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Abstract 

Introduction 

Resting-state functional MRI (rs-fMRI) could enable preoperative risk assessment and 

intraoperative guidance for patients who cannot undergo task-based fMRI (tbfMRI). 

We investigated differences in accuracy between tbfMRI and rsfMRI acquired with 

single (sTE) at voxel size of 2mm and 3mm, and multi-echo (mTE) scans using 

intraoperative mapping with direct electrical stimulations (DES) as the ground truth.  

Material and methods 

Functional sensory-motor mapping results of hands and feet were spatially compared 

relative to positive (pDES, functional effect) and negative (nDES, no functional effect) 

coordinates in 16 preoperative patients. General linear model analysis was used for 

tbfMRI, and seed-based analysis (SBA) for rsfMRI. Minimum Euclidean distances 

between fMRI and DES were calculated and compared between fMRI methods. 

Receiver-operating characteristic (ROC) curves were used to compare accuracy and 

determine distance cutoffs for fMRI agreement with DES, and binary agreement rates 

were compared at different cutoffs. Two-part mixed-effects linear models were used 

to compare fMRI methods while accounting for unequal inter-subject DES repetition. 

Results  

Only minor differences were found between fMRI methods in unthresholded distances 

(mean differences ~ 2 mm). ROCs and binary agreement measures showed 

comparable accuracy for tbfMRI and sTE-rsfMRI 2mm, but mildly worse for sTE-

rsfMRI 3mm and mTE-rsfMRI. However, differences in relative accuracy between sTE- 

and mTE-rsfMRI were minor when the same distance cutoff was applied to all 

methods. This was also reflected on comparing rates of binary agreement and 

confirmed by the two-part linear models, which showed no significant differences 

between fMRI methods and a significant effect of DES response. 

Conclusion 

The similar accuracy for SBA rsfMRI functional sensory-motor mapping compared to 

tbfMRI for the hands and feet, indicate that rsfMRI may be suitable for presurgical 

mapping. The differences in relative accuracy between sTE- and mTE rsfMRI warrant 

further investigation in a larger sample. 
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Introduction 

Blood oxygen-level dependent (BOLD) task-based functional magnetic resonance 

imaging (tbfMRI) is routinely used in clinical practice for presurgical brain mapping. 

TbfMRI is typically used for sensory-motor and language mapping and for estimating 

hemispheric language dominance (Lehéricy et al., 2000; Stippich et al., 2007; Sunaert, 

2006; Wengenroth et al., 2011). Functional brain mapping with tbfMRI has been 

previously validated against intraoperative direct electrical stimulation (DES) (Fandino 

et al., 1999; Jack et al., 1994; Lehéricy et al., 2000; Xie et al., 2008), which is the gold-

standard method for functional brain mapping. The use of fMRI for presurgical brain 

mapping was also recently shown to be associated with decreased morbidity and 

mortality in brain tumor patients undergoing surgical resection (Vysotski et al., 2018). 

BOLD tbfMRI can be used for mapping lower-order brain functions such as vision, 

hearing, sensation, and movement, as well as higher-order brain functions, such as 

language, memory, and attention. Each function is typically mapped using a 3 - 5 

minutes scan, which means that mapping multiple functional domains with tbfMRI 

would be exceedingly time consuming. While this may be acceptable in neuroscientific 

settings, where volunteers might tolerate longer scanning times and can be sufficiently 

trained for task performance, it is not usually tolerable for clinical patients whose task 

performance can degrade with longer scan times due to increasing discomfort, 

distraction or fatigue (Bennett & Miller, 2013; Hausman et al., 2022; Morrison et al., 

2016). In addition, some patients may not be able to perform a task at all either due to 

cognitive impairment, lack of understanding, language or educational difficulties, very 

young or old age, or requiring sedation. All these issues are further compounded by 

the wide variation of functional mapping results due to specific task differences 

(Niskanen et al., 2012; Unadkat et al., 2019), and task-related head motion 

(Kochiyama et al., 2005). 

In contrast, resting-state fMRI (rsfMRI) (Biswal et al., 1995), which measures the 

spontaneous fluctuation of BOLD signal and its correlation between different brain 

regions as functional connectivity, requires no task performance and a single scan of 

5 - 7 minutes can typically be used to map multiple lower and higher-order resting-

state networks (RSNs). RsfMRI can also be acquired with sedation, or while watching 

a video that can soothe very young patients who cannot hold still without an audio-

visual stimulus (Pur et al., 2021). This makes it an attractive alternative to tbfMRI and 
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assessing its applicability in a clinical setting is the focus of considerable debate and 

research.  Multiple studies have shown good concordance between rsfMRI compared 

to intraoperative mapping for different functional domains (Cochereau et al., 2016; Lu 

et al., 2017; Qiu et al., 2014; Rosazza et al., 2014) . However, it suffers a number of 

limitations which may reduce its adoption in clinical neuroradiology. The absence of a 

task makes the interpretation of functional mapping based on rsfMRI functional 

connectivity more challenging. For example, a tbfMRI scan with a finger-tapping task 

shows the so-called functionally-eloquent areas of hand representation in the primary 

sensory-motor cortices, whereas rsfMRI shows the resting-state network (RSN) of 

sensory-motor (SM) function without directly differentiating eloquent and non-eloquent 

parts. There is also a lack of consensus on analysis methods, and a relative lack of 

clinical guidelines (Fox & Greicius, 2010; Gonzalez-Castillo et al., 2021; Lee et al., 

2016; O’Connor & Zeffiro, 2019). Furthermore, while there are multiple data analysis 

tools for expert neuroscientists (Ashburner et al., 2006; Cox, 1996; Jenkinson et al., 

2012), there are only a few user-friendly analysis packages  (Hsu et al., 2018; 

Leuthardt et al., 2018; Whitfield-Gabrieli & Nieto-Castanon, 2012; Zacà et al., 2018) 

available for clinical research, and none provided by any major commercial health-

tech vendors for rsfMRI. In contrast there is a wide variety of such clinically approved 

tools for tbfMRI data analysis. 

Both task-based and rsfMRI data are subject to the confounding effect of head motion, 

EPI distortion and susceptibility effects. One recent development, multi-echo time 

(mTE) – fMRI aims to reduce these effects at the acquisition stage, and therefore has 

potential utility in the clinic.  

MTE-fMRI acquires T2*-weighted images with at least 3 echo-times (TE) thus 

increasing signal-to-noise ratio (SNR) and providing a relative resilience to mild motion 

artifacts, which are independent of TE in contrast to the neuronal BOLD signal. In 

addition, it can partially recover BOLD signal in areas that are typically obscured by 

EPI distortion and susceptibility artifacts. 

