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Abstract

Non-protein-coding genetic variants are a major driver of the genetic risk for human disease;
however, identifying which non-coding variants contribute to which diseases, and their mechanisms,
remains challenging. In-silico variant prioritization methods quantify a variant’s severity in the
context of having a phenotypic effect; but for most methods the specific phenotype and disease
context of the prediction are poorly defined. For example, many commonly used methods provide
a single organism-wide score for each variant, while other methods summarize a variant’s impact
specifically in certain tissues and/or cell-types. Here we propose a complementary disease-specific
variant prioritization scheme, which is motivated by the observation that the variants contributing
to different diseases often operate through different biological mechanisms.

We combine tissue/cell-type specific scores into disease-specific scores with a logistic regression
approach and apply it to 25,000 non-coding variants spanning 111 diseases. We show that disease-
specific aggregation of tissue/cell-type specific scores (GenoSkyline, Fit- Cons2, DNA accessibility)
signifiantly improves the association of common non-coding genetic variants with disease (average
precision: 0.151, baseline=0.09), compared with organism-wide scores (GenoCanyon, LINSIGHT,
GWAVA, eigen, CADD; average precision: 0.129, base- line=0.09). Calculating disease similari-
ties based on data-driven aggregation weights highlights meaningful disease groups (e.g., immune
system related diseases and mental/behavioral disorders), and it provides information about tis-
sues and cell-types that drive these similarities (e.g., lymphoblastoid T-cells for immune-system
diseases). We also show that so-learned similarities are complementary to genetic similarities as
quantified by genetic correlation. Overall, our aggregation approach demonstrates the strengths of
disease-specific variant prioritization, leads to improvement in non-coding variant prioritization,
and it enables interpretable models that link variants to disease via specific tissues and/or cell-

types.

. 1 Introduction

> Characterizing non-coding genetic variants in the human genome is essential for making progress
s toward better understanding the genetic components of disease, because ~90% of disease-associated

+ variants discovered by genome-wide association studies (GWAS) are located in non-protein-coding
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s regions [1]. Further on, whole-genome sequencing (WGS) discovers disease-associated variants genome-
s wide [2, 3] and is increasingly becoming an assay of choice. Therefore, approaches for characterizing
7 and prioritizing non-coding variants can be expected to play an increasingly important role, especially
s when assessing discovered variants in the context of functional follow-up experimental studies.

0 Efforts to computationally characterize and better understand non-coding variants take advantage
1 of sequence, functional genomics, comparative genomics, and epigenomics data [4, 5, 6], and more.
u  These data are combined and used to train and develop supervised and/or unsupervised models that
1> attempt to quantify a variant’s impact [7]. We find it conceptually useful to distinguish between
13 variant scores that model overall impact (that is on the level of the whole organism, orgnaism-level
1 scores) and scores that quantify impact in a specific context, like a tissue or a cell-type (i.e., tissue-level
15 scores). Examples for organism-level scores are CADD [8], Eigen [9], or LINSIGHT [10], while scores
16 from methods like GenoSkyline [11], Fitcons2 [12], or FUN-LDA [13] are tissue-specific.

17 Often interest in a set of variants is from the perspective of studying a specific disease. In that case,
18 organism-level scores are likely to be overly general. That is, a variant’s impact might be considered
19 high because it disrupts the functional role of a sequence element. However, that functional role may
2 be unrelated to the disease of interest. In one study, for instance, organism-level scores like CADD
2 and DANN were unable to discover an enrichment signal for brain-related traits, while context-specific
» variant scores focusing on relevant tissues were successful [14]. This demonstrates that tissue-specific
;3 scores can address the issue of disease specificity to some extent. However, aspects of disease-relevant
2 tissues typically remain unknown, and often more than one tissue is implicated with a specific trait
»  (termed ”multifactorial” and ”polyfactorial” traits) [15]. This suggests the use of disease-specific
» variant scores that characterize variants in the context of a specific disease phenotype of interest.

27 Computational methods for disease-specific variant prioritization do exist. Some approaches are
s geared towards one disease (e.g, congenital heart disease [16], amyotrophic lateral sclerosis [17]) or
» towards a specific class of diseases (e.g., autoimmune diseases [18]). This focus prevents them from
» being readily adapted to other disease types. Others, like DIVAN [19], PINES [20], and ARVIN [21],
a cover a broader range of disease types. Of these, ARVIN requires a priori knowledge of disease-relevant
»  tissues, whereas DIVAN and PINES do not. PINES uses an enrichment-based method to predict and
13 up-weight disease-relevant tissues/cell-types, whereas DIVAN uses a more complex machine learning
1 algorithm. The PINES approach has been evaluated on a relatively small set of traits (~10 different
55 contexts), while DIVAN’s more compex model renders understanding the relationship between different
s tissues and diseases difficult.

