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Abstract

Infant mortality remains high and uneven in much of sub-Saharan Africa. Even
low-cost, highly effective therapies can only save lives in proportion to how successfully
they can be targeted to those children who, absent the treatment, would have died.
This places great value on maximizing the accuracy of any targeting or means-testing
algorithm. Yet, the interventions that countries deploy in hopes of reducing mortality
are often targeted based on simple models of wealth or income or a few additional vari-
ables. Examining 22 countries in sub-Saharan Africa, we illustrate the use of flexible
(machine learning) risk models employing up to 25 generally available pre-birth vari-
ables from the Demographic and Health Surveys. Using these models, we construct risk
scores such that the 10 percent of the population at highest risk account for 15-30 per-
cent of infant mortality, depending on the country. Successful targeting in these models
turned on several variables other than wealth, while models that employ only wealth
data perform little or no better than chance. Consequently, employing such data and
models to predict high-risk births in the countries studied flexibly could substantially
improve the targeting and thus the life-saving potential of existing interventions.

Introduction

Goal 3.2 of the Sustainable Development Goals (SDG) seeks to “end preventable deaths of
newborns and children under five years of age, with all countries aiming to reduce neonatal
mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low
as 25 per 1,000 live births.” Despite large overall improvements, including a 44% reduction
in child mortality globally from 2000 to 2015, progress has varied widely both between
and within countries,1,2,3 with under-5 mortality exceeding 80 per 1,000 live births in some
countries of sub-Saharan Africa. Further, improvements in national averages can mask large
and widening gaps between sub-populations, with more privileged groups improving their
health status faster than others.4,5

Many of these deaths are preventable as they can be avoided with low-cost interventions
such as oral rehydration therapy, malaria prevention and treatment, vaccines (e.g., against
measles), and nutritional support.6,7 However, a critical feature of any life-saving intervention
is that it can only save the lives of those who would have otherwise died. Even a “miracle
drug” that can counteract any cause of death can only reduce mortality when given to
children who would have died without it. Because of this, interventions that cannot be
given universally must be carefully targeted to those at the highest risk of mortality (absent
the intervention) to have an effect. While this point may seem obvious, in the context
of statistically rare events, it has enormous implications because it can severely limit any
intervention’s theoretical maximum life-saving potential. Consider a country with an infant
mortality rate of 80 deaths per 1,000 births. Normatively, this is far too high, yet this rate
of 0.8% means that intervention given to a random set of individuals can save at most 0.8%
of those to whom it is given.

Worse, in practice, such an intervention will only save the lives of a fraction of those who
would have otherwise died. We call this fraction the efficacy rate (it is sometimes known as
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the “probability of necessity and sufficiency” in the causal inference literature). Suppose the
efficacy rate is 10%, meaning the intervention would save the lives of one-tenth of those who
would have otherwise died. An intervention given at random could save the lives of only 0.8%
* 10% = 0.08% of those given to whom it is given. By contrast, if such an intervention with
the same efficacy rate could instead be targeted to a group with a higher risk of mortality,
say 10%, then it would save the lives of 10% * 10% = 1% of recipients, saving 12.5 times
as many lives.1 In this way, the lives saved by a hypothetical intervention with a given
efficacy rate are limited by and proportional to the mortality risk in the group to which it is
given. Efforts to improve targeting should thus be treated with the same urgency as efforts
to improve the efficacy of the interventions. Accordingly, our paper seeks to demonstrate
the use of tools for better estimating which births are at the highest risk of early mortality.

Unfortunately, the importance of targeting has not been well recognized by recent and
current public health practices in many cases. Although early mortality can have many
causes and can be related to many risk factors, countries facing high early mortality often
target related interventions based on one or a few factors, including income, wealth, or
poverty, and employing simple statistical models or checklists. Similarly, academic research
into models for early mortality that look beyond income, poverty, or wealth remains rare and
not designed to demonstrate how practical, national-level systems could target interventions
to high-risk births. A recent, partial exception finds, first, that poverty is a poor proxy
for the risk of early mortality in Brazil and India, much as we find below for countries in
sub-Saharan Africa.8 Further, for births in India, they find that using just four risk factors
in a linear model roughly doubles the fraction of infant deaths that can be identified in the
highest risk quintile compared to models relying on a proxy for poverty.

We demonstrate the potential for tools that better estimate which births are at the
highest risk of early mortality, using flexibly estimated, individual-level risk scores based
only on a range of commonly available pre-birth data, which can improve the targeting of
life-saving interventions against infant mortality. Specifically, we estimate mortality risk in
individual infants (under one year of age) in 22 countries in sub-Saharan Africa, employing
now-standard machine learning models to identify predictive relationships that may have
eluded more rigid regression models. This flexibility is especially valuable as we provide
these models access to a wider range of risk factors than in previous work. We also em-
ploy only risk factors that can generally be known or anticipated before a child’s birth, as
practical targeting systems may be limited to such data. As is standard in many machine
learning applications, we employ cross-validation and held-out test sets to protect against

1We thank an anonymous reviewer for noting that such an analysis neglects possible spillovers, such
as when saving one child’s life could increase a nearby child’s chance of survival. Such spillovers may be
reasonably likely, for example, in the case of infectious diseases. Computing the net effect of an intervention
under such spillover would require additional structure and assumptions on the problem. It is noteworthy,
however, that because early mortality is statistically rare, the effect of such spillover effects on the net lives
saved can only be non-negligible where that spillover occurs through clusters of births that share very high-
risk levels. This is possible if, indeed risk levels might be highly concentrated (e.g., in particular villages). In
this case, effective interventions well targeted to such high risk areas would enjoy an even greater life-saving
benefit due to this spillover.

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2021.07.20.21260818doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.20.21260818


overly optimistic performance claims due to over-fitting. However, rather than employing
the mathematically complicated, non-intuitive performance metrics commonly employed in
the forecasting literature, we rely on a simpler set of metrics designed to be easily interpreted
by policymakers and to directly speak to the potential impact of a hypothetical policy in-
tervention.

Materials and Methods

Data Sources

We employ data from the Demographic and Health Surveys (DHS), as augmented and pre-
pared for analysis by the Integrated Public Use Microdata Series (IPUMS), henceforth re-
ferred to as the IPUMS DHS data. Each survey we used was the most recent one available
via IPUMS, when our study began. Like other work studying early mortality using the
IPUMS DHS data (e.g.,9,10), we use the “child module” which contains data on births for
children born up to five years before the interview of their mother. Though interviews are
conducted with mothers, one observation in the data represents each child’s birth. This
module restricts our attention to children under five, but contains more predictive variables
than the “all births” module. More importantly, it would be inadvisable to use data collected
on the mother, household, malaria prevalence, location, etc., in the year of the DHS data
collection to predict early mortality from birth many years before.

Originally, the IPUMS DHS data contained surveys on 28 sub-Saharan African coun-
tries. We consider geographic information to be critical for these models since (i) even
coarse geographic indicators can be highly predictive of risk and reduce the need for other,
harder-to-measure variables associated with location, (ii) we considered malaria prevalence
a potentially important variable, but because it is computed for a 10km area around the
DHS sample cluster centroid, it is only available in surveys that collected geographic coor-
dinates, and (iii) the ability to target interventions partly by geography is convenient for
policymakers. Unfortunately, in six countries (Burundi, Chad, Ethiopia, Liberia, Namibia,
and Sudan), the IPUMS DHS data did not include geographic indicators even at the district
level. This limits us at present to surveys from 22 countries: Angola (2015), Benin (2011),
Burkina Faso (2010), Cameroon 2011, Democratic Republic of Congo (2013), Cote d’Ivoire
(2011), Ghana (2014), Guinea (2012), Kenya (2014), Lesotho (2014), Madagascar (2008),
Malawi (2016), Mali (2012), Mozambique (2011), Niger (2012), Nigeria (2013), Rwanda
(2014), Senegal (2017), Tanzania (2015), Uganda (2016), Zambia (2013), Zimbabwe (2015).
Table 1 provides additional information on the available data within each country.

Non-geographic variables

Our outcome is infant mortality, indicated by death before reaching one year of age. For
predictors or risk factors (we use the terms interchangeably) we limit ourselves to predictors
that (i) would be reasonably available to policymakers and health workers in-country, and
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(ii) are measurable prior to the birth of the child, rather than depending on the health or
other features of the child once borne. The latter constraint is in place so that these risk
factors could be used to calculate risk in advance and deploy interventions to households,
clinics, or regions with high risk.