To the best of our knowledge, the relative accuracy of tbfMRI, sTE- and mTE-rsfMRI 

has not been validated against intraoperative functional mapping with DES in the same 

patient sample.  
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Aim of the study 

In this study we compared mapping results for the sensory-motor functions of the 

hands and feet from tbfMRI, sTE-rsfMRI at 2mm and 3mm voxel size, and mTE-rsfMRI 

to intraoperative functional mapping with DES using fully-automated methods. We 

quantitatively compared the three fMRI methods in a sample of 16 neurosurgical 

patients who underwent preoperative MRI-based and intraoperative DES-based 

functional mapping to investigate the suitability of the rsfMRI results for presurgical 

planning. We hypothesized that there would be no significant differences in the 

proximity of functional maps and DES coordinates among the four fMRI methods. 

Methodology 

Research questions 

This study attempted to provide an in-depth understanding of the interplay between 

DES response, fMRI methods, fMRI tasks and their influence on proximity and 

agreement between fMRI activity and DES coordinates. To do so, we investigated the 

following research questions: 

First (RQ1), “How do the different fMRI methods compare in terms of raw distance 

measures between fMRI maps and DES coordinates?”, then (RQ2) “How do fMRI 

methods compare on receiver-operating characteristic (ROC) curves?”. Third, (RQ3) 

“How do fMRI methods compare in terms of binary agreement and disagreement with 

DES at different distance cutoffs? “, and lastly, (RQ4) “Are there significant differences 

between fMRI methods when accounting for the inter-subject repeated measures?”. 

Participants 

We recruited 79 surgery-naïve patients who were referred to our department for 

presurgical fMRI and DTI between 01/2019 and 01/2021, 16 patients underwent 

presurgical tbfMRI and intraoperative mapping with matching cortical DES for the 

hands and/or feet. All participating patients, and/or their legal guardians signed written 

informed consent before participation, in accordance with the declaration of Helsinki. 

Local ethics committee approval was acquired (UZ/KU Leuven, Leuven, Belgium, 

study number S61759). Participating patients were excluded if they had undergone 

previous therapeutic brain surgery, had brain implants, e.g., deep brain stimulation 

electrodes, ventriculoperitoneal shunts, etc., or had absolute contraindications to MRI 
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scanning. Summarized demographics and pathology information can be found in 

Table 1 and further detailed in S.table 1.  

Table 1: Summarized patient demographics and pathology information 

Age and Gender Lesion 

Age range = 9 - 73 years 
10 males  
6 females 

 
Median age = 39.5 years 
Interquartile range = 28 

years 

Type Laterality Cerebral lobar distribution 

14 neoplasms: 
13 gliomas 

(HGG) 
1 meningioma 

2 focal cortical dysplasia 

7 right sided  
9 left sided 

2 fronto-parietal 
1 fronto-temporal 

8 frontal 
2 parietal 

1 parieto-occipital 
1 Temporo-fronto-parietal 

1 Fronto-temporo-parieto-occipital 
(multifocal lesion) 

HGG = High grade glioma (World Health Organization grade > 2) 

MRI acquisition 

Two 3-Tesla whole-body MRI scanners were used for multimodal presurgical scanning 

(Ingenia - Elition, and Achieva DStream, Philips Medical Systems, Best, The 

Netherlands). Both MRI scanners were equipped with 32-channel phased-array 

receive head coils. The acquisition parameters for the 3D T1-weighted images, T2- 

and T2 fluid attenuation inversion recovery (FLAIR) images were previously described 

(Radwan et al., 2021). Table 2 lists the acquisition parameters BOLD tbfMRI (single-

echo), sTE-rsfMRI and mTE-rsfMRI data. The first patient (PT001) differed from the 

rest for sTE-rsfMRI, which was acquired with TR = 950 ms, multi-band = 8, voxel size 

= 2x2x2 mm, while PT002 had 250 volumes for both rsfMRI acquisitions.  

Table 2: MRI acquisition parameters 

Acquisition parameters/fMRI methods tbfMRI sTE-rsfMRI mTE-rsfMRI 

Acquisition plane - Pulse sequence Axial - 2D gradient-echo EPI 

TR/TE ms : FA ° 1500/33 : 80 900/33 : 65 1150/8 - 33 - 58 : 75 

Voxel size mm3 1.8x1.8x3.2 2x2x2.2 3x3x3 

Acquisition matrix 112x112x44 112x112x66 80x80x48 

In-plane SENSE/Multiband SENSE 2.1/3 1.2/6 1.9/4 

Pixel BW 2162 2044 2253 

PE – Fat shit directions AP – P 

Number of volumes 120-160 500 400 

MRI = magnetic resonance imaging, tbfMRI = task-based functional MRI, sTE-rsfMRI = single-echo resting-state 
fMRI, mTE-rsfMRI = multi-echo rsfMRI, EPI = echo planar imaging, TR = repetition time, TE = echo time, ms = 
milliseconds, FA = flip angle, SENSE = SENSitivity encoding in plane parallel imaging acceleration, BW = 
bandwidth, PE = phase encoding, AP = anteroposterior, P = posterior, DES = direct electrical stimulation  
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Functional MRI 

A symmetrical block design consisting of 3 - 4 pairs of 30-second blocks of task 

performance versus neutral observation as a control condition was used for tbfMRI 

scanning. All tasks were explained and exercised before scanning. Sensory-motor 

tasks involved finger-tapping or fist-clenching for the hands, and movement of the 

toes. Patients were instructed to engage in mind-wandering for rsfMRI while a black 

screen was shown. This was substituted with watching a video or movie if the patient 

was unable to remain still without a visual stimulus. Visual stimuli were synchronized 

with the scanner and displayed using Presentation (Neurobehavioral Systems, NC, 

USA) via a projector system to a flat in-bore plastic projector screen or via an MRI-

compatible display. In both cases, the visual stimuli, e.g., start, move, and stop, rest, 

were visible to the patient via a mirror mounted on top of the head coil and MRI-

compatible corrective glasses were used if needed. Tb-fMRI and sTE-rsfMRI were 

acquired for all patients, while mTE-rsfMRI was not acquired for 2 patients (PT006 and 

PT010). 

Intraoperative brain mapping 

Wake-up neurosurgery and cortical intraoperative DES were performed for the 16 

patients included in this study. Intraoperative frameless neuronavigation (Curve, 

BrainLab, Munich, Germany) was employed in all cases. Cortical DES used the 

OSIRIS neurostimulator (Inomed Medizintechnik GmbH, Germany), and a bipolar fork 

stimulator with 5mm inter-electrode spacing (Inomed) for cortical mapping. Stimulation 

parameters followed the protocols described by Duffau et al (Duffau et al., 1999) 

(60Hz) in anaesthetized patients and the low frequency protocol described by 

Zangaladze et al. (Zangaladze et al., 2008) (5Hz) in awake patients. Table 3 lists the 

DES tests done, the number of resulting positive and negative DES coordinates, 

effects of positive DES responses, and fMRI tasks of interest for each patient. 
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Table 3: DES intraoperative brain mapping protocol details 

Coded patient names 
Awake 

surgery 
MEP/SSEP 

Stimulation 

range in mA 

Cortical / subcortical 

threshold 

PT001  yes no 4 - 20 mA 20 mA / - 

PT002 no yes 4 - 14 mA 6 mA / 4 mA 

PT003 yes no 4 - 6 mA 4 mA 

PT004 yes no 4 - 20 mA - / 5 mA 

PT005 yes no 4 - 20 mA 16 mA / 5mA 

PT006 yes no 4 - 20 mA 16 mA / 10 mA 

PT007 yes no 4 - 20 mA 20 mA / 2 mA 

PT008 yes no 2 - 20 mA 8 mA / -  

PT009 yes no 4 - 20 mA - 

PT010 yes no 4 - 20 mA - 

PT011 yes no 4 - 20 mA 12 mA / - 

PT012 yes no 4 - 20 mA 12 mA / 5 mA 

PT013 yes no 4 - 20 mA 20 mA / 5 mA 

PT014 yes no 4 - 20 mA 20 mA / 10 mA 

PT015 yes no 4 - 20 mA - / 10 mA 

PT016 yes no 4 - 15 mA 4 mA / 4 mA 

MRI = magnetic resonance imaging, tbfMRI = task-based functional MRI, sTE-rsfMRI = single-echo resting-
state fMRI, mTE-rsfMRI = multi-echo rsfMRI, TFE = turbo field echo, EPI = echo planar imaging, TR = 
repetition time, TE = echo time, ms = milliseconds, FA = flip angle, SENSE = SENSitivity encoding in plane 
parallel imaging acceleration, CS = compressed SENSE, BW = bandwidth, PE = phase encoding, AP = 
anteroposterior, F = feet, P = posterior, DES = direct electrical stimulation, MEP/SSEP = motor and 
somatosensory evoked potentials, mA = milliampere 

 

Data analysis 

Figure 1 shows a schematic representation of the data preprocessing and analysis 

workflow. Data conversion, lesion segmentation with ITK-snap v3.8.0 (Yushkevich et 

al., 2019), lesion inpainting with KU Leuven Virtual Brain Grafting v0.52 (KUL_VBG) 

(Radwan et al., 2021) (https://github.com/KUL-Radneuron/KUL_VBG), and 

parcellation were previously described (Radwan et al., 2023). Briefly, we constructed 

5 mm radius spheres centered around each DES coordinate, then calculated minimum 

Euclidean distances between the center of gravity (COG) of each DES sphere and 

every voxel in the corresponding functional map. Additionally, we calculated similarity 

measures using dice similarity coefficient (DSC) and Jaccard index (JI) between 

corresponding functional maps from the 4 BOLD fMRI methods. All acquired images 

were converted to the brain imaging data structure format (BIDS) (Gorgolewski et al., 
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2016) format using the KULeuven Neuroimaging suite (KUL_NIS) (KULeuven Neuro 

Imaging Suite (KUL_NIS), 2018/2022) (https://github.com/treanus/KUL_NIS) and 

dcm2bids (Dcm2bids, 2016/2022). 

Figure 1 Schematic representation of the data preprocessing and analysis workflow 
used to compare different fMRI results to intraoperative mapping outcome. MRI = 
magnetic resonance imaging, KUL_NIS = KU Leuven neuroimaging suite, BIDS = 
brain imaging data structure, KUL_VBG = KU Leuven virtual brain grafting, CONN = 
functional connectivity toolbox, SBA = seed-based analysis, GLM = general linear 
model, DSC = dice similarity coefficient, JI = Jaccard index 

BOLD fMRI data analysis 

All BOLD fMRI data were preprocessed using fmriprep v20.2.6 (Esteban et al., 2019), 

which combines methods from different software packages in an optimized 

preprocessing pipeline. This corrected for slice-timing, motion artifacts, EPI-included 

image distortion, calculated various covariates for denoising, and applied inter-
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modality warping between the BOLD and anatomical images, as well as normalization 

to the asymmetrical MNI152 nonlinear 2009 template with 2 mm isotropic voxels 

(MNI152NLin2009cAsym_res-2). The middle echo images (TE = 33 ms) of the mTE-

rsfMRI series were also used separately as the sTE-rsfMRI 3mm method, which 

perfectly matches the mTE-rsfMRI data in acquisition parameters, and patient state. 

Fmriprep was used for combining the different echoes of mTE-rsfMRI data into a single 

time-series (Posse et al., 1999). All preprocessed BOLD fMRI data were imported in 

the functional connectivity analysis toolbox (CONN) (Whitfield-Gabrieli & Nieto-

Castanon, 2012) and smoothed with a 3D gaussian kernel of 6 mm full-width at half-

maximum. ANTs v2.3.0 (Avants et al., 2011; Tustison et al., 2021) was used to warp 

resulting maps to native T1 space. 

Task-based fMRI processing 

Spatially-smoothed tbfMRI images generated by CONN were brain extracted, then 

denoised by regressing out the normalized framewise displacement using fsl_glm FSL 

v6.0 (Jenkinson et al., 2012), and high-pass filtered using fslmaths with σ = 20 TRs. 

Results were analyzed using a general linear model (GLM) in fsl_glm with default 

settings other than specifying a double gamma HRF convolution. Output Z-score maps 

were then warped back and resampled to native T1 space for further analysis.  

Resting-state fMRI processing 

Preprocessed rsfMRI (sTE and mTE) were denoised and analyzed using the seed-to-

voxel approach in CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) and default 

covariates. Default band-pass filtering (0.001 – 0.01 Hz) was applied after nuisance 

regression. The MSBP (Tourbier et al., 2020) scale-2 parcellation maps were 

propagated into subject-specific binary grey matter masks using ANTs then imported 

to CONN to define the seeds for functional connectivity analysis. Seed-to-voxel maps 

for hands, and feet were derived from second-level GLM analysis by calculating the 

average group-level connectivity maps. We used bilateral precentral part 3 labels as 

seeds for the hands, and bilateral paracentral labels for the feet. The resulting subject-

specific beta maps from CONN’s second-level GLM were used for further analysis. 

Thresholding of tbfMRI and rsfMRI results 

Results of tbfMRI and rsfMRI processing were constrained by a smoothed subject-

specific grey-matter tissue mask derived from the normalized T1-weighted images, 
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then warped back to native T1 space with antsApplyTransforms. K-means 

thresholding was applied with 100 thresholds using ANTS ThresholdImage, which 

rescaled the positive intensities in the maps to similar values (1 - 101). This was 

followed by applying a minimum threshold to the Kmeans images, which was defined 

as:  

!	 = 	$	 +	(2.5	✕	*) 

Where T is the minimum threshold, m is the mean value of nonzero voxels, and s is 

the standard deviation of non-zero voxels. Resulting thresholded fMRI maps were 

binarized for further analysis. 

DES coordinates processing, distance and volume measures 

Distance measures were limited to the surgical field using subject-specific binary voxel 

masks to minimize the contribution of potential spurious fMRI results from outside the 

surgical field. This was done by summing all DES spheres, then binarizing the result 

and applying a 3D morphological dilation filter with σ = 15 mm using ANTs ImageMath, 

then masking the outcome with the binary brain mask. Minimum Euclidean distances 

were calculated between all DES coordinates represented by the COG of each DES 

sphere and all voxels of the corresponding fMRI map within the surgical field mask in 

Python 3.8 using nibabel v3.2.2 (Brett et al., 2022), numpy v1.22.3 (C. R. Harris et al., 

2020), and scipy v1.4.1 (Virtanen et al., 2020). The whole fMRI map was used if no 

valid fMRI voxels were found within the surgical field mask. Continuous distance 

measures were rounded to their closest integers (in mm) because increments smaller 

than a single voxel (1mm) were not considered meaningful. 

fMRI similarity measures 

Dice similarity coefficient (DSC), and Jaccard index (JI) were calculated between 

functional maps for the hands and feet generated with tbfMRI and each rsfMRI method 

for the same subject, as well as between the rsfMRI methods using ANTS (Tustison 

et al., 2021) LabelOverlapMeasures. Differences in similarity measures between fMRI 

methods were explored using descriptive statistics.  
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Statistical testing 

Exploratory analysis 

Comparing different fMRI methods when a ground truth is present may be achieved 

with techniques typically employed to compare screening tests, such as confusion 

matrices. However, due to the small sample size, unequal number of DES samples 

and functional maps per patient, we first plotted the distance measures (Patil, 2021) 

without imposing any cutoff for agreement (RQ1). Then, to account for the unequal 

repetition of DES coordinates per subject, the distance measures were averaged for 

nDES and pDES separately, so that each patient had at most 1 pDES and 1 nDES 

measurement for hands and/or feet. These averaged measures were then used to 

create ROC (Robin et al., 2011) curves to explore differences in sensitivity, specificity, 

and to estimate distance cutoffs for further analysis of the unaveraged data (RQ2). 

Different distance cutoffs were estimated based on the local maxima of the averaged 

tbfMRI data and used to evaluate the rsfMRI methods. DeLong tests were used for 

direct pairwise comparison of the ROC curves. 

Next, we explored differences in binary agreement and disagreement at the ROC 

determined distance cutoffs (RQ3), excluding subjects with missing modalities (PT006 

and PT010). Positive results were represented by fMRI-DES pairs with a distance less 

than the cutoff, true-positives if involving pDES, and false-positives if involving nDES 

coordinates. Negative results were represented by fMRI-DES pairs with a distance 

above the cutoff, true-negatives if involving nDES and false-negatives if involving 

pDES. Lastly, two-part linear models were used to compare all fMRI-DES distance 

measures between fMRI methods while accounting for the unequal intrasubject DES 

repetition (RQ4) at the different distance cutoffs determined on the tbfMRI ROC. 

Two-part linear modeling 

Distance data thresholded at the three cutoffs determined by ROC of all pooled data 

were used for a two-part linear mixed model and posthoc testing to compare fMRI 

methods while accounting for the unequal number of DES coordinates between 

different subjects. The thresholded distances data were a semicontinuous variable 

with excess zeros and an extremely right-skewed distribution, violating assumptions 

of normality. Therefore, and given the within-subjects nesting of repeated distance 

measures , we opted for a two-part model for longitudinal data (Farewell et al., 2017; 
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Tooze et al., 2002) (RQ3). The model was estimated with the %MIXCORR macro 

provided by Tooze, Gunwald and Jones, 2002(Tooze et al., 2002) and PROC 

NLMIXED in SAS studio v9.4 (SAS Institute, Cary, NC, USA).  

The first part (A) predicted the probability of overlap (distance=0), and the second part 

(B) predicted the distances between nonoverlapping (distance>0) fMRI-DES 

coordinate pairs. Distances were the dependent variable and DES response, and fMRI 

method (tbfMRI, sTE-rsfMRI 2mm, sTE-rsfMRI 3mm, and mTE-rsfMRI) were used as 

predictors in both parts of the model, and adaptive Hochberg’s (Hochberg & Benjamini, 

1990) family-wise error-rate (FWE) correction was used to control for type(I) error in 

posthoc testing. No covariates were used in this analysis due to the small sample size; 

further detail can be found in supplementary material. 

Results 

Lesion segmentation 

Volumetric lesion voxel-masks included perilesional edema in case of neoplasms. The 

median lesion volume was 44.70 ml, minimum = 1.20, maximum = 124.78, and IQR = 

46.61 ml. Figure 2 shows the voxel-wise probabilistic distribution of lesions in this 

sample of patients over the whole brain in the MNI152 space. 

BOLD fMRI mapping 

All fMRI data was successfully processed resulting in 22 tbfMRI maps, 22 sTE-rsfMRI 

maps, and 20 mTE-rsfMRIs as patients PT006, and PT010 did not undergo the mTE-

rsfMRI scan. Hands were mapped for 16 patients using tbfMRI and sTE-rsfMRI, and 

for 14 patients using mTE-rsfMRI, and feet were mapped for 6 patients using the 4 

methods. All resulting maps were included for further analysis regardless of the 

amount of motion during scanning. Figures 3 and 4 show all resulting fMRI maps for 

the hands and feet tasks, respectively. 

Intraoperative mapping and distance measures 

DES mapping resulted in a total of 23 positive DES (pDES) and 88 negative DES 

(nDES) coordinates. Figure 5 shows images from exemplar patients demonstrating 

DES spheres and example functional mapping results included in the surgical field 

mask. Further details on results of intraoperative DES mapping can be found in 

S.table 2. Functional maps were paired with the relevant pDES spheres and all nDES 
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spheres, which resulted in 512 distance measures in total with 138 measures for 

tbfMRI and sTE-rsfMRI 2mm and 118 for sTE-rsfMRI 3mm and mTE-rsfMRI. See 

S.figure 1 for plots of distance measures per DES response. 

Figure 2 Spatial distribution of lesions from all patients overlaid onto the UK biobank 
T1 template brain in standard Montreal neurological institute (MNI) space. Overlay 
voxel intensities correspond to the sum of lesion masks occupying it. R = right, L = 
Left, slice numbers are indicated for the first, middle and last slices 
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Figure 3 Results for hands fMRI mapping using all methods overlaid in orange on 
surface rendered T1 images for each patient in superior view, empty cells indicate a 
missing multi-echo rsfMRI scan, tbfMRI = task-based fMRI, sTE-rsfMRI = single-echo 
resting-state fMRI, mTE-rsfMRI = multi-echo rsfMRI 
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Figure 4 Results for feet fMRI mapping using all methods overlaid in orange on 
surface rendered T1 images for each patient in superior view, tbfMRI = task-based 
fMRI, sTE-rsfMRI = single-echo resting-state fMRI, mTE-rsfMRI = multi-echo rsfMRI 

Similarity analysis 

In terms of inter-method intrasubject similarity regardless of task, DSC and JI scores 

showed modest similarity between tbfMRIs and the three rsfMRI methods, with sTE-

rsfMRI 2mm (DSC/JI median = 0.203/0.113, IQR = 0.159/0.103) scoring lower than 

mTE-rsfMRI (DSC/JI median = 0.260/0.150, IQR = 0.136/0.087) and sTE-rsfMRI 3mm 

(DSC/JI median = 0.284/0.166, IQR = 0.169/0.109). Higher similarity measures were 

found between sTE-rsfMRI 2mm and mTE (DSC/JI median = 0.536/0.367, IQR = 

0.341/0.288), sTE-rsfMRI 3mm and mTE-rsfMRI (DSC/JI median = 0.557/0.728, IQR 

= 0.248/0.229), and sTE-rsfMRI 2mm and 3mm (DSC/JI median = 0.546/0.376. IQR 

= 0.345 /0.301). DSC and JI were found to be higher for the hands (DSC/JI median = 

0.333/0.200, IQR = 0.358/0.326) than for feet (DSC/JI median = 0.269 /0.164, IQR = 

0.306/0.348), see S.table 3a and 3b for more details. 
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Figure 5 DES spheres and fMRI mapping results for hands and feet using with the 3 
methods overlaid on top of surface-rendered T1 images. White asterisks indicate site 
of pathology, PT = patient, nDES = negative direct electrical stimulation, pDES = 
positive DES, tbfMRI = task-based fMRI, sTE-rsfMRI = single-echo resting-state fMRI, 
mTE-rsfMRI = multi-echo rsfMRI, A = anterior, P = posterior, L = left, R = right, S = 
superior, I = inferior 

Statistical testing 

Exploratory analysis 

Excluding PT006 and PT010, who did not undergo mTE-rsfMRI, only minor differences 

were found between fMRI methods for unthresholded distance measures (RQ1), see 

table 4 and S.figure 1. ROC curves local maxima determined three cutoffs of 3.7, 6.5, 

and 10.1 (integers: 4, 7, and 10) mm for the averaged tbfMRI data, (RQ2) see table 5 

and figure 6 for detailed results, and S.figure 2 for ROCs generated from unaveraged 

distances. Briefly for the averaged data, tbfMRI had the highest sensitivity, specificity, 

and area-under the curve, AUC = 92.1%, followed by sTE-rsfMRI 2mm, which had 

comparable sensitivity, mildly lower specificity and AUC = 88.2%. The reduced voxel 

size seemed to induce a reduction in accuracy, as sTE-rsfMRI 3mm showed AUC = 
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82.1%, and mTE-rsfMRI scored the lowest, AUC = 79.3%. All methods showed lower 

sensitivity and higher specificity at the lowest cutoff, and higher sensitivity and lower 

specificity at higher cutoffs. DeLong tests showed no significant differences between 

any of the fMRI methods, see S.table 4. 

Table 4: Descriptive statistics for distance measures per DES response, function and 

fMRI method 

Function 
DES 

response 
fMRI method Mean StDev Median IQR Var Range N 

Hands 

pDES 

TbfMRI 4.176 3.225 4 6 10.404 10 17 

sTE-rsfMRI 2 mm 4.647 3.426 5 4 11.742 12 17 

sTE-rsfMRI 3 mm 4.933 4.0789 4 4 16.638 14 15 

mTE-rsfMRI 6.066 3.6344 6 4.5 13.209 13 15 

nDES 

TbfMRI 14.534 10.085 12 14 101.722 45 88 

sTE-rsfMRI 2 mm 15.886 10.655 14 14.25 113.550 46 88 

sTE-rsfMRI 3 mm 15.389 10.917 13 16.75 119.183 38 76 

mTE-rsfMRI 15.618 10.527 13 17.25 110.825 42 76 

Feet 

pDES 

TbfMRI 2.166 1.471 2.5 1.75 2.166 4 6 

sTE-rsfMRI 2 mm 2.666 2.160 2.5 2.5 4.666 6 6 

sTE-rsfMRI 3 mm 3.6 3.209 2 2 10.3 8 5 

mTE-rsfMRI 3.4 3.209 2 1 10.3 8 5 

nDES 

TbfMRI 13.925 12.034 10 12 144.840 50 27 

sTE-rsfMRI2 mm 13.851 12.024 9 16.5 144.592 37 27 

sTE-rsfMRI3 mm 14.181 13.022 10.5 24 169.584 36 22 

mTE-rsfMRI 15.409 13.730 10 24.75 188.538 40 22 

DES = direct electrical stimulation, pDES = positive DES, nDES = negative DES, fMRI = functional magnetic 
resonance imaging, StDev = standard deviation, IQR = interquartile range, Var = variance, N = number, tbfMRI 
= task-based fMRI, sTE-rsfMRI = single echo resting-state fMRI, mTE-rsfMRI = multi-echo resting-state fMRI 
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Table 5: ROC derived accuracy measures at different cutoffs 

ROC accuracy measures at different distance cutoffs 4/7/10mm for averaged and raw distance measures 

 Sensitivity % Specificity % 

Method Averaged Raw Averaged Raw 

TbfMRI 70/80/100 56.5/78.3/100 100/78.6/71.4 88.7/73/56.5 

STE-rsfMRI 2mm 40/90/90 47.8/82.6/91.3 92.9/78.6/64.3 88.7/75.7/57.4 

STE-rsfMRI 3mm 40/90/90 45/80/90 85.7/78.6/57.1 84.7/70.4/54.1 

MTE-rsfMRI 20/70/90 35/70/90 92.9/78.6/57.1 88.8/72.4/58.2 

TbfMRI = task-based fMRI, STE-rsfMRI = single echo resting-state fMRI, MTE-rsfMRI = multi-echo resting-
state fMRI 

 

Figure 6 ROCs plots and distance cutoffs per fMRI method, the corresponding 

sensitivity and specificity values are shown as well as the area under the curve (AUC) 

value per method, tbfMRI = task-based fMRI, sTE-rsfMRI = single-echo resting-state 

fMRI, mTE-rsfMRI = multi-echo rsfMRI 

Plots for binary agreement and disagreement rates showed only minor differences 

between fMRI methods at all ROC-determined distance cutoffs (RQ3), see S.figures 

3 and 4. 
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Two-part linear modeling 

Below we describe the results of statistical modeling of predicted probability of 

agreement between fMRI-DES pairs where the distance measured was below the 

cutoff and predicted distance in case of disagreement (distance > cutoff) (RQ4). 

Results of the logistic regression part (model A) are followed by the results of the 

lognormal part (model B) for the 3 ROC-determined distance cutoffs. 

Differences between the 4 fMRI methods were not significant at any of the ROC-

determined distance cutoffs, indicating that there were no significant differences in 

predicted probability of overlap and predicted distances between tbfMRI, sTE-rsfMRI 

(2mm and 3mm), and mTE-rsfMRI. Differences between DES response types were 

significant (p< 0.001) in both parts of the model at the 3 cutoffs, meaning that pDES 

coordinates were associated with significantly higher probabilities of overlap and 

shorter distances to fMRI activity regardless of the method used. No significant 

differences were found between hands and feet, indicating that the two domains 

behave similarly in both parts of the model. The results are listed in table 6. and 

illustrated visually in Figure 7. 

Table 6: Summarized results of the estimated two-part models for predicting 

probability of overlap and distance between fMRI and DES 

Distance threshold for agreement 4 mm  7 mm 10 mm 

Parameter Model DF t Value Pr > |t| t Value Pr > |t| t Value Pr > |t| 

tbfMRI v STE-rsfMRI 2mm A 14 -1.69 0.226 -0.78 0.980 -0.70 0.988 

tbfMRI v STE-rsfMRI 3mm A 14 -0.64 0.531 0.03 0.980 -0.02 0.988 

tbfMRI v mTE-rsfMRI A 14 -2.49 0.052 -0.59 0.980 -1.02 0.988 

STE-rsfMRI 2mm v 3mm A 14 1.00 0.531 0.77 0.980 0.65 0.988 

STE-rsfMRI 3mm v MTE A 14 -1.88 0.163 -0.60 0.98 -0.98 0.988 

tbfMRI v STE-rsfMRI 2mm B 14 -0.52 0.963 -0.67 0.878 -0.72 0.881 

tbfMRI v STE-rsfMRI 3mm B 14 -0.26 0.963 -0.47 0.878 -1.04 0.881 

tbfMRI v mTE-rsfMRI B 14 -0.45 0.963 -1.11 0.878 -0.84 0.881 

STE-rsfMRI 2mm v 3mm B 14 0.23 0.963 0.16 0.878 -0.38 0.881 

STE-rsfMRI 3mm v MTE B 14 -0.18 0.963 -0.62 0.878 0.22 0.881 

Model A = logistic regression part evaluating probability of overlap/agreement at distance cutoff, Model B = 
lognormal regression part evaluating distance measures in case of nonoverlap, DF = degrees of freedom, Pr > 
|t| = probability, TIV = total intracranial volume, sTE-rsfMRI = single-echo resting-state fMRI, mTE-rsfMRI = multi-
echo rsfMRI 
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Figure 7 Results for predicted probability of overlap and predicted distances for 
nonoverlapping DES spheres averaged over fMRI tasks at different distance cutoffs 
for defining agreement, nDES = negative direct electrical stimulation, pDES = positive 
DES, tbfMRI = task-based fMRI, sTE-rsfMRI = single-echo resting-state fMRI, mTE-
rsfMRI = multi-echo rsfMRI 
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Discussion 

The main aim of this study was to compare the accuracy of tbfMRI and rsfMRI using 

DES results as the ground truth. We did so first (RQ1) by comparing fMRI methods for 

the unthresholded distance measures. This showed minor differences between the 

fMRI methods for mapping hands and/or feet when compared to pDES and nDES. 

ROCs were then used to compare measures of accuracy, sensitivity and specificity 

between the fMRI modalities (RQ2). As tbfMRI represents the routine standard of 

practice for clinical fMRI mapping, its averaged distance values were used to estimate 

the distance cutoffs. This analysis showed that (a) tbfMRI was the most accurate while 

sTE-rsfMRI 2mm scored slightly worse. (b) The change in acquisition parameters, and 

patient state between the sTE-rsfMRI 2mm scan and the mTE-rsfMRI scan results in 

an apparent reduction in accuracy relative to DES. (c) The distance cutoff of 7mm 

appeared to maximize both sensitivity and specificity on averaged data ROCs. Next, 

we compared fMRI methods for binary agreement measures at the 3 cutoffs (RQ3), 

which also showed only minor differences between fMRI methods when compared to 

pDES and nDES. Similarly, the two-part mixed-effects linear model showed only minor 

and non-significant differences between the fMRI methods at the three distance cutoffs 

(RQ4). 

Given that mTE-rsfMRI would be expected to perform at least as well as sTE-rsfMRI, 

its worse performance on ROC curves was unexpected. While this was also apparent 

on plotting in S.Figure 1, and figure 6, it was not reflected in the results of the two-

part mixed-effects models at any of the distance cutoffs, as would be expected for a 

small difference.  

The results of the similarity analysis with DSC and JI were in line with previous studies, 

which reported rather low agreement between tbfMRI and rsfMRI despite good 

concordance with DES (Rosazza et al., 2014). In this case, the low overlap may be 

partially attributed to differences in acquisition parameters, which undoubtedly played 

a role. Similarity scores can be expected to improve with matched acquisition 

parameters and optimized seed-selection for SBA, as evidenced by the higher DSC 

and JI (0.557 and 0.728) between sTE-rsfMRI 3mm and mTE-rsfMRI than between 

sTE-rsfMRI 2mm and sTE-rsfMRI 3 mm (0.536 and 0.367). This may be expected as 

tbfMRI and rsfMRI in fact measure different aspects of neural activity and therefore 

could be expected to give mildly similar but not identical results (Dierker et al., 2017). 
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Yet, despite the low similarity, we found no significant differences in accuracy between 

tbfMRI and sTE-rsfMRI, indicating that both methods can be used for accurate SMN 

mapping.  

This study adds to the growing body of evidence that presurgical functional brain 

mapping with rsfMRI is feasible with comparable accuracy to tbfMRI. In contrast to 

previous studies, here we used fully-automated data analysis methods that accounted 

for the presence of pathology such as KUL_VBG (Radwan et al., 2021) for lesion 

inpainting and minimizing subsequent errors in resulting parcellation maps, as well as 

advanced statistical modeling. In addition, we generated hands and feet specific seed-

based rsfMRI maps by relying on the finer-grained parcellation maps from MSBP 

(Tourbier et al., 2020), which to the best of our knowledge, was previously done in 

only a few studies either using manual delineation (Rosazza et al., 2014; Schneider 

FC, 2015) or by repeating ICA within the SMN mask (Sohn et al., 2012).  Only a small 

number of studies have included different fMRI methods and DES results as a gold 

standard in their analyses (Cui et al., 2022; Mitchell et al., 2013; Roland et al., 2019; 

Rosazza et al., 2014; Vakamudi et al., 2020; Zacà et al., 2018; Zhang et al., 2009), 

none of which used automated parcellation-based SBA for mapping hands and feet 

from rsfMRI, or included mTE-rsfMRI. 

