
1 
 

Coupling of metabolomics and exome sequencing reveals graded effects of 

rare damaging heterozygous variants on gene function and resulting traits 

and diseases 
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Supplementary Methods 

Whole-body modeling 

The implicated genes’ loss-of-function were investigated in virtual IEMs generated through 

organ-resolved sex-specific whole-body models (WBMs) based on the Virtual Metabolic 

Human database (VMH)1 using a constraint-based modeling and reconstruction analysis 

(COBRA) approach2. Mapping the gene-metabolite pairs significant in the genome-wide 

screening onto the VMH database3, virtual IEMs were created to explore all represented 

gene-metabolite pairs via in silico knockout modeling of the gene’s function. For modeling of 

the male human, the WBM model version “Harvey_104b” was utilized, for modeling the 

female model, the WBM model version “Harvetta_104c” was employed. 

 

Supplementary Results 

 

Curation of whole model modeling based on the GCKD data 

To leverage the biological information generated by the WES-metabolite association data 

from the GCKD study for improving the knowledge base underlying the WBM, we performed 

a range of model curation steps. These curation steps ranged from adding pathways over 

improved mapping and checking failing simulations to altering model constraints. The 

following paragraphs detail all performed model curations. We performed curations for six 

virtual IEMs, where we could identify reasons for model failure (e.g., in the case of DMGDH) 

or where the GCKD data was instrumental in improving the knowledge base (e.g., in the case 

of KYNU and 8-methoxykynurenate).  
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Modeling of 8-methoxykynurenate in the virtual IEM for kynureninase deficiency (KYNU) 

Although a known human metabolite, the metabolite 8-methoxykynurenate was not included 

in the initial WBMs due to limited evidence on the enzymes involved in its production. 

However, in the association results from the GCKD study, urine 8-methoxykynurenate was 

positively associated with rare, putatively damaging variants in KYNU. This indicates that this 

metabolite originates upstream of a reaction catalyzed by kynureninase. As 8-

methoxykynurenate is a methylated derivative of xanthurenate, it is plausibly generated by a 

corresponding methylation reaction as noted in KEGG (KEGG reaction R03955; Xanthurenic 

acid + S-adenosyl-L-methionine <=> 8-methoxykynurenate + S-adenosyl-L-homocysteine). 

Interestingly, we found ASMTL, a gene encoding for a protein with presence of a probable 

catalytic S-adenosyl-L-methionine binding domain in the C-terminal region and thus a 

probable methyltransferase, to be negatively associated with urine 8-methoxykynurenate (P-

value=5.1e-09), which barely missed the study-wide multiple-testing corrected significance 

threshold. On these grounds, we added 8-methoxykynurenate (C05830) along with the 

(hypothesized) associated methylation reaction (Xanthurenic acid + S-adenosyl-L-methionine 

<=> 8-Methoxykynurenate + S-adenosyl-L-homocysteine) and corresponding transport 

reactions to the ten organs of the WBMs (Supplementary Table 9), where the participating 

metabolites of the methylation reaction were all present. We then repeated the in silico 

knockout of KYNU, and successfully replicated the association of KYNU with higher flux of 8-

methoxykynurenate into urine compared to the wild-type.   

 

Modeling of N-formylanthranilic acid in the virtual IEM for AFMID  

Both N-formylanthranilic acid and the AFMID gene were represented in the initial WBM. 

However, the urinary secretion of N-formylanthranilic acid could not carry flux in the initial 
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simulations. Investigating the model setup for N-formylanthranilic acid, we found that for the 

transport reaction from the blood compartment to the kidney (WBM reaction name: 

Kidney_EX_nformanth(e)_[bc]) under the current default constraint setting (lower bound=-

3.7368, upper bound=0) any flux of N-formylanthranilic into the kidney compartment was 

blocked. Consequently, no excretion process into urine could occur. As N-formylanthranilic 

acid is, however, detected in human urine, we made corresponding adjustments to the 

constraint setting, allowing N-formylanthranilic acid to be secreted into urine. After this 

adjustment, the model correctly predicted the observed association between rare, damaging 

variants in AFMID and urine N-formylanthranilic acid levels in the GCKD study. Both the initial 

and the curated virtual IEM correctly predicted the observed association between rare, 

damaging AFMID variants and plasma N-formylanthranilic acid levels. 

 

Modeling of the virtual IEM for TMLHE  

TMLHE is encoding for the enzyme trimethyllysine dioxygenase, which utilizes N6,N6,N6-

trimethyl-L-lysine as one of its substrates. While TMHLE had been included in the initial 

version of the WBM, none of the metabolites that were associated with it in the GCKD study 

could be modeled. We found that in the initial WBM, N6,N6,N6-trimethyl-L-lysine was neither 

produced from methylated protein-bound lysine residuals, nor was it covered by dietary 

constraints, meaning that trimethyllysine dioxygenase reactions could not carry flux. To 

enable modeling, we unbound the diet constraint for N6,N6,N6-trimethyl-L-lysine4, making 

N6,N6,N6-trimethyl-L-lysine available to the WBM. After this step, the virtual IEM for TMLHE 

was perfectly predicting the signs of the observed TMLHE-metabolite associations in the 

GCKD study. 
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Modeling of dimethylglycine in the virtual IEM for dimethylglycine dehydrogenase deficiency 

(DMGDH) 

Both, dimethylglycine and the gene DMGDH could be mapped in the initial WBM. However, 

knockout of DMGDH had no effect on dimethylglycine blood and urine secretion fluxes in the 

female model, and no effect on urine secretion in the male model. Exploring the gene-protein-

reaction relations in the initial WBM, we found three reactions assigned to DMGDH 

(mitochondrial dimethylglycine dehydrogenase (VMH ID: DMGDHm), N,N-

dimethylglycine:electron-transfer flavoprotein oxidoreductase (VMH ID: HMR_4700), and S-

adenosyl-L-methionine:sarcosine N-methyltransferase (VMH ID: HMR_4701)). To the latter 

two reactions, the gene PDPR, encoding for a regulatory subunit of the pyruvate 

dehydrogenase phosphatase, was assigned as well. We removed the assignment to PDPR, as 

we could not find additional evidence for PDPR playing a role in dimethylglycine metabolism 

besides a distant relation in terms of sequence similarity to DMGDH5. After removing PDPR 

as a hypothetical isozyme for the reactions HMR_4700 and HMR_4701, the virtual IEM for 

DMDGH correctly predicted the observed effect direction for dimethylglycine both in blood 

and urine and in both sexes.  

 

Modeling of the virtual IEM for KYAT1 

In the initial WBM, we were unable to map the KYAT1 gene, although it was actually included 

in the model, due to an identifier discrepancy. We rectified this by adding the corresponding 

identifier for KYAT1 in the VMH database (VMH gene identifier: 883), which increased the 

number of mapped and modeled genes to 26. Three of the metabolites associated with KYAT1 

in the GCKD study, 3-(4-hydroxyphenyl)lactate, indolelactate, and phenylpyruvate, could be 

mapped in the WBMs and two, 3-(4-hydroxyphenyl)lactate and phenylpyruvate, could be 
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modeled. However, KYAT1 knockout did not replicate the observed effects from the GCKD 

study, indicating that further curation of the WBMs is needed in the case of KYAT1. 

 

Modeling of hexanoylglycine in the virtual IEM for medium-chain acyl-CoA dehydrogenase 

deficiency (ACADM) 

In the wild-type and knockout ACADM models, we initially calculated maximal secretion fluxes 

for hexanoylglycine into urine. However, the result was consistently a maximum secretion 

flux of zero for all simulations. Upon exploration, we found that none of the hexanoylglycine-

related reactions carried flux in the current WBM. Thus, the metabolite fails the criteria of 

being transported to blood and urine, and the current WBM is unable to model the ACADM-

hexanoylglycine gene-metabolite pair. The initial flux calculations of zero were therefore 

without biological meaning. 

 
  



7 
 

Supplementary Figures 
 
Supplementary Figure 1: Plasma metabolite levels among carriers and non-carriers of QVs 

in significantly associated genes 

Plasma metabolite levels after inverse normal transformation are shown on the y-axis, among 

non-carriers and carriers of QVs in both masks (LoF_mis and HI_mis) on the x-axis. Symbol 

color and shape indicate a variant’s driver status (Methods) and consequence, respectively. 

Carriers of multiple heterozygous QVs are denoted by an asterisk. Orange filling of symbols 

denotes homozygosity for the respective QV. The boxes range from the 25th to the 75th 

percentile of metabolite levels, the median is indicated by a line, and whiskers end at the last 

observed value within 1.5*(interquartile range) away from the box. 
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Supplementary Figure 2: Urine metabolite levels among carriers and non-carriers of QVs in 

significantly associated genes 

Urine metabolite levels after inverse normal transformation are shown on the y-axis, among 

non-carriers and carriers of QVs in both masks (LoF_mis and HI_mis) on the x-axis. Symbol 

color and shape indicate a variant’s driver status (Methods) and consequence, respectively. 

Carriers of multiple heterozygous QVs are denoted by an asterisk. Orange filling of symbols 

denotes homozygosity for the respective QV. The boxes range from the 25th to the 75th 

percentile of metabolite levels, the median is indicated by a line, and whiskers end at the last 

observed value within 1.5*(interquartile range) away from the box. 
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Supplementary Figure 3: Contribution of individual QVs to their gene-based association signal 

with plasma metabolite levels 

For each significant gene-metabolite pair in plasma (sorted by gene and metabolite’s 

biochemical name), the symbols visualize the -log10(P-value) (y-axis) for the successive 

aggregation of the most influential QVs with respect to the forward selection procedure 

(Bomba et al. 2022) for both masks (LoF_mis, HI_mis). The number of QVs aggregated for 

burden testing is given on the x-axis. Symbol shape indicates the variant’s consequence. The 

symbol color and size reflect the effect size and the P-value of the variant based on its single-

variant association test. The gray dashed lines represent the significance threshold (-

log10(5.04e-9)), the total -log10(P-value) of the aggregate variant test including all QVs in the 

respective gene and mask, and the -log10(lowest P-value) that can be reached by aggregating 

only the driver variants from the forward selection procedure. 
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Supplementary Figure 4: Contribution of individual QVs to their gene-based association signal 

with urine metabolite levels 

For each significant gene-metabolite pair in urine (sorted by gene and metabolite’s 

biochemical name), the symbols visualize the -log10(P-value) (y-axis) for the successive 

aggregation of the most influential QVs with respect to the forward selection procedure 

(Bomba et al. 2022) for both masks (LoF_mis, HI_mis). The number of QVs aggregated for 

burden testing is given on the x-axis. Symbol shape indicates the variant’s consequence. The 

symbol color and size reflect the effect size and the P-value of the variant based on its single-

variant association test. The gray dashed lines represent the significance threshold (-

log10(4.46e-9)), the total -log10(P-value) of the aggregate variant test including all QVs in the 

respective gene and mask, and the -log10(lowest P-value) that can be reached by aggregating 

only the driver variants from the forward selection procedure. 
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Supplementary Figure 5: Driver variants show a more severe impact on metabolite levels 

compared to non-drivers in terms of consequence and effect size 

(a) The bar plot represents the absolute frequency (y-axis) of each of the QVs’ consequences 

with their proportions noted next to them, separately for driver and non-driver variants (x-

axis). In case one gene was significantly associated with levels or more than one metabolite, 

only the QVs from the strongest gene-metabolite associations are included (for only one 

matrix and only one mask) to prevent counting variants multiple times. Whereas driver 

variants contain more splicing, stop-gain and frameshift variants, the proportion of missense 

variants is higher among non-driver variants (Fisher’s exact test: P-value=1.3e-6). 

(b) The swarm plot shows differences in absolute effect sizes for QVs (y-axis) across the 5 

different consequence classes (x-axis). The color reflects the variant status (driver versus non-

driver variant) and the horizontal lines represent the median of the absolute effect sizes 

separately for driver and non-driver variants. In case one gene was significantly associated 

with levels or more than one metabolite, only the QVs from the strongest gene-metabolite 

associations are included. The median among driver variants increases when ordering the 

consequence classes with respect to severity (missense, start/stop lost, frameshift, stop 

gained, splicing). 
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Supplementary Figure 6: Effect sizes of rare and common variant association signals with 

metabolite levels within the same locus 

The scatter plot shows the absolute effect size (y-axis) of association signals with metabolite 

levels based on aggregating rare variants within a gene and based on common variants within 

the same locus (±500 kb around the gene), across different cumulative minor allele 

frequencies (cMAF, for aggregated rare variants) and minor allele frequencies (MAF, for 

common variants) (x-axis). Colors indicate whether the corresponding association signal is 

based on shared rare or common variants or whether it is unique to the rare variant screen. 

The shape represents the matrix of the corresponding metabolite. The absolute effect size 

tends to increase with decreasing MAF/cMAF. 

 

 
  



13 
 

Supplementary Figure 7: Elevated urine levels of 3-hydroxykynurenine and xanthurenate are 

a readout of impaired KYNU function: converging evidence from three approaches 

Three panels are shown for 3-hydroxykynurenine (a) and xanthurenate (b) each: the left panel 

represents inverse-normal transformed urine levels of the respective metabolite (y-axis) 

among non-carriers and carriers of QVs in KYNU (x-axis). Units correspond to standard 

deviations. The boxes range from the 25th to the 75th percentile of metabolite levels, the 

median is indicated by a line, and whiskers end at the last observed value within 

1.5*(interquartile range) away from the box. The middle panel represents the distribution of 

the ln-transformed urinary secretion flux of the respective metabolite in mmol/day into urine 

(y-axis) from min-norm simulations based on 582 microbiome-personalized whole-body 

models without and with simulated knockout of KYNU (x-axis). The right panel shows multiple 

reaction monitoring (MRM, m/z 225.0  162.1, 206.0  160.1) chromatograms of the diluted 

urines of a child with a homozygous, autosomal-recessively inherited loss of KYNU function 

(patient), the mother and the father. The signals at 3.9 min (3-hydroxykynurenine) and 9.5 

min (xanthurenate) are strongly enhanced in the patient sample. Chromatograms are 

normalized to urine creatinine concentrations; y-axes are normalized to the intensity of the 

signals in the patient’s chromatograms. All three independent approaches arrive at the 

conclusion that elevated levels of 3-hydroxykynurenine and xanthurenate in urine are a 

readout of impaired KYNU function. 
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Supplementary Figure 8: Contribution of individual QVs in SLC26A1 to their gene-based 
association signal with plasma sulfate levels 
The symbols visualize the -log10(P-value) (y-axis) with regard to plasma sulfate levels for the 

successive aggregation of the most influential QVs in SLC26A1 with respect to the forward 

selection procedure (Bomba et al. 2022) for the mask LoF_mis. The number of QVs aggregated 

for burden testing is shown on the x-axis. Symbol shape indicates the variant’s consequence. 

The symbol color and size reflect the effect size and the P-value of the variant based on its 

single-variant association test. The gray dashed lines represent the significance threshold (-

log10(0.05)), the total -log10(P-value) of the aggregate variant test including all QVs in SLC26A1 

for the mask LoF_mis, and the -log10(lowest P-value) that can be reached by aggregating only 

the driver variants from the forward selection procedure. Summary statistics shown on the 

right refer to the burden tests aggregating all QVs and only driver variants. For the latter, a 

clear association of SLC26A1 wit plasma sulfate levels is observed. 
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Supplementary Figure 9: Contribution of individual QVs in SLC13A1 and SLC26A1 to their 

gene-based association signal with height measured in the GCKD study 

The symbols visualize the -log10(P-value) (y-axis) with regard to height measured in 3,239 

participants of the GCKD study for the successive aggregation of the most influential QVs in 

SLC13A1 (mask HI_mis) (a) and SLC26A1 (mask LoF_mis) (b) with respect to the forward 

selection procedure (Bomba et al. 2022). The number of QVs aggregated for burden testing is 

shown on the x-axis. Symbol shape indicates the variant’s consequence. The symbol color and 

size reflect the effect size and the P-value of the variant based on its single-variant association 

test. The gray dashed lines represent the significance threshold (-log10(0.05)), the total -

log10(P-value) of the aggregate variant test including all QVs in SLC13A1 and SLC26A1 for the 

respective mask, and the -log10(lowest P-value) that can be reached by aggregating only the 

driver variants from the forward selection procedure. For both genes, a clear association with 

height in the GCKD study is observed when aggregating driver variants. 

 

 
  



17 
 

Supplementary Figure 10: Impact of different genotypes encoding NaS1 p.Arg12* and SAT1 

p.Leu348Pro on height and musculoskeletal traits and fractures 

The boxplots on the left show differences in age- and sex-specific z-scores for standing height 

(y-axis) across persons heterozygous and homozygous for the NaS1 p.Arg12*-encoding allele 

(a) and for the Sat1 p.Leu348Pro-encoding allele (b) (x-axis). Persons carrying a variant at two 

different DNA positions are shown in the category “het + X”. For the NaS1 p.Arg12* stop 

gained variant, multi-heterozygous individuals who additionally carry the NaS1 p.Trp48* stop 

gained variant are indicated with differently shaped symbols, emphasizing that carrying two 

stop gained variants in NaS1 seems to lead to a more severe phenotype. 

The forest plots on the right show associations between the NaS1 p.Arg12* (c) and SAT1 

p.Leu348Pro (d) carrier status with those musculoskeletal diseases and fractures from the 

UKB, for which at least 2 carriers were identified (y-axis). Odds ratios (x-axis) are based on a 

Firth regression. The symbol color reflects the -log10(P-value), the size the number of variant 

carriers with disease. Only associations with P-value<0.05 are shown. 
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