The resulting risk factors we consider are: sibling death at an age less than 1 yr., sibling
death older than 1 year, mother education, birth month (sin and cosine), sex (female), a
rural indicator, local malaria prevalence, maternal age, previous pregnancy terminated, clean
water access, birth order (log), mother’s age at first union, number of bednets (log(+1)), floor
type, age of head of household, female household head, minority religion, christian, or muslim,
unimproved toilet, pit toilet, clean cooking fuel, and within-country wealth percentile (and
its square). The source data from which these are constructed are described in Table 3 of
the Supplement.

Note that the IPUMS DHS data do not indicate how an individual or household is
classified relative to the poverty line in a given country, nor does it attempt to measure
income as such. Thus, rather than including any locally defined poverty measure, we employ
the wealth-based indices provided by DHS. This measure is an index for within-country
wealth, imputed by DHS using principal components analysis over several variables, including
ownership of radios, televisions, and other domestic equipment; electricity and clean water;
type of materials used in the walls, floor, and roof; and the type of toilet in the household.
This score is calculated at the household level. The only requirement we make of this
measure is that, within a given country, it provides an imperfect but potentially informative
measure of relative wealth. Since this index is constructed within each country, and we
train each country’s risk model separately, there is no expectation or need for cross-country
comparability.

Modeling

We estimate infant mortality risk for each birth in the data set. In each country, we separately
run two sets of models. One is a “wealth model”, described below, which reveals what can
be learned from the available wealth data alone. The other set contains flexible machine-
learning approaches that use the predictors described above to estimate individual-level
mortality risk. These include random forest (rf), extreme gradient boosting over trees (xgb),
kernel regularized least squares (krls), and elastic-net regularized logistic regression (elastic-
logit).

Both rf11 and xgb12 are tree-based approaches. The simplest tree-based approaches
are classification and regression trees (cart13), which recursively partition observations into
groups based on one cutoff value of the predictor variables so that each group has similar
values of the outcome. While such single-tree models are easy to interpret, they often perform
poorly, and small input data changes can dramatically affect the model and results. The rf
and xgb methods improve on single-tree approaches by combining many trees. For rf, this is
achieved by effectively averaging the estimates of many trees, each employing only a random
subset of the input variables and trained on a random subset of the observations. As applied
here, each forest contains 500 trees, and the number of variables randomly sampled for each
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Table 1: Data availability by country

Country N original N complete N deaths Geography Unavailable
Angola 11024 10829 472 province (18) age first marriage, malaria
Benin 10490 10199 471 department (12)
Burkina Faso 11728 10905 752 region (13)
Cameroon 9041 8450 564 region or city (12)
Congo (D.R.) 14384 12731 785 province (11) previous child death(s)
Cote d’Ivoire 5945 5211 421 none
Ghana 4548 4203 189 none
Guinea 5422 5223 396 region (8) cooking fuel
Kenya 16557 15110 589 none previous pregnancy ended
Lesotho 2360 2127 145 district (10) bednets, malaria
Madagascar 9657 9229 459 region (22) cooking fuel
Malawi 13633 13231 563 region (3) malaria
Mali 8043 7913 475 region (6) cooking fuel, malaria
Mozambique 8493 8026 537 province (11)
Niger 9650 9612 586 region (8) religion, malaria
Nigeria 24222 23559 1686 geopolitical zone (6)
Rwanda 6055 5350 168 province (5) cooking fuel
Senegal 9585 9371 401 region (14) malaria
Tanzania 8007 7688 319 district (10) cooking fuel, religion, malaria
Uganda 12089 11619 484 district (112) cooking fuel, malaria
Zambia 10646 9811 483 none
Zimbabwe 4852 4630 236 province (10) malaria

Note: Summary of data by country. The DHS data initially include N original observations in
each country, which falls to N complete when we remove missing values on the included variables.
Geography indicates what type of geographic information, if any, is available and the number of
units in parentheses. All other variables described in text are used in each country except where
otherwise indicated under Unavailable.
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tree split (mtry) was set for each country’s model using cross-validation. Under xgb, this
is similarly achieved by combining many trees, but by beginning with one tree, adding the
predictions of another tree trained on the errors of the prior, and then repeating this process
hundreds or thousands of times. We use cross-validation for each country to determine (i) the
learning rate (η ∈ (0, 1), where smaller values help to prevent overfitting), (ii) the maximum
depth of the trees (max depth), (iii) the proportion of the variables to be considered for tree
construction (colsample bytree), (iv) the proportion of observations from the training set
used for modeling (subsample), and (v) the number of iterations for the boosting procedure
(nrounds). The remaining parameters were set at common default values: the minimum
requirement of prediction improvement before selecting a more complex model (γ) was set
to 0, and min child weight, where higher values restrict the depth of each tree based on a
measure of the homogeneity of the labels within the nodes (a sign of overfitting), was set to
1.

Kernel-based regularized least squares (krls14) is a regression and classification technique
that employs kernels. Such approaches effectively build a model by leveraging information
about similar observations. Each observation is treated as a potential “fence post” in the
data, and the model learns how being closer to or further from each such location in the
data influences the expected probability of mortality. We employ a Gaussian kernel as the
measure of similarity using default values.14

Elastic-net logistic regression (elastic-logit15) is similar to conventional logistic regression.
While ordinary logistic regression chooses coefficients βj on each variable j to maximize the
likelihood by minimizing the negative log-likelihood, elastic-net logistic regression minimizes
the negative log-likelihood plus a penalty term that helps to regularize or “shrink” the model,
preventing overfitting. In our case that penalty term is equal to λ(α

2

∑
j |βj| + 1−α

2

∑
j β

2
j ).

The parameters α and λ are chosen by cross-validation. This constitutes a compromise
between what is known as ridge regression (which is penalized by the ℓ2 norm,

∑
j β

2
j ), and

LASSO (penalized by the ℓ1 norm,
∑

j |βj|). By including the ℓ1 norm in the penalty, elastic-
net can set some coefficients to exactly 0, that is, selecting some variables while dropping
others.

Finally, we construct a simple ensemble model in which each predicted probability is the
unweighted average of the probabilities produced by elastic-logit, rf, xgb, and krls. This has
two primary benefits. First, such ensembles often perform as well as the best sub-models and
sometimes better. Second, it allows us to commit to reporting results for a single model—the
ensemble model—as our premier estimate of the predictive power of these models on the test
data. This is preferable to reporting the best-performing model on the test set, which can
be misleading because such a choice effectively means “training on the test set”.

Wealth model

To determine how much information is available in the wealth data alone and to provide a
baseline performance level for comparison, we also model mortality using only wealth data.
To allow a flexible model for wealth, we regress mortality on indicators for wealth, equivalent
to finding the mean mortality level in each wealth decile. In evaluating model performance,
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we can consider how being in the highest-risk decile, quartile, or other groups is related to
mortality risk. There is no presumption that risk is necessarily decreasing or even monotonic
in wealth.

We note that this is a wealth model, not a poverty model, based on poverty assess-
ments made by countries, usually based on income. Neither income nor poverty assessments
themselves are available in the DHS data. This model therefore is not a direct proxy for
poverty-line-based means-testing sometimes employed. That said, our wealth model may
reasonably provide an optimistic indication of what can be predicted by income or poverty-
based approaches. Household income is time-sensitive but is likely to generate risks of early
mortality when it remains low on average over a long period, in which case wealth will also
drop. Moreover, financial shocks such as large expenses or losses may have little impact on
income but substantially on the quality of life, access to healthcare, and poverty as locally
understood (see e.g.16). Our wealth model is also more flexible and less coarse than poverty-
based targeting systems, which typically assign individuals through a binary system (e.g.
above or below the poverty line). Again this is intended to be a favorable choice for the
wealth model so that we can later consider its demonstrated performance likely to be over-
rather than under-stated.

Sample splitting and cross-validation

Before fitting any model, we split the data into training and test sets. For each country,
80% of observations are placed in a training and validation set, while 20% are retained in
a held-out testing set. For the models described above, we tune hyperparameters using
either 10-fold cross-validation within the training set (for elastic-logit, rf, xgb) or leave-
one-out cross-validation (for krls). The cross-validation procedure also gives a preliminary
assessment of model performance. Once all modeling choices were finalized based on this
cross-validation, those models were “frozen”. We completed a paper draft using these cross-
validation results to ensure all decisions were finalized. Only then did we run the model on
the test set to obtain an honest out-of-sample performance assessment without “training on
the test set” by revisiting any decisions.