37 In this work, we derive disease-specific variant scores by combining published tissue-specific scores.
s We use a carefully regularized logistic regression approach to derive data-driven disease-specific com-
3 bination weights, which allow us to better associate variants with disease. In addition, they enable us
w0 to quantify a similarity between different disease phenotypes. Using the NHGRI-EBI GWAS catalog
s [1] we compiled a benchmark dataset containing about 63k phenotype-associated non-protein-coding
« single nucleotide variants across 111 disease phenotypes (together with matched random controls). We
1 then demonstrate that using disease-specific combination weights outperforms conventional organism-
« level approaches, that our interpretable model has competitive performance, and that it enables a
s disease similarity measure that captures information complementary to established measures like ge-

% netic correlation.
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« 2 Results

s 2.1 Non-coding GWAS variants associated with disease phenotypes, and

10 matched controls

so In order to study variant prioritization methods, we created a dataset of “positive” (i.e., disease associ-
st ated) non-coding variants, matched with a random set of “negative” or “control” variants. This setup
s allowed us to quantitatively assess prioritization methods based on their performance in discriminating

53 positive from control variants.

s« 2.1.1 Disease-associated non-coding SNVs

55 We used a subset of single nucleotide variants (SNVs) reported in the EBI/NIH GWAS catalog [1] to
ss compile an inventory of disease-associated non-coding variants. Specifically, we focused in reported
s»  variants that (a) do not overlap protein-coding sequence (see Methods) and (b) that are associ-
s ated with a disease phenotype as noted in the Experimental Factor Ontology (EFO) trait description,
so which is provided within the catalog. We define disease phenotypes as descendants of the EFO term
o “disease” (EF0:0000408). Focusing on disease terms with at least 100 annotated SNVs resulted in
s1 26,080 associations involving 20,656 SNVs and 67 disease phenotypes. The EFO provides parent-
s child relations between disease terms (parent = more general, child = more specific), and propagating
63 SNVs from child-terms to parent-terms increased the number of disease phenotypes with at least 100
s« SNVs, resulting in 77,028 association between 25,516 SNVs and 111 diseases. We find that most
s of the SNVs we recover are located in intronic (60.5%) and intergenic (25.8%) sequence (Fig. 1A),
s and that a majority of SNVs are directly annotated to a single disease phenotype (Fig. 1B). After
&7 propagating annotated SNVs from child to parent terms, SNV-to-disease annotations become predom-
¢ inantly many:many (Fig. 1B). Suppl. Data SD1 lists disease terms and corresponding numbers of

e disease-associated SNVs.

o 2.1.2 Control SNVs

n  For each disease-associated SNV we selected ~10 matched control-SNVs using a re-implementation of
72 the SNPsnap approach [22], while avoiding duplicate control-SNV across the overall dataset (see Meth-
72 ods). This yielded 255,137 control SNVs (for some disease associated SNVs we could not retrieve the
7+ full ten control SNVs). With these results we have access to data for 111 disease terms, contain-
7 ing disease-associated SNVs together with matched controls. Suppl. Data SD2 and SD3 contain

7 information about all disease and control SNVs used in this study, respectively.

» 2.2 Disease-specific non-coding variant prioritization with organism-level

7 variant scores is only moderately successful

7 We assessed how well current commonly-used organism-level variant scores are able to prioritize disease-
s associated vs. control-SNVs for the 111 disease terms we studied. Fig. 2 summarizes results, where
s boxplots of two performance measures (area under the ROC curve and average precision (= area under
22 the precision recall curve)) are shown for CADD [8], eigen [9], GenoCanyon [11], GWAVA [23], and
&z LINSIGHT [10] scores. We find that organism-level scores, while improving upon random guessing, are
s« only moderately successful in correctly prioritizing disease-associated non-coding variants. Comparing

& variant scores with each other we find that relative performance differences appear overall robust with
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Figure 1: Disease-associated non-coding SNVs. (A) Genomic context of non-coding SNVs used
in this study. (B) Percentage of the SNVs used that are annotated to 1, 2-3, 4-5 or more than 5 disease
phenotypes, before and after propagating SNV-phenotype associations according to EFO parent-child
annotations. Genomic context annotation is adapted from the CONTEXT column from the GWAS
catalog, where we combine splice donor, splice region and splice acceptor variants into splice variants
and I combine TF binding variants and regulatory regions variants into regulatory region variants.

s respect to the metric employed (area under the ROC curve vs. average precision). It is qualitatively
g7 visible that CADD performs less favorably than other methods, but also that there are differences
ss  between these. We therefore compared performance between different scores in more detail.