While the currently dominant paradigm in neurosurgical practice prioritizes mapping 

the eloquent sensory-motor, and/or language areas for preservation during surgery, 

recent evidence has shown the importance of mapping and preservation of functional 

networks that are generally thought of as non-eloquent. Higher-order RSNs such as 

the ventral and dorsal attention networks, salience network, default mode network and 

executive control networks if injured may be associated with reduced patient 

independence, and increased morbidity and mortality postoperatively (Dadario et al., 

2021).  

RsfMRI may serve as a clinically viable and more accessible alternative to tbfMRI. 

Considering the complexity of the tasks associated with mapping functions using 

tbfMRI, the significance of rsfMRI is underscored by its task-free nature, its ability to 

provide maps that are modestly similar to those of tbfMRI, and its comparable distance 

measures to DES coordinates in this sample of clinical patients. Despite recent studies 

indicating that these RSNs can also be mapped from tbfMRI data by regressing out 
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task-related signal changes (R. J. Harris et al., 2014; Pareto et al., 2018) there is an 

expectation of higher reliability of RSNs from rsfMRI compared to tbfMRI data 

analyzed with this approach. This expectation arises because a single rsfMRI scan 

typically acquires more time-points (volumes) than a single tbfMRI scan, and a higher 

number of volumes has been correlated with increased reliability of mapped RSNs 

(Birn et al., 2013; White et al., 2014). It is important to note that while rsfMRI may be 

considered a viable alternative in case tbfMRI is not possible, if the patient is 

cooperative, tolerant to scanning and if sufficient scan time is available, a combined 

acquisition of tbfMRI and rsfMRI remains a more data rich approach. Additionally, 

analysis of task-independent signal change in tbfMRI data can still be expected to offer 

valuable information. 

Study limitations 

In contrast to recent studies (Dierker et al., 2017; Ngo et al., 2022; Niu et al., 2021; 

Parker Jones et al., 2017), we did not employ machine learning or deep learning 

methods for predicting tbfMRI from the rsfMRI data. While such studies show highly 

encouraging results, the majority are not easily accessible for clinical validation. 

Furthermore, these techniques typically require larger curated datasets for training and 

testing, and the pretrained models, if provided, might not translate easily to data from 

different scanners. Among the limitations of this study are the small sample size, non-

standardization of sensory-motor mapping tasks between fMRI and DES, patients 

sample heterogeneity in terms of age and pathology, as well as not including 

information on patient symptoms and postoperative follow up. Lastly, mTE-fMRI was 

only evaluated only as a resting-state technique, and only 3 TEs were acquired, while 

a higher number of TEs can be expected to improve mapping outcomes. 

Conclusion 

By using DES as the ground truth to compare measures of accuracy between tbfMRI, 

sTE-rsfMRI and mTE-rsfMRI, we have demonstrated that automated parcellation 

driven SBA sTE-rsfMRI can be used for presurgical brain mapping of sensory-motor 

representation of the hands and feet. Further investigation in a larger sample, 

preferably with denser sampling during invasive mapping, is necessary to further 

explore the lower accuracy of mTE-rsfMRI and sTE-rsfMRI acquired at 3mm, as well 

as the generalizability of these findings to different sites and different functional 

networks.  
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Supplementary information 

 
Supplementary figure 1 Distance measures for fMRI and DES responses shown in 
box and violin plots. Results for the hands are shown on the left, for the feet on the 
right, for pDES on top, and for nDES on the bottom, tbfMRI = task-based fMRI, sTE-
rsfMRI = single-echo resting-state fMRI, mTE-rsfMRI = multi-echo rsfMRI 
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Supplementary table 1: Patient demographics, pathology results, lesion lobe, side 

and volume 

Coded 

patient 

names 

Age at 

scan Gender Lesion type WHO 

grade Pathology report Lesion side and 

lobe 

Lesion 

volume 

(ml) 

PT001 61 – 65 M Glioma IV Glioblastoma R / Fr-Pa 66.809 

PT002 6 – 10 F FCD  Type I L / Fr 1.200 

PT003 36 – 40 M Meningioma I Transitional type 
meningioma L / Fr 54.079 

PT004 31 – 35 F Glioma II Oligodendroglioma L / Fr-Pa 124.775 

PT005 71 – 75 M Glioma IV Glioblastoma R / Pa-Oc 32.382 

PT006 66 – 70 F Glioma IV Glioblastoma R / Fr 26.779 

PT007 31 – 35 M Glioma IV Glioblastoma L / Te-Fr-Pa 88.917 

PT008 41 – 45 M Glioma II Multifocal astrocytoma R / Fr-Te-Pa-Oc 123.293 

PT009 61 – 65 F Glioma II Oligodendroglioma L / Fr 53.331 

PT010 31 – 35 M Glioma III Oligodendroglioma R / Fr 92.154 

PT011 31 – 35 F Glioma II Oligodendroglioma L / Pa 22.553 

PT012 61 – 65 M Glioma IV Glioblastoma R / Pa 42.517 

PT013 31 – 35 F Glioma III Oligodendroglioma L / Fr 46.887 

PT014 56 – 60 M Glioma III Astrocytoma L / Fr-Te  40.208 

PT015 56 – 60 M Glioma II Oligodendroglioma L / Fr 11.531 

PT016 11 - 15 M FCD  Type IIB R / Fr 4.806 

PT = patient, M = male, F = female, FCD = focal cortical dysplasia, WHO = world health organization, R = right, L 
= left, ml = milliliters, Fr-Pa = frontoparietal, Fr = frontal, Pa-Oc = parieto-occipital, Te-Fr-Pa = Temporo-occipito-
parietal, Fr-Te-Pa-Oc = Fronto-temporo-parieto-occipital, Pa = parietal, Fr-Te = fronto-temporal 
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Supplementary table 2: Direct electrical stimulation (DES) mapping and fMRI 

details 

Coded patient 

names Test done pDES/nDES DES positive effect N. of fMRI methods / 

tasks 

PT001 Active motor and 
language mapping 0/6 none 4 / Hands 

PT002 Active motor mapping 4/6 Motor response right upper 
leg, wrist, foot, and hand 4 / Right hand and foot 

PT003 Active motor mapping 3/3 Motor response right upper 
leg, foot, and hand 4 / Hands and feet 

PT004 Active motor and 
language mapping 1/7 Motor response right hand, 

and lower arm 4 / Hands and feet 

PT005 Active motor mapping 2/4 
Interference with finger 

tapping, and motor response 
left hand 

4 / Hands and feet 

PT006 Active motor mapping 2/6 Sensory-motor response left 
leg 2 / Hands and feet 

PT007 Active motor and 
language mapping 0/5 Motor response right hand 4 / Hands 

PT008 Active motor mapping 0/6 none 4 / Hands 

PT009 Active motor mapping 0/7 none 4 / Hands 

PT010 Active motor mapping 1/6 Motor response left hand and 
foot 2 / Hands 

PT011 Active motor mapping 1/6 Motor response right hand 4 / Hands 

PT012 Active motor mapping 2/2 Motor response left foot, leg, 
hand and arm 4 / Hands and feet 

PT013 Active motor mapping 2/8 Motor response right hand 4 / Hands 

PT014 Active motor mapping 1/6 Motor response right hand 4 / Hands 

PT015 Active motor and 
language mapping 1/4 Motor response right arm 4 / Hands 

PT016 Active motor mapping 3/6 Motor response left wrist and 
hand 4 / Hands 

PT = patient, DES = direct electrical stimulation, tbMRI = task-based functional magnetic resonance imaging, 
sTE-rsfMRI = single-echo resting-state fMRI, mTE-rsfMRI = multi-echo rsfMRI, AF = arcuate fasciculus, CST = 
corticospinal tract, MEP/SSEP = motor and somatosensory evoked potential, B0 = non-diffusion weighted spin-
echo EPI volume, 2 = tbfMRI and sTE-rsfMRI, 3 = tbfMRI, sTE-rsfMRI, and mTE-rsfMRI 
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Supplementary table 3: Summarized descriptive statistics for similarity measures 

per fMRI technique (3a) and per fMRI task (3b) 

Supplementary table 3a: Summarized descriptive statistics for similarity measures per fMRI technique 

Methods/Measures Metric Max(min) Mean(std) Median(IQR) 

sTE-rsfMRI 2mm v tbfMRI DSC 0.516(0.061) 0.235(0.122) 0.203(0.159) 

JI 0.348(0.032) 0.138(0.082) 0.113(0.103) 

sTE-rsfMRI 3mm v tbfMRI DSC 0.526(0.0277) 0.254(0.139) 0.284(0.169) 

JI 0.357(0.014) 0.153(0.094) 0.166(0.109) 

mTE-rsfMRI v tbfMRI DSC 0.450(0.029) 0.239(0.121) 0.260(0.136) 

JI 0.290(0.015) 0.140(0.078) 0.150(0.087) 

sTE-rsfMRI 2mm v 3mm DSC 0.730(0.045) 0.471(0.221) 0.546(0.345) 

JI 0.576(0.023) 0.333(0.181) 0.376(0.301) 

sTE-rsfMRI 2mm v mTE-rsfMRI DSC 0.740(0.044) 0.454(0.219) 0.536(0.341) 

JI 0.588(0.022) 0.318(0.180) 0.367(0.288) 

sTE-rsfMRI 3mm v mTE-rsfMRI  DSC 0.744(0.099) 0.525(0.190) 0.557(0.248) 

JI 0.871(0.161) 0.655(0.199) 0.728(0.229) 

Supplementary table 3b: Summarized descriptive statistics for similarity measures per fMRI task 

Tasks/Measures Metric Max(min) Mean(std) Median(IQR) 

Hands 

 

DSC 0.744(0.028) 0.367(0.203) 0.333(0.358) 

JI 0.851(0.014) 0.291(0.228) 0.200(0.326) 

Feet DSC 0.740(0.053) 0.338(0.226) 0.269(0.306) 

JI 0.871(0.027) 0.271(0.242) 0.164(0.348) 

sTE-rsfMRI = singe-echo resting-state fMRI, tbfMRI = task-based fMRI, mTE-rsfMRI = multi-echo rsfMRI, DSC = Dice 
similarity coefficient, JI = Jaccard index, max = maximum, min = minimum, stdev = standard deviation, IQR = 
interquartile range 
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Supplementary figure 2 ROCs of raw distance measures without intra-subject 

averaging. 

 

Supplementary table 4: Summarized results of DeLong pairwise tests comparing the 

ROC curves from averaged distance measures 

Pairwise comparisons Estimate1 Estimate2 Statistic p.value CI.low CI.high 

TbfMRI v sTE-rsfMRI 2mm 92.14 88.21 0.53 0.60 -0.11 0.18 

TbfMRI v sTE-rsfMRI 3mm 92.14 82.14 1.53 0.13 -0.03 0.23 

TbfMRI v mTE-rsfMRI 92.14 79.29 1.55 0.12 -0.03 0.29 

sTE-rsfMRI 2mm v 3 mm 88.21 82.14 1.12 0.26 -0.05 0.17 

sTE-rsfMRI 2mm v mTE-rsfMRI 88.21 79.29 1.50 0.13 -0.03 0.21 

sTE-rsfMRI 3mm v mTE-rsfMRI 82.14 79.29 0.57 0.57 -0.07 0.13 

ROC = receiver operating characteristic, CI = confidence interval, TbfMRI = task-based fMRI, sTE-rsfMRI = 
single-echo resting-state fMRI, mTE-rsfMRI = multi-echo resting-state fMRI 
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Supplementary figure 3 Stacked column plots depicting hands fMRI percent of 

agreement versus disagreement with different fMRI methods and DES at ROC-

determined distance cutoffs, tbfMRI = task-based fMRI, sTE = single-echo resting-

state fMRI, mTE = multi-echo rsfMRI 
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Supplementary Figure 4 Stacked column plots depicting feet fMRI percent of 

agreement versus disagreement with different fMRI methods and DES at ROC-

determined distance cutoffs, tbfMRI = task-based fMRI, sTE-rsfMRI = single-echo 

resting-state fMRI, mTE-rsfMRI = multi-echo rsfMRI 
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Two-part linear model details 

The first part (A) used a logit-link for binary response (distance=0 vs. distance >0) and 

a generalized linear mixed model to predict probability of nonoverlap (distance > 0), 

and the second part (B) used a log-normal linear mixed model for the distance 

measures (distance >0) between nonoverlapping fMRI-DES coordinate pairs. 

The thresholded distance measures were used as the dependent variable and DES 

response type (positive and negative), fMRI methods (tbfMRI, sTE-rsfMRI 2mm, sTE-

rsfMRI 3mm, and mTE-rsfMRI 2mm) were used as predictors in both parts of the 

model. 

For ease of interpretation, we discuss and plot the probability of overlap (distance = 0) 

for the first part (A), and log distances (B) from the second part are back-transformed 

to distance in mm. 

Results were interpreted in the following context: Predicted probability of overlap 

(distance < cutoff) with pDES coordinates was analogous to true-positive rate. 

Predicted probability of overlap with nDES coordinates was analogous to false-positive 

rate. Predicted distances to non-overlapping (distance > cutoff) nDES coordinates 

were analogous to true-negative rate and predicted distances to non-overlapping 

pDES coordinates were analogous to false-negative rate. 

In this analysis, missing data was represented and handled by assigning 'NAN' (Not a 

Number) values. The decision to use 'NAN' ensured that the missing data did not 

influence the statistical calculations or skew the results. The analysis was then carried 

out on the remaining dataset, excluding the 'NAN' values. 
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