Variable importance

Our models only seek to determine the best risk estimate possible given a set of predictors,
and the answers say nothing of the causal effect of those predictors on the risk of mortality.
Indeed, many risk factors, such as religion or the type of roof, are valuable not because they
cause mortality but because they are expected to signal the presence of other, unobserved
factors that cause higher mortality. In other words, confounding is expected and hoped for
in these models.

It is valuable, nevertheless to understand which variables the models deem most impor-
tant in estimating the risk to assess the model’s credibility, improve future models, or fo-
cusing public health resources on data collection. Unfortunately, for many machine learning
models, it is more difficult to characterize the model’s behavior than with simpler regression
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approaches like OLS or logit, in which a small number of parameters fully characterizes the
model. That said, readily available measures of variable importance for different models can
provide useful insights. Specifically, for elastic-net, we report how often the model chose
a given variable and the proportion of time their coefficient is positive. For random for-
est, the (scaled) “variable importance” describes what fraction of the time a given variable
was chosen to be included in the classification trees over which each random forest model
aggregates.

Performance metrics

Finally, we employ simple, policy-relevant metrics rather than more esoteric and difficult-to-
interpret metrics often relied upon in machine learning tasks to evaluate our approach. A
model’s recall (also referred to as sensitivity) is the proportion of actual deaths included in
the group we consider to be at risk. What we term “recall10” is defined by first determining
the group of births in the top risk decile (hence the “10”) according to our model, then
computing the fraction of all actual infant deaths accounted for by this group. In policy
terms, this corresponds to a case in which we have resources to target 10% of the population
and wish to know how much of the total mortality risk would be covered in that group. An
ineffective risk assessment that randomizes risk would produce a recall10 of 0.10 (10%). By
contrast, an effective system points us to a top risk decile that accounts for well over 10%
of mortality. Similarly, we report recall20, which tells us the fraction of early deaths within
the top risk quintile. For recall10 and recall20, we also report “efficiency gain”, which tells
us how many times more effective the ensemble model is than the benchmark wealth model.
We consider hypothetical scenarios where it would be difficult for health ministries to target
an intervention to more than 10% or 20% of the birth population due to budget constraints
and practical exigencies. Finally, note that because we are interested in how these models
would perform when applied across the population of births in each country, these recall
measures are constructed using sampling weights (v005).

Results

Performance of the wealth model. Table 2 and 3 provide the primary results, showing
the proportion of mortality among the top 10% (Tables 2) or 20% (Table 3) highest predicted
risk individuals in the test set. The online supplement provides the same performance metrics
but using cross-validated training set results. Those results are extremely similar to the test
set results reported here, indicating little over-fitting in the training process.

Focusing first on wealth as a predictor, on the one hand, the average recall10 of the
wealth model is only 0.12—slightly better than chance. In 15 of 22 countries, the recall10 is
no greater than .12, and in some countries, it is very low (e.g., just 0.03 in Tanzania). On
the other hand, there are two countries with recall10 of 0.16 (Benin and Kenya), and two
with very promising recall10 values over 0.20 (Uganda, Rwanda).

Similarly, Table 3 shows that in the countrywide average, only 24% of infant mortality is
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captured in the top quintile of risk according to the wealth-only model (average recall20 is
0.24). Rwanda is again an exception, with the top quintile accounting for 48% of mortality.
Lesotho similarly has a recall10 of 0.34. In these two countries the wealth model out-performs
the more flexible models attempted. On the other hand, the recall20 of the wealth model is
no better than chance (≤ 0.20) in Cote d’Ivoire, Guinea, Madagascar, Mali, Mozambique,
Niger, Tanzania, and Zimbabwe.

Table 2: Recall10 results, test set

Survey wealth elastic-logit rf xgb krls ensemble efficiency gain

Angola 2015 0.12 0.22 0.22 0.19 0.19 0.22 1.91
Benin 2011 0.16 0.23 0.31 0.20 0.22 0.23 1.47

Burkina Faso 2010 0.12 0.15 0.21 0.16 0.15 0.20 1.67
Cameroon 2011 0.07 0.16 0.23 0.15 0.15 0.22 3.13

Congo (D.R.) 2013-14 0.14 0.19 0.19 0.19 0.16 0.20 1.41
Cote d’Ivoire 2011 0.12 0.29 0.18 0.29 0.27 0.26 2.20

Ghana 2014 0.14 0.11 0.22 0.16 0.08 0.19 1.40
Guinea 2012 0.11 0.14 0.22 0.15 0.13 0.19 1.67
Kenya 2014 0.16 0.21 0.16 0.12 0.19 0.20 1.21
Lesotho 2014 0.14 0.17 0.14 0.14 0.10 0.17 1.25

Madagascar 2008 0.09 0.10 0.15 0.10 0.13 0.21 2.38
Malawi 2016 0.10 0.11 0.20 0.19 0.14 0.17 1.73
Mali 2012 0.07 0.18 0.21 0.23 0.22 0.23 3.14

Mozambique 2011 0.07 0.07 0.18 0.11 0.10 0.15 2.00
Niger 2012 0.12 0.15 0.13 0.15 0.13 0.15 1.29
Nigeria 2013 0.12 0.20 0.21 0.19 0.24 0.25 2.15
Rwanda 2014 0.24 0.21 0.09 0.21 0.21 0.21 0.88
Senegal 2017 0.11 0.17 0.28 0.29 0.16 0.32 2.89
Tanzania 2015 0.03 0.19 0.14 0.14 0.16 0.21 6.50
Uganda 2016 0.20 0.14 0.24 0.23 0.25 0.25 1.26
Zambia 2013 0.10 0.19 0.21 0.14 0.20 0.20 1.90

Zimbabwe 2015 0.09 0.09 0.21 0.19 0.17 0.15 1.75
Average 0.12 0.17 0.20 0.18 0.17 0.21 2.05

Beyond wealth: Gains from richer models The elastic-net logit, rf, xgb, and krls
models all augment the wealth model by adding the additional variables described above.
Overall these models perform similarly to each other, and in all but a few cases, considerably
better than the wealth-only model. According to these models, averaging by country, the
top risk deciles account for 17-21% of mortality (recall10); the top risk quintile accounts for
30-34% of mortality (recall20). On average, the ensemble model performs better than any
of the individual models capturing 21% of the mortality in its top risk decile (recall10), and
34% in the top risk quintile (recall20) when averaged across countries.

Compared to the wealth model, the ensemble model, on average, captures over twice
as much of the mortality in its top risk decile (efficiency gain for recall10) and 1.5 times
the mortality in its top risk quintile (efficiency gain for recall20). No single country always
shows the highest recall10 across models, nor the lowest. Moreover, within given countries,
the ensemble model outperforms the constituent models in many cases, does as well as the
top one or two models in many others, and is never the worst-performing model in that
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Table 3: Recall20 results, test set

Survey wealth elastic-logit rf xgb krls ensemble efficiency gain

Angola 2015 0.31 0.41 0.34 0.36 0.38 0.44 1.41
Benin 2011 0.29 0.36 0.47 0.34 0.39 0.46 1.59

Burkina Faso 2010 0.23 0.35 0.27 0.31 0.41 0.36 1.54
Cameroon 2011 0.24 0.25 0.32 0.24 0.27 0.29 1.22

Congo (D.R.) 2013-14 0.24 0.28 0.32 0.30 0.31 0.35 1.45
Cote d’Ivoire 2011 0.20 0.48 0.30 0.48 0.40 0.48 2.35

Ghana 2014 0.22 0.16 0.22 0.30 0.19 0.24 1.12
Guinea 2012 0.18 0.27 0.38 0.24 0.34 0.33 1.86
Kenya 2014 0.26 0.27 0.32 0.23 0.31 0.32 1.23
Lesotho 2014 0.34 0.31 0.28 0.21 0.17 0.24 0.70

Madagascar 2008 0.19 0.26 0.31 0.24 0.26 0.30 1.59
Malawi 2016 0.24 0.21 0.30 0.28 0.22 0.28 1.15
Mali 2012 0.16 0.35 0.34 0.34 0.35 0.39 2.47

Mozambique 2011 0.19 0.17 0.30 0.20 0.25 0.24 1.30
Niger 2012 0.19 0.23 0.20 0.27 0.24 0.26 1.41
Nigeria 2013 0.21 0.39 0.35 0.37 0.40 0.40 1.93
Rwanda 2014 0.48 0.30 0.33 0.36 0.36 0.36 0.75
Senegal 2017 0.26 0.36 0.38 0.39 0.30 0.41 1.57
Tanzania 2015 0.11 0.32 0.29 0.33 0.25 0.27 2.43
Uganda 2016 0.26 0.29 0.33 0.38 0.35 0.42 1.60
Zambia 2013 0.26 0.32 0.32 0.29 0.30 0.29 1.12

Zimbabwe 2015 0.17 0.26 0.23 0.30 0.21 0.34 2.00
Average 0.24 0.30 0.31 0.31 0.30 0.34 1.54

country. Thus, relying on the ensemble model yields better results than any other model
on average and safeguards against cases where individual models perform poorly in a given
country.

Variable importance Here we characterize the sets of variables most important to form-
ing the risk forecasts, as indicated by variable selection choices in the elastic-net logistic
regression and the established “variable importance” measure in the random forest (Ta-
ble 4). In the elastic-net logistic regression model, every variable was included in at least
23% of the country-level models. A few variables, though, are included especially often: most
models included the previous death of a sibling in the first year (86%) or the death of any
previous sibling at any point (76%). 77% of country-level models included the child’s gen-
der; 73% included an urban/rural indicator. Over two-thirds (68%) of models included the
mother’s years of education, and many included the birth month (73% use sine-transformed
birth month; 55% use cosine-transformed birth month). Maternal age was included in 64%
of models.

For random forest, the “scaled variable importance” describes what fraction of the time
a given variable was chosen to be included in the classification trees over which each random
forest model aggregates. Compared to elastic-net logistic regression, the random forest was
somewhat more selective, with over half of the variables appearing in fewer than 15% of the
regression trees. A few variables were rarely included, such as clean cooking fuel (3%) and
minority religion (5%). By contrast, maternal age was included nearly every time (99.6%),
followed closely by wealth percentile and its square (93%, 94%). The latter set is particularly
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notable, as wealth percentiles were among the least commonly employed in the elastic-net
logit models. Other important variables included malaria incidence rate in the area (92%),
age of household head (77%), and mother’s age at first marriage or union (63%).

Table 4: Variable Importance

variable elastic proportion rf variable
survival positive importance

sibling death (< 1 yr.) 0.86 1.00 0.11
mother education 0.77 0.06 0.39
sin(month) 0.73 0.69 0.46
female 0.73 0.00 0.17
sibling death 0.71 1.00 0.11
rural 0.64 0.71 0.10
malaria 0.62 0.75 0.92
maternal age 0.59 0.08 1.00
prev. pregnancy ended 0.57 0.75 0.12
clean water 0.55 0.58 0.14
cos(month) 0.55 0.33 0.48
log(birth order) 0.55 0.25 0.54
mother age first union 0.52 0.45 0.63
log(num bednets) 0.52 0.09 0.38
safe floor 0.50 0.18 0.11
age household head 0.50 0.64 0.77
female household 0.50 0.55 0.11
minority religion 0.50 0.70 0.06
christian 0.35 0.43 0.08
muslim 0.35 0.71 0.06
unimproved toilet 0.32 0.86 0.09
clean cooking fuel 0.31 0.20 0.05
(wealth percentile)2 0.27 0.00 0.94
pit toilet 0.23 0.60 0.10
wealth percentile 0.23 0.60 0.93

Discussion

Across 22 countries in sub-Saharan Africa, wealth-based measures alone were fairly predictive
of early mortality risk in a few countries (notably Rwanda, Uganda, and Lesotho) but weakly
predictive in others and on average. On average, individuals in the highest 10% and 20%
risk groups, according to these models, accounted for only 12% and 24% of infant mortality.
When wealth information is combined with other risk factors in flexible models, it often aids
in predicting individual-level risk of early mortality. On average across countries, the 10% of
births with the highest risk, as predicted by the ensemble model, account for 21% of deaths,
and the 20% at highest risk account for 34%. Compared to the wealth-only models, each
country’s ensemble model, on average, would have identified about twice as many deaths
in the top risk decile and 1.5 times as many in the top 20% risk group. We note that
the relatively weak relationship found between mortality risk and wealth in many countries
is indeed a within-country phenomenon: it is quite possible that taken across countries,
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differences in wealth would more strongly predict mortality. However, the nature of the
analysis and the wealth data in the DHS (which is indexed to be valid only within-country)
leave us examining how risk and wealth relate within a given country.

The various models used to incorporate these risk factors—a regularized logistic regression
(elastic-logit), random forest (rf), extreme gradient boosting (xgb), and kernel regularized
least squares (krls)—have similar average performance. However, some models exceed others
in particular countries. Using the average of predictions from these (ensemble) generates
better performance while protecting against cases where individual models performed poorly
in particular countries. Particularly important to many models were variables regarding
the previous death of siblings in the first year, the mother’s age and education, malaria
prevalence, and the child’s gender. The value of these variables as predictors says nothing
of their causal influence or importance. Rather, they are likely to be predictive not because
they cause or prevent mortality but because they signal the presence or absence of other
important unmeasured factors that do.

These findings are consistent with previous findings that births at high risk of death exist
across all socioeconomic groups and that, for various purposes, combine multiple risk factors
and show that doing so improves our ability to identify the higher-risk births.17,8,18 They
also speak to a large body of literature in medicine and public health that develops risk
scores to identify those at risk of some event (e.g.,19,20). To our knowledge, flexible machine
learning approaches using numerous pre-birth predictors have not previously been used to
develop birth-level mortality risk scores in sub-Saharan Africa or elsewhere.

What recall10/20 represents

One reason to use recall10 or recall20 is that it lends itself to a simple interpretation of
model performance, rooted in a hypothetical scenario involving an intervention with some
fixed efficacy rate and fixed budget. Consider an intervention that a given country can
afford to administer to only 10% of births. Ideally, this would be targeted to the 10%
at the highest risk of early mortality. Let us suppose it has a fixed efficacy rate, which,
as defined above, is the probability of saving a life that would have otherwise been lost.
In a country with Nbirths births per year, the number of lives saved per year would be
efficacy ∗ Pr(death|high risk) ∗ Nbirths/10. Applying Bayes’ rule, this is equal to recall10 ∗
efficacy∗Pr(death)∗Nbirths where Pr(death) is the overall mortality rate expected for children
born in that year (absent the intervention). Notice that this (hypothetical) number of lives
saved is proportional to recall10. By contrast, measures commonly used for classification
accuracy in forecasting work, such as “f-scores” or or the “area under the curve” on a receiver
operator characteristic curve (AUC-ROC), are more difficult to connect to a substantive
policy-oriented interpretation.

To complete this hypothetical example, using recent estimates of the number of births
and baseline mortality rates in each of these countries,21 the number of lives saved by an
intervention with an efficacy of 5% would be 841 thousand for the wealth model, but 1.61
million for the ensemble model. In simpler terms, the efficiency gain of roughly two for
these models compared to the wealth model (or, roughly, random targeting)) translates into
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approximately twice as many lives saved by an intervention with any particular fixed efficacy.
Note that the average efficiency gain (2.3) is not exactly the ratio of lives saved because the
latter takes the relative birth rates and mortality in each country into account.

Implications and implementation

The good news demonstrated here is that using flexible and inclusive modeling techniques
can greatly improve our targeting ability and consequently produce multiplicative increases
in the potential lives saved by a given intervention. Nevertheless, our analysis was only a
demonstration in the general case, using widely available data. For a country to realize these
gains, it will encounter practical exigencies that can increase and decrease the potential life-
saving gains relative to our example. On the one hand, the real-world implementation of such
an approach would be better and more appropriate than ours because the agency charged
with constructing such a model can best choose to collect the variables that (i) are most likely
to be predictive; (ii) are most feasible to collect widely; and (iii) are practical for purposes
of targeting through existing administrative systems. On the other hand, such systems may
not be prepared to collect some of the variables used here at high frequency. Further, the
nature of an intervention and logistical limitations ultimately restrict the degree to which
an intervention can be targeted. Nevertheless, targeting any intervention at any level can
benefit from improved individual-level risk estimation since these individual-level risks can
be aggregated to form the best predictions at any level. Concretely, at one extreme, suppose
village health workers distributing a given intervention are positioned to enter specific data
about individuals and determine their eligibility for an intervention. This would allow fully
individualized risk-based targeting. Similarly, health workers could be instructed to use
instead a heuristic scoring system (e.g. a checklist), which could be designed to approximate
a well-fitted individual-level risk model. On the other hand, many interventions cannot be
individually targeted, and are targeted to geographic areas (e.g., the placement of health
facilities, decisions about where to spray for mosquitoes or to improve sanitation, etc). In
these cases, individual-level risk scores still provide the ideal basis for targeting, as they can
be aggregated at will to determine “area average risks” or “area total risk” for targeting. Our
results suggest that in many countries, such an approach would offer larger improvements
over making such decisions using local poverty or wealth measures.