8 We studied the performance of different scores at two levels of resolution: In aggregate across all
w disease terms, and for each disease term separately. For both approaches we used Wilcoxon signed-
o ranks tests to decide whether one score significantly outperforms another score (= significant p-value)
e or whether performance is tied (= non-significant p-value); see Methods section. Results are sum-
o3 marized in Tab. 1. We find that GenoCanyon has better performance compared with other variant
a scores, followed by LINSIGHT, GWAVA and eigen, while CADD is consistently outperformed by other
s methods. Performance differences between LINSIGHT, GWAVA and eigen are not significant when ag-
o gregating across disease terms (last three columns in Tab.1); however, when counting individual terms
o7 LINSIGHT has most wins and fewest losses, while eigen has most losses and fewest wins, leading to the
e ordering displayed in Tab.1. Suppl. Data SD4 and SD5 contain results for all comparisons. Overall
o these quantitative results are in-line with the visual impression from Fig. 2. Next, we investigated
wo if the performance of organism-level variant scores could be improved by using tissue-specific scoring

w1 approaches.

w 2.3 Disease-specific scores improve non-coding variant prioritization
w3 2.3.1 Disease-specific aggregation weights for tissue-specific variant scores

s We studied three tissue-specific scores for variant prioritization to explore if their usage can improve
s the performance of organism-level scores. Specifically, we used Genoskyline [11] and Fitcons2 [12] as
s scores designed to prioritize variants, and we also evaluated DNase I hypersensitivity (DHS) profiles
w7 from the ENCODE project [6]. All of these scores are available for 127 contexts [5] spanning a diverse
s set of cell and tissue types, including heart, brain, immune cells, and more.

100 For each tissue-specific score we assess two approaches to prioritize variants. First, as a baseline
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Figure 2: Organism-level variant scores are moderately successful in prioritizing non-
coding disease-associated variants. Different organism-level variant prioritization scores are shown
on the x-axis, the y-axis displays performance in terms of average precision (area under the precision
recall curve, left panel) and area under the receiver-operator curve (right panel). Each point represents
a specific disease term from the experimental factor ontology. Horizontal lines spanning data sets show
expectations under random guessing.

w0 approach we aggregate scores across tissues in a disease-agnostic way. That is, for a specific variant we
1 average scores at the variant position across all tissues (termed tissue-mean), essentially producing a
2 organism-level type score, independent of the disease term under consideration. Second, we aggregate
us  scores across tissues in a disease-specific way. Briefly, we train a regularized logistic regression model
ue for each disease term that learns disease-specific tissue aggregation weights. In a nested cross-validation
us  setup learned weights are then applied to held-out variants, allowing for a fair performance assessment
us  of this approach (termed tissue-weighted), see Methods. Fig. 3 summarizes our findings.

17 In Fig. 3A we show tissue-mean performance (measured by average precision) for the three scores
us  we study on the left, and tissue-weighted performance on the right. For all three scores tissue-weighted
uo  significantly outperforms tissue-mean (Wilcoxon signed-ranks test, p-values < 0.0001). Fig. 3B shows
120 tissue-mean vs. tissue-weighted comparisons for each score, and we see that in almost all disease terms
21 tissue-weighted outperforms tissue-mean. See Suppl. Data SD6 and SD7 for tissue-mean vs. tissue-
12 weighted performances for each disease term, and for aggregated performances across all disease terms.
123 The improvement remains evident if we limit disease-associated SNVs to one variant per LD block, and
¢ also when we insure that the SNVs in the training and test datasets are not on the same chromosome
s (See Suppl. Fig. S17 - S20 and the Supplemental material for more details).

126 While the performance-gain for tissue-weighted is broadly consistent across diseases, for some it
127 is more pronounced than for others. To illustrate this observation, we selected four disease terms
s with a high performance gain, four terms with a medium gain, and four terms where we observed

1o the least gain (Best improvement, ranking 1-4; middle improvement, ranking 20-23; least improve-
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By disease term Aggregated

Score/Method Wins Losses Ties Wins Losses Ties

GenoCanyon 307 106 31 4 0 0
LINSIGHT 281 146 17 1 1 2
GWAVA 221 196 27 1 1 2
eigen 219 201 24 1 1 2
CADD 24 403 17 0 4 0

Table 1: Relative performance of organism-level variant scores. Wins, Losses, Ties refers to
significantly better (or worse, or tied) performance across all possible pairings (see Methods). The
first three columns summarize separate comparisons for each disease term (for each row there are four
other methods and 111 terms, i.e. 444 comparisons), while the last three columns represent results of
comparisons between scores aggregated across terms. Average precision was used as the performance
metric, and Wilcoxon singed-ranks tests to determine wins and losses (p-values less than 0.05 are
reported as ties).

1 ment, ranking 108-111). Fig. