wave Peak 
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The peak admissions rate of an influenza wave is a key characteristic when comparing 

seasons, but as shown in Figure 4 there is variation in the estimates for the peak admissions 

rate regionally. Nationally, there is strong agreement on the maximum rate, with central 

estimates all between 2.4 and 3 admissions per 100k with overlapping confidence intervals. 

There is high uncertainty in the estimate produced by UEC across most regions, and as with 

other analysis we can see a disparity in datasets for estimating the peak in London. 

Excluding London and the East of England there is agreement in the magnitude of the peak 

which implies there may be different ascertainment rates or reporting in London and East of 

England. 

 

Figure 4. The estimated maximum number of admissions per capita nationally and regionally across each data source at the 
peak of the epidemic wave for the winter 2022/23 season. The central point represents the median estimate, and the lines 
the 95% confidence interval. 

The timing of an epidemic peak is crucial for healthcare providers and public health officials 

to know. The analysis in Figure 5 shows that the different data sources provide similar 
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estimates of the day of peak, centred around 22 December 2022. The lack of spatial 

variation in peak timing implies all regions experienced a similar epidemic which did not 

spread across the country, but rather occurred simultaneously. Due to the day-of-week 

adjustment (APC, SGSS, UEC) or weekly data (SARI) there is large uncertainty about when 

the peak occurred - with 95% intervals between 10-14 days nationally or larger regionally.  

Season Cumulative Admissions Rate 

While the timing and magnitude of the influenza admissions peak is a measure of system 

pressure, the burden on the healthcare system can be characterised over the whole season 

as the cumulative season admission rates explored in Figure 5. There is high variation in 

cumulative admission rate across regions and datasets. The clearest difference is the low 

total admissions in UEC and SGSS within London, and substantially higher rate in SARI. This 

London difference drives much of the national difference in cumulative rates.

 

Figure 5. The estimated date of the epidemic wave peaking nationally and regionally across each data source in the winter 
2022/23 influenza season. The central point represents the median estimate, and the lines the 95% confidence interval. 
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Figure 6. The estimated cumulative admissions per capita nationally and regionally across each data source over the 
2022/23 winter season in England. The central point represents the median estimate, and the lines the 95% confidence 
interval. 

Speed of Doubling Time 

How quickly an epidemic is growing is an important metric for understanding it’s 

progression – to understand the winter 2022/23 influenza wave’s speed we extracted the 

maximum doubling time of the wave presented in Figure 7. Nationally, the epidemic wave 

was shown to double very quickly, with all datasets giving a maximum doubling time of near 

seven days. Regionally, there is much variation, with some datasets giving even shorter 

doubling times and some substantially longer, such as SGSS and UEC in London, and SARI in 

East of England. The estimated dates of fastest doubling and halving times are given in 

Supplementary Figure 3 and the estimated length of peaks in Supplementary Figure 4. 
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Figure 7. The estimated doubling time (days until admissions double given the growth rate) across each data source over 
the 2022/23 winter season in England. The central point represents the median estimate, and the lines the 95% confidence 
interval. A lower doubling time corresponds to a faster growing epidemic. 

 

Discussion 

This research shows that while there may be variation in influenza admission rates across 

England, this variation can often be an artifact of the data studied, rather than just 

epidemiology. We have compared different datasets which use a range of definitions for an 

influenza hospital admissions and have different levels of population coverage, but there 

are many metrics and public health relevant questions where they agree. At a national level, 

for some of the analysis explored in this work there is strong agreement in trends, such as 

the maximum admission rate, estimated date of peak and maximum doubling time. 

However, this correspondence breaks down for the cumulative admissions rate, which may 

be more sensitive to the whole season surveillance.  
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The seasonal influenza wave in England in 2022/23 was an early wave, which spread quickly, 

peaked high compared to historic seasons and fell rapidly. Across datasets there is high 

variation in the timing of the influenza peak, though there is uncertainty in the modelled 

estimates. Across datasets there is the most regional variation in metrics for London and 

East of England. For example, in London the UEC and SGSS data sets are at very low levels, 

the sentinel SARI approach gives a large epidemic wave, whereas the retrospective but 

possibly more accurate APC gives a wave between the data sources. The result suggests that 

there are challenges in interpretation of the data in these regions.  

Overestimates could be due to the sample containing disproportionate high reporting well 

engaged Trusts, whereas the lower estimates could be due to either lower ascertainment 

within the reporting hospitals, or issues with the reporting itself. This has real implications 

for monitoring the epidemic in real-time as APC is not available – the choice in dataset may 

lead to different conclusions in this region. It’s crucial to note, except for APC, none of the 

datasets have near-complete coverage of secondary care providers in England. This is of 

course not expected of SARI which employs a sampling approach but does leave room for 

higher participation for Trusts within some regions in SARI. Consistently accurate values in 

more Trusts within the UEC would reduce the number of Trusts excluded and increase 

coverage, and in SGSS more Trusts providing organisation identifiers to would drive 

uncertainty down. Being able to link these data sources together, to associate a positive test 

with a patient’s admission records would strengthen our understanding of ascertainment 

and the relationship between the collections. Where participation is high and data 

consistency is strong there is correspondence between the datasets increasing our 

confidence in the estimates derived. Notwithstanding London and the East of England 

regions, the SARI admission rates created using a fraction of the sample size of other 

datasets gives a robust national estimate, and when correcting for day-of-week effects a 

comparable regional estimate in many metrics. The higher cumulative season admission 

rates derived from SARI appear to be a result of higher non-peak-time values than other 

datasets, either representing better engagement/ascertainment in the participating Trusts, 

or a bias toward higher count returns. 

For many regions, metrics and datasets results correspond highly, which is surprising given 

the different definitions for influenza admission, outlined in Table 1. While these definitions 

are different, their similar results imply that the reported estimates are robust and that 

influenza attributable admissions were well ascertained in the 2022 season. As some 

definitions strictly require test positivity, the inclusion of symptoms, and some clinical 

coding, this implies the testing for influenza is highly dependent on a symptom presentation 

and clinical coding dependent on testing, rather than clinical decision making alone. We 

would expect higher dependence on testing to define diagnosis given the confounding 

effect of other respiratory illnesses over the study period, namely COVID-19. The high 

correspondence in clinical coding and other definitions is interesting as coding itself can be 

so variable; the reproducibility of clinical coding between coders is limited [38] indicating 

local practices will differ between Trusts. This issue is exacerbated when comorbidities, 

which alters the risk for influenza patients [39] are taken into account, which causes more 

discrepancy in coding [40]. 
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Limitations 

To be able to compare data sources with different definitions of admission we have had to 

make assumptions about their relationships, such as inpatients testing positive being an 

admission, which is not strictly the case. Furthermore, to compare the datasets models were 

fit to the data to perform inference on the different quantities of interest and adjust for 

different reporting frequencies. This modelling step adds a source of bias into the results as 

the inferences are sensitive to how the models were fit. Ideally, this analysis would be 

conducted across several winter waves to understand changes in datasets over time, 

however, there was limited seasonal influenza incidence in 2020 and 2021 in England, and 

not all datasets existed before this time. Future research should consider a multi-year 

comparison of the influenza waves across the modern datasets available and relied upon in 

public health. The results presented are conducted using after-the-fact analysis to exclude 

specific poor reporting Trusts, which has implications for its utility in real-time. Without the 

inclusion criteria the results would be substantially more biased, as increased incorrect zero 

reporting would drag SGSS and UEC metrics downward. If reporting quality was perfect, 

with admissions reported representing true admissions across datasets we would expect 

that the difference in incidence would be an expression only of the difference in hospital 

admission definition and the Trusts included in reporting, however, this quality issue 

prevents us from inferring the differences in definitions. Crucially this work only looks at one 

very specific part of influenza surveillance. We have not explored the utility of different data 

sources from a public health perspective or an overall healthcare system view, but rather 

specifically on a comparable metric – the admission rate per capita. Further work should 

explore the wider data landscape for secondary care influenza in England more 

comprehensively in a qualitative manner.  

 

Conclusion 

In this research we have shown that there is correspondence in different influenza 

admission rate surveillance and data systems. This is shown by modelling the data to make 

each wave of incidence comparable in the 2022/23 season and estimating different key 

metrics of interest. Though there is clear agreement between the different data sources of 

varying sample size and collection rigor, this relationship breaks down regionally, 

particularly for London and East of England data reporting. The estimated peak size, timing 

and growth rates are similar across data sets, though the cumulative admission rate varies 

substantially regionally. We show that the choice of data can clearly impact the conclusions 

drawn from inference of the epidemic wave. 
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