Limitations and Opportunities

Our work has several important limitations. First by focusing on individual-level risk of
early mortality we demonstrate how the life-saving potential of any intervention—even one
that can unfailingly prevent death by every cause—is severely limited by the accuracy of the
targeting system used to determine who gets it. While improving risk modeling has proven
here to be an effective way to amplify life-saving potential in this sense, future research
could look beyond this theoretical maximum life-saving potential, considering, for example,
the need for interventions that address specific causes of death and how this limits the life-
saving potential of targeting or requires targeting systems sensitive to the cause of death
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addressed by each of several interventions. This would require a dataset that records the
cause of death, which the IPUMS DHS data does not.

Second, while we aimed to rely only on the types of predictors that are already widely
available through existing IPUMS DHS data, unfortunately, a few countries did not have
surveys even in recent decades (Sudan) or lacked important basic variables such as district-
level or lower geographic information and malaria prevalence (Burundi, Chad, Ethiopia,
Liberia, Namibia). This limits generalization of our findings to areas with the lowest data
availability but also points to the need to identify or build suitable data sources for these
countries.

Third, the DHS sampling procedure attempts to produce a sample representative of the
population. If these are not as representative as hoped, then while the results still reflect the
predictive power of these models in some population of each country, the results may not be
representative of these countries as a whole.

Finally, and most broadly, the central limitation is that not all deaths can be predicted, at
least with the data we considered readily available in most countries. In general, we find our
models for the highest 10% risk group capture only 20-30% of mortality. This is beneficial
and worth using for targeting since the effectiveness of an intervention is proportional to
this recall rate, as shown above. However, it leaves much unpredicted mortality spread
across the lower-risk groups. Thus, when resources can be made available, programs must
still be targeted to a much wider group to capture a large fraction of births that will die.
Relatedly, in the future and with appropriate data, approaches like ours could be refined
if information on the cause of death were available. Associating each birth to a particular
cause of death could generate models that suggest not only which births to target but also
which intervention(s) to make available to them.

Availability of data and materials

The data used for this analysis can be found in the Integrated Public Use Microdata Series,
available at IPUMS). Data need to be requested but are publicly available. Code to reproduce
all results in this paper can be found at [repository information to be linked when accepted
for publication].
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Better individual-level risk models can improve the targeting and

life-saving potential of early-mortality interventions

Chad Hazlett, Antonio Ramos, and Stephen Smith

Table 1: Recall10 results, cross-validation on training set
Survey wealth elastic-logit rf xgb krls ensemble efficiency gain

Angola 2015 0.13 0.19 0.22 0.18 0.19 0.21 1.62
Benin 2011 0.15 0.31 0.27 0.29 0.31 0.32 2.16

Burkina Faso 2010 0.09 0.16 0.18 0.16 0.15 0.17 1.98
Cameroon 2011 0.11 0.12 0.20 0.14 0.12 0.22 2.06

Congo (D.R.) 2013-14 0.13 0.14 0.20 0.16 0.18 0.21 1.63
Cote d’Ivoire 2011 0.11 0.23 0.25 0.20 0.23 0.24 2.13

Ghana 2014 0.15 0.20 0.12 0.17 0.17 0.18 1.22
Guinea 2012 0.17 0.15 0.15 0.15 0.15 0.17 1.00
Kenya 2014 0.15 0.15 0.19 0.12 0.13 0.17 1.13
Lesotho 2014 0.08 0.09 0.17 0.07 0.15 0.14 1.63

Madagascar 2008 0.11 0.23 0.26 0.24 0.24 0.29 2.52
Malawi 2016 0.10 0.16 0.20 0.16 0.18 0.19 1.91
Mali 2012 0.10 0.20 0.23 0.19 0.22 0.26 2.55

Mozambique 2011 0.07 0.11 0.23 0.15 0.13 0.21 3.18
Niger 2012 0.09 0.13 0.18 0.16 0.14 0.20 2.11
Nigeria 2013 0.11 0.17 0.18 0.18 0.17 0.21 1.87
Rwanda 2014 0.16 0.19 0.17 0.10 0.13 0.15 0.95
Senegal 2017 0.11 0.20 0.22 0.25 0.20 0.26 2.37
Tanzania 2015 0.08 0.12 0.18 0.17 0.14 0.20 2.55
Uganda 2016 0.14 0.16 0.17 0.17 0.17 0.16 1.19
Zambia 2013 0.09 0.15 0.19 0.19 0.18 0.22 2.54

Zimbabwe 2015 0.11 0.14 0.17 0.17 0.13 0.17 1.58
Average 0.12 0.17 0.20 0.17 0.17 0.21 1.90
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Table 2: Recall20 results, cross-validation on training set
Survey wealth elastic-logit rf xgb krls ensemble efficiency gain

Angola 2015 0.25 0.34 0.35 0.36 0.35 0.38 1.52
Benin 2011 0.28 0.45 0.46 0.47 0.45 0.49 1.76

Burkina Faso 2010 0.21 0.30 0.30 0.29 0.28 0.31 1.48
Cameroon 2011 0.22 0.25 0.32 0.26 0.24 0.35 1.61

Congo (D.R.) 2013-14 0.24 0.27 0.29 0.30 0.31 0.34 1.40
Cote d’Ivoire 2011 0.20 0.37 0.33 0.37 0.36 0.42 2.04

Ghana 2014 0.32 0.29 0.26 0.27 0.28 0.29 0.89
Guinea 2012 0.30 0.26 0.32 0.28 0.29 0.32 1.08
Kenya 2014 0.28 0.26 0.30 0.21 0.26 0.30 1.07
Lesotho 2014 0.17 0.26 0.28 0.16 0.26 0.24 1.42

Madagascar 2008 0.26 0.37 0.37 0.39 0.37 0.43 1.68
Malawi 2016 0.19 0.31 0.30 0.29 0.30 0.34 1.84
Mali 2012 0.20 0.34 0.36 0.36 0.36 0.38 1.88

Mozambique 2011 0.17 0.22 0.35 0.30 0.28 0.34 1.93
Niger 2012 0.18 0.30 0.29 0.26 0.26 0.30 1.67
Nigeria 2013 0.24 0.33 0.32 0.33 0.33 0.34 1.43
Rwanda 2014 0.28 0.36 0.30 0.24 0.28 0.32 1.13
Senegal 2017 0.28 0.35 0.33 0.34 0.36 0.36 1.27
Tanzania 2015 0.15 0.22 0.29 0.27 0.24 0.29 1.87
Uganda 2016 0.26 0.28 0.31 0.30 0.26 0.30 1.18
Zambia 2013 0.17 0.31 0.30 0.33 0.32 0.34 2.01

Zimbabwe 2015 0.20 0.27 0.33 0.31 0.25 0.33 1.66
Average 0.23 0.30 0.32 0.30 0.30 0.34 1.54
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Table 3 describes the variables used in the analyses. While the variables shown here include some that we
have transformed or processed already, these constitute the raw material from which variables used in the
analysis are formed (see description in Materials and Methods and in Table 4 of the main text.)

Table 3: Variable information

Variable Type Range of Values Description

kidbordlog Numeric [0.6931,2.9444] Natural logarithm of the
child’s birth order

pregtermin Categorical {NoPregTerm, PregTerm} Ever had pregnancy terminate

agefrstmar Numeric [1,49] Women’s age at start of first
marriage or union

hheadagehh Numeric [8,95] Age of household head

urban Categorical {Urban, Rural} Urban or rural living status

kidsex Categorical {girl, boy} Sex of child

hheadsex Categorical {female, male} Sex of household head

edyrtotal Numeric [1,25] Total years educated

maternal age month Numeric [135,584] Age of mother calculated in
months

drinkwtr new Categorical {bad, good} Main source of drinking water

floor new Categorical {unsafe, safe} Main material of floor

cookfuel new Categorical {unclean, clean} Type of fuel used for cooking

toilettype new Categorical {flush, pit, unimproved} Type of toilet

religion new Categorical {Buddhist, Christian, Hindu,
Other}

Religion of mother

wealths Numeric [-16.3862,32.4577] Wealth index categorical
score

kidbirthmo Categorical {1,2,...,12} Month of the child’s birth

kidbirthmo sin Numeric [-1,1] Sine transformation of child’s
birth month

kidbirthmo cos Numeric [-1,1] Cosine transformation of
child’s birth month

bednetnum Numeric {0,1,2,3,4,5,6,7+} Number of mosquito nets
owned by the household

bednetnum log Numeric [0.69,2.2] Natural logarithm of
bednetnum+1

prev death Categorical {no, yes} Mother experienced previous
death of child < 12mo

prev death full Categorical {no, yes} Mother experienced previous
death of child < 5yr

district Categorical Depends on the country District where the household
lived at the time of survey

Province/State Categorical Depends on the country State or Province where the
household lived at the time of
survey

wealthp Numeric [0,1] Wealth percentile based on
wealths (by country;
unweighted)

wealthp2 Numeric [0,1] wealthp2

malaria new Numeric [0.01,0.74] Malaria incidence rate from
year prior to child’s birth

mortality.under12m Categorical {no, yes} Outcome variable which
records death of the child
under 12mo
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1 Country-by-Country Results

Efficiency gain is measured by the ratio of recall10 results for each algorithm compared to the recall10 results
of the wealth model. Table 4 shows the average results from cross-validation on the training set, and Table 5
shows the results when the trained models are applied to the testing set.

Table 4: Detailed results by country, cross-validation on training
set

Algorithm recall10 recall20 ROC MRD MRR F1 Efficiency Gain

Angola
Elastic Net 0.190 0.336 0.672 0.012 1.287 0.940 1.440
Ensemble 0.214 0.378 0.682 0.014 1.387 0.942 1.619
KRLS 0.188 0.354 0.671 0.014 1.334 0.942 1.421

Random Forest 0.219 0.349 0.629 0.012 1.915 0.932 1.657
Wealth 0.132 0.249 0.561 0.207 -5.954 0.922 1.000
XGB 0.183 0.362 0.659 0.016 1.376 0.939 1.380

Benin
Elastic Net 0.310 0.454 0.676 0.026 1.573 0.933 2.124
Ensemble 0.316 0.486 0.683 0.023 1.602 0.933 2.161
KRLS 0.313 0.451 0.671 0.021 1.459 0.933 2.142

Random Forest 0.271 0.464 0.665 0.021 2.036 0.933 1.851
Wealth 0.146 0.276 0.542 0.118 2.176 0.920 1.000
XGB 0.294 0.470 0.665 0.026 1.573 0.932 2.014

Burkina Faso
Elastic Net 0.161 0.301 0.609 0.008 1.119 0.921 1.826
Ensemble 0.174 0.311 0.626 0.010 1.170 0.920 1.977
KRLS 0.154 0.284 0.611 0.009 1.133 0.920 1.751

Random Forest 0.176 0.301 0.584 0.009 1.362 0.918 1.998
Wealth 0.088 0.209 0.552 0.147 1.944 0.918 1.000
XGB 0.164 0.289 0.611 0.013 1.186 0.920 1.865

Cameroon
Elastic Net 0.122 0.250 0.589 0.006 1.092 0.928 1.144
Ensemble 0.219 0.352 0.624 0.020 1.291 0.932 2.059
KRLS 0.119 0.239 0.588 0.004 1.063 0.929 1.123

Random Forest 0.201 0.321 0.591 0.058 1.761 0.929 1.893
Wealth 0.106 0.219 0.542 0.136 1.993 0.927 1.000
XGB 0.139 0.263 0.592 0.012 1.181 0.926 1.309

Congo (D.R.)
Elastic Net 0.142 0.269 0.561 0.004 1.062 0.918 1.099
Ensemble 0.210 0.338 0.596 0.008 1.145 0.919 1.630
KRLS 0.183 0.307 0.582 0.006 1.101 0.918 1.420

Random Forest 0.204 0.293 0.574 0.014 1.572 0.920 1.580
Wealth 0.129 0.240 0.516 0.064 34.585 0.900 1.000
XGB 0.156 0.296 0.582 0.006 1.104 0.920 1.210

Cote d’Ivoire
Elastic Net 0.232 0.374 0.633 0.017 1.208 0.908 2.046
Ensemble 0.241 0.418 0.649 0.018 1.240 0.910 2.127
KRLS 0.226 0.362 0.636 0.018 1.223 0.909 1.993

Random Forest 0.250 0.333 0.607 0.023 1.404 0.916 2.205
Wealth 0.113 0.205 0.530 0.076 3.141 0.911 1.000
XGB 0.202 0.374 0.604 0.014 1.175 0.906 1.784
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Table 4: Detailed results by country, cross-validation on training
set (continued)

Algorithm recall10 recall20 ROC MRD MRR F1 Efficiency Gain

Ghana
Elastic Net 0.203 0.295 0.543 0.002 1.043 0.928 1.348
Ensemble 0.184 0.288 0.554 0.006 1.153 0.930 1.218
KRLS 0.170 0.281 0.559 0.000 1.007 0.928 1.127

Random Forest 0.118 0.257 0.550 0.019 1.535 0.928 0.785
Wealth 0.151 0.323 0.554 -0.038 1.012 0.894 1.000
XGB 0.170 0.269 0.559 0.005 1.111 0.929 1.127

Guinea
Elastic Net 0.151 0.255 0.581 0.006 1.075 0.921 0.872
Ensemble 0.174 0.325 0.623 0.010 1.146 0.920 0.999
KRLS 0.154 0.293 0.587 0.006 1.082 0.919 0.889

Random Forest 0.155 0.322 0.605 0.016 1.374 0.917 0.891
Wealth 0.174 0.300 0.579 0.243 3.424 0.912 1.000
XGB 0.151 0.284 0.605 0.012 1.157 0.917 0.872

Kenya
Elastic Net 0.153 0.261 0.541 0.001 1.018 0.930 1.029
Ensemble 0.167 0.301 0.572 0.003 1.085 0.932 1.127
KRLS 0.131 0.263 0.531 0.001 1.025 0.932 0.886

Random Forest 0.193 0.296 0.567 0.009 1.402 0.929 1.298
Wealth 0.148 0.280 0.545 -0.028 0.893 0.880 1.000
XGB 0.117 0.212 0.550 0.001 1.028 0.933 0.786

Lesotho
Elastic Net 0.086 0.258 0.601 0.000 1.004 0.908 1.009
Ensemble 0.138 0.240 0.582 0.005 1.089 0.919 1.625
KRLS 0.148 0.260 0.547 0.000 1.002 0.918 1.741

Random Forest 0.173 0.283 0.592 0.017 1.420 0.921 2.036
Wealth 0.085 0.170 0.580 -0.035 4.879 0.898 1.000
XGB 0.067 0.155 0.572 0.004 1.062 0.919 0.795

Madagascar
Elastic Net 0.228 0.375 0.633 0.014 1.279 0.935 2.001
Ensemble 0.288 0.430 0.658 0.024 1.475 0.936 2.524
KRLS 0.236 0.370 0.644 0.013 1.267 0.935 2.072

Random Forest 0.258 0.372 0.634 0.052 1.936 0.932 2.262
Wealth 0.114 0.256 0.529 0.126 1.530 0.918 1.000
XGB 0.245 0.394 0.655 0.018 1.361 0.937 2.143

Malawi
Elastic Net 0.155 0.308 0.586 0.004 1.091 0.935 1.519
Ensemble 0.195 0.344 0.619 0.008 1.209 0.935 1.909
KRLS 0.177 0.299 0.593 0.005 1.113 0.937 1.737

Random Forest 0.204 0.299 0.591 0.015 1.779 0.933 1.997
Wealth 0.102 0.186 0.528 0.062 1.405 0.932 1.000
XGB 0.162 0.292 0.595 0.007 1.166 0.933 1.583

Mali
Elastic Net 0.200 0.337 0.646 0.015 1.263 0.931 2.000
Ensemble 0.255 0.382 0.667 0.026 1.429 0.933 2.553
KRLS 0.218 0.361 0.656 0.019 1.315 0.932 2.184

Random Forest 0.226 0.358 0.633 0.053 1.798 0.929 2.263
Wealth 0.100 0.203 0.549 0.181 24.702 0.923 1.000
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Table 4: Detailed results by country, cross-validation on training
set (continued)

Algorithm recall10 recall20 ROC MRD MRR F1 Efficiency Gain

XGB 0.195 0.361 0.655 0.017 1.297 0.929 1.947

Mozambique
Elastic Net 0.107 0.223 0.579 0.005 1.074 0.935 1.643
Ensemble 0.207 0.337 0.632 0.021 1.301 0.935 3.179
KRLS 0.130 0.281 0.594 0.009 1.139 0.936 2.000

Random Forest 0.226 0.349 0.624 0.052 1.679 0.933 3.464
Wealth 0.065 0.174 0.534 0.089 2.127 0.929 1.000
XGB 0.153 0.305 0.603 0.017 1.255 0.929 2.357

Niger
Elastic Net 0.132 0.298 0.618 0.008 1.133 0.927 1.408
Ensemble 0.198 0.299 0.638 0.019 1.301 0.931 2.114
KRLS 0.141 0.256 0.631 0.012 1.205 0.926 1.499

Random Forest 0.183 0.294 0.594 0.045 1.652 0.930 1.955
Wealth 0.094 0.179 0.543 0.157 3.276 0.922 1.000
XGB 0.160 0.262 0.617 0.010 1.161 0.931 1.703

Nigeria
Elastic Net 0.170 0.331 0.623 0.012 1.173 0.921 1.523
Ensemble 0.209 0.343 0.638 0.018 1.245 0.923 1.867
KRLS 0.173 0.333 0.625 0.012 1.175 0.922 1.550

Random Forest 0.176 0.322 0.609 0.035 1.429 0.920 1.576
Wealth 0.112 0.239 0.568 0.223 1.919 0.919 1.000
XGB 0.176 0.332 0.621 0.012 1.175 0.922 1.569

Rwanda
Elastic Net 0.186 0.358 0.626 0.004 1.123 0.937 1.194
Ensemble 0.148 0.320 0.626 0.005 1.181 0.935 0.947
KRLS 0.134 0.282 0.618 0.004 1.129 0.935 0.856

Random Forest 0.171 0.297 0.582 0.010 1.512 0.936 1.095
Wealth 0.156 0.284 0.569 0.194 74.088 0.934 1.000
XGB 0.103 0.236 0.569 0.003 1.091 0.934 0.658

Senegal
Elastic Net 0.196 0.346 0.575 0.004 1.099 0.918 1.799
Ensemble 0.258 0.361 0.597 0.034 1.830 0.928 2.367
KRLS 0.196 0.358 0.575 0.004 1.095 0.922 1.798

Random Forest 0.221 0.333 0.575 0.064 2.294 0.929 2.025
Wealth 0.109 0.284 0.565 0.106 1.740 0.912 1.000
XGB 0.246 0.342 0.599 0.063 3.266 0.931 2.253

Tanzania
Elastic Net 0.121 0.223 0.569 0.003 1.065 0.936 1.544
Ensemble 0.200 0.285 0.593 0.006 1.155 0.937 2.550
KRLS 0.136 0.242 0.573 0.003 1.079 0.934 1.741

Random Forest 0.180 0.289 0.583 0.012 1.532 0.933 2.293
Wealth 0.078 0.153 0.548 -0.127 0.371 0.932 1.000
XGB 0.168 0.270 0.579 0.005 1.114 0.935 2.145

Uganda
Elastic Net 0.157 0.278 0.540 0.001 1.028 0.924 1.153
Ensemble 0.163 0.304 0.572 0.002 1.064 0.929 1.192
KRLS 0.173 0.255 0.534 0.001 1.024 0.925 1.265

Random Forest 0.172 0.307 0.564 0.001 1.649 0.929 1.264
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Table 4: Detailed results by country, cross-validation on training
set (continued)

Algorithm recall10 recall20 ROC MRD MRR F1 Efficiency Gain

Wealth 0.136 0.257 0.525 -0.021 0.840 0.913 1.000
XGB 0.170 0.299 0.577 0.005 1.112 0.931 1.247

Zambia
Elastic Net 0.150 0.307 0.580 0.005 1.099 0.929 1.752
Ensemble 0.217 0.344 0.617 0.009 1.196 0.933 2.545
KRLS 0.175 0.318 0.591 0.006 1.124 0.932 2.055

Random Forest 0.186 0.300 0.587 0.016 1.590 0.931 2.180
Wealth 0.085 0.171 0.511 -0.008 0.972 0.927 1.000
XGB 0.186 0.325 0.590 0.008 1.155 0.931 2.179

Zimbabwe
Elastic Net 0.143 0.269 0.562 0.004 1.083 0.933 1.288
Ensemble 0.175 0.333 0.627 0.009 1.200 0.935 1.578
KRLS 0.127 0.249 0.585 0.005 1.096 0.936 1.145

Random Forest 0.175 0.328 0.602 0.016 1.582 0.932 1.575
Wealth 0.111 0.201 0.563 2.005 4.039 0.932 1.000
XGB 0.175 0.312 0.596 0.011 1.218 0.932 1.575
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Table 5: Detailed results by country, test set

Algorithm Recall 10 Recall 20 ROC MRD MRR F1 Efficiency Gain

Angola
Elastic Net 0.223 0.415 0.678 0.013 1.309 0.937 1.909
Ensemble 0.223 0.436 0.694 0.014 1.405 0.941 1.909
KRLS 0.191 0.383 0.684 0.018 1.422 0.939 1.636

Random Forest 0.223 0.340 0.632 0.011 1.846 0.935 1.909
Wealth 0.117 0.309 0.571 0.237 6.810 0.921 1.000
XGB 0.191 0.362 0.653 0.014 1.344 0.943 1.636

Benin
Elastic Net 0.234 0.362 0.647 0.015 1.331 0.930 1.467
Ensemble 0.234 0.457 0.693 0.020 1.514 0.930 1.467
KRLS 0.223 0.394 0.660 0.015 1.328 0.928 1.400

Random Forest 0.309 0.468 0.694 0.030 2.489 0.934 1.933
Wealth 0.160 0.287 0.540 0.096 1.709 0.922 1.000
XGB 0.202 0.340 0.658 0.020 1.443 0.929 1.267

Burkina Faso
Elastic Net 0.153 0.353 0.620 0.008 1.118 0.922 1.278
Ensemble 0.200 0.360 0.649 0.011 1.201 0.921 1.667
KRLS 0.147 0.407 0.639 0.011 1.166 0.920 1.222

Random Forest 0.213 0.267 0.562 0.015 1.583 0.919 1.778
Wealth 0.120 0.233 0.554 0.182 2.126 0.918 1.000
XGB 0.160 0.313 0.639 0.012 1.178 0.921 1.333

Cameroon
Elastic Net 0.161 0.250 0.599 0.008 1.115 0.929 2.250
Ensemble 0.223 0.295 0.621 0.019 1.270 0.934 3.125
KRLS 0.152 0.268 0.603 0.007 1.108 0.930 2.125

Random Forest 0.232 0.321 0.609 0.052 1.651 0.930 3.250
Wealth 0.071 0.241 0.557 0.188 2.084 0.922 1.000
XGB 0.152 0.241 0.579 0.010 1.141 0.931 2.125

Congo (D.R.)
Elastic Net 0.191 0.280 0.566 0.004 1.071 0.912 1.364
Ensemble 0.197 0.350 0.605 0.008 1.147 0.919 1.409
KRLS 0.159 0.306 0.581 0.006 1.106 0.918 1.136

Random Forest 0.191 0.325 0.592 0.013 1.549 0.921 1.364
Wealth 0.140 0.242 0.530 0.125 5.698 0.903 1.000
XGB 0.191 0.299 0.584 0.007 1.113 0.924 1.364

Cote d’Ivoire
Elastic Net 0.286 0.476 0.633 0.018 1.221 0.914 2.400
Ensemble 0.262 0.476 0.632 0.020 1.262 0.910 2.200
KRLS 0.274 0.405 0.604 0.016 1.204 0.910 2.300

Random Forest 0.179 0.298 0.571 0.023 1.384 0.910 1.500
Wealth 0.119 0.202 0.536 0.107 -13.687 0.915 1.000
XGB 0.286 0.476 0.655 0.022 1.273 0.912 2.400

Ghana
Elastic Net 0.108 0.162 0.489 -0.001 0.987 0.923 0.800
Ensemble 0.189 0.243 0.556 0.009 1.212 0.926 1.400
KRLS 0.081 0.189 0.524 0.000 1.005 0.921 0.600

Random Forest 0.216 0.216 0.534 0.032 1.904 0.929 1.600
Wealth 0.135 0.216 0.531 -0.109 0.388 0.893 1.000
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Table 5: Detailed Results by Country (continued)

Algorithm Recall 10 Recall 20 ROC MRD MRR F1 Efficiency Gain

XGB 0.162 0.297 0.550 0.004 1.094 0.931 1.200

Guinea
Elastic Net 0.139 0.266 0.572 0.006 1.078 0.922 1.222
Ensemble 0.190 0.329 0.627 0.012 1.181 0.921 1.667
KRLS 0.127 0.342 0.599 0.006 1.085 0.919 1.111

Random Forest 0.215 0.380 0.628 0.025 1.621 0.914 1.889
Wealth 0.114 0.177 0.520 0.111 1.892 0.909 1.000
XGB 0.152 0.241 0.556 0.012 1.151 0.918 1.333

Kenya
Elastic Net 0.205 0.274 0.522 0.001 1.036 0.934 1.263
Ensemble 0.197 0.325 0.582 0.005 1.142 0.936 1.211
KRLS 0.188 0.308 0.563 0.002 1.054 0.934 1.158

Random Forest 0.162 0.325 0.584 0.014 1.665 0.935 1.000
Wealth 0.162 0.265 0.528 -0.070 0.700 0.877 1.000
XGB 0.120 0.231 0.554 0.002 1.049 0.936 0.737

Lesotho
Elastic Net 0.172 0.310 0.522 0.000 1.004 0.912 1.250
Ensemble 0.172 0.241 0.566 0.003 1.048 0.918 1.250
KRLS 0.103 0.172 0.517 0.000 1.001 0.911 0.750

Random Forest 0.138 0.276 0.564 0.005 1.156 0.906 1.000
Wealth 0.138 0.345 0.501 -0.049 0.441 0.911 1.000
XGB 0.138 0.207 0.556 0.006 1.085 0.925 1.000

Madagascar
Elastic Net 0.099 0.264 0.553 0.004 1.080 0.925 1.125
Ensemble 0.209 0.297 0.582 0.012 1.224 0.932 2.375
KRLS 0.132 0.264 0.567 0.005 1.106 0.928 1.500

Random Forest 0.154 0.308 0.561 0.033 1.554 0.925 1.750
Wealth 0.088 0.187 0.491 0.032 1.140 0.912 1.000
XGB 0.099 0.242 0.571 0.004 1.091 0.928 1.125

Malawi
Elastic Net 0.107 0.214 0.552 0.002 1.038 0.933 1.091
Ensemble 0.170 0.277 0.599 0.006 1.158 0.938 1.727
KRLS 0.143 0.223 0.561 0.003 1.083 0.937 1.455

Random Forest 0.196 0.304 0.629 0.011 1.639 0.935 2.000
Wealth 0.098 0.241 0.550 0.082 1.592 0.931 1.000
XGB 0.188 0.277 0.576 0.006 1.155 0.934 1.909

Mali
Elastic Net 0.179 0.347 0.633 0.015 1.258 0.930 2.429
Ensemble 0.232 0.389 0.653 0.023 1.379 0.933 3.143
KRLS 0.221 0.347 0.625 0.017 1.292 0.934 3.000

Random Forest 0.211 0.337 0.626 0.044 1.647 0.928 2.857
Wealth 0.074 0.158 0.525 0.155 2.975 0.923 1.000
XGB 0.232 0.337 0.631 0.017 1.285 0.930 3.143

Mozambique
Elastic Net 0.075 0.168 0.571 0.003 1.052 0.934 1.000
Ensemble 0.150 0.243 0.614 0.016 1.228 0.930 2.000
KRLS 0.103 0.252 0.586 0.009 1.134 0.929 1.375

Random Forest 0.178 0.299 0.591 0.048 1.613 0.930 2.375
Wealth 0.075 0.187 0.504 -0.060 0.501 0.931 1.000
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Table 5: Detailed Results by Country (continued)

Algorithm Recall 10 Recall 20 ROC MRD MRR F1 Efficiency Gain

XGB 0.112 0.196 0.559 0.003 1.044 0.929 1.500

Niger
Elastic Net 0.145 0.231 0.573 0.006 1.093 0.928 1.214
Ensemble 0.154 0.265 0.573 0.010 1.156 0.927 1.286
KRLS 0.128 0.239 0.567 0.008 1.128 0.924 1.071

Random Forest 0.128 0.197 0.550 0.019 1.260 0.924 1.071
Wealth 0.120 0.188 0.532 0.118 2.264 0.925 1.000
XGB 0.145 0.274 0.578 0.007 1.121 0.928 1.214

Nigeria
Elastic Net 0.196 0.395 0.653 0.015 1.221 0.924 1.692
Ensemble 0.249 0.401 0.667 0.022 1.305 0.927 2.154
KRLS 0.237 0.404 0.664 0.017 1.239 0.926 2.051

Random Forest 0.211 0.353 0.619 0.041 1.507 0.924 1.821
Wealth 0.116 0.208 0.569 0.238 2.113 0.918 1.000
XGB 0.187 0.371 0.656 0.016 1.224 0.922 1.615

Rwanda
Elastic Net 0.212 0.303 0.618 0.004 1.140 0.937 0.875
Ensemble 0.212 0.364 0.639 0.005 1.169 0.937 0.875
KRLS 0.212 0.364 0.597 0.004 1.124 0.938 0.875

Random Forest 0.091 0.333 0.606 0.002 1.143 0.932 0.375
Wealth 0.242 0.485 0.651 0.399 5.757 0.937 1.000
XGB 0.212 0.364 0.637 0.008 1.256 0.939 0.875

Senegal
Elastic Net 0.175 0.362 0.439 0.003 1.080 0.922 1.556
Ensemble 0.325 0.412 0.628 0.035 1.849 0.934 2.889
KRLS 0.162 0.300 0.561 0.003 1.080 0.927 1.444

Random Forest 0.275 0.375 0.619 0.075 2.545 0.933 2.444
Wealth 0.112 0.262 0.506 0.036 1.171 0.915 1.000
XGB 0.288 0.388 0.631 0.057 3.010 0.933 2.556

Tanzania
Elastic Net 0.190 0.317 0.573 0.003 1.066 0.940 6.000
Ensemble 0.206 0.270 0.603 0.008 1.232 0.937 6.500
KRLS 0.159 0.254 0.549 0.002 1.059 0.935 5.000

Random Forest 0.143 0.286 0.588 0.022 1.967 0.932 4.500
Wealth 0.032 0.111 0.542 -0.133 0.318 0.934 1.000
XGB 0.143 0.333 0.592 0.007 1.167 0.935 4.500

Uganda
Elastic Net 0.135 0.292 0.575 0.001 1.024 0.928 0.684
Ensemble 0.250 0.417 0.658 0.004 1.124 0.937 1.263
KRLS 0.250 0.354 0.608 0.003 1.072 0.929 1.263

Random Forest 0.240 0.333 0.596 0.003 2.662 0.937 1.211
Wealth 0.198 0.260 0.514 0.045 1.325 0.916 1.000
XGB 0.229 0.375 0.651 0.009 1.217 0.938 1.158

Zambia
Elastic Net 0.188 0.323 0.581 0.007 1.139 0.931 1.800
Ensemble 0.198 0.292 0.599 0.009 1.215 0.933 1.900
KRLS 0.198 0.302 0.592 0.008 1.153 0.931 1.900

Random Forest 0.208 0.323 0.600 0.018 1.708 0.933 2.000
Wealth 0.104 0.260 0.500 0.007 1.044 0.927 1.000
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Table 5: Detailed Results by Country (continued)

Algorithm Recall 10 Recall 20 ROC MRD MRR F1 Efficiency Gain

XGB 0.135 0.292 0.555 0.005 1.098 0.929 1.300

Zimbabwe
Elastic Net 0.085 0.255 0.531 0.003 1.053 0.931 1.000
Ensemble 0.149 0.340 0.460 0.006 1.127 0.934 1.750
KRLS 0.170 0.213 0.519 0.003 1.059 0.940 2.000

Random Forest 0.213 0.234 0.519 0.011 1.458 0.930 2.500
Wealth 0.085 0.170 0.496 -0.256 0.520 0.930 1.000
XGB 0.191 0.298 0.532 0.006 1.112 0.931 2.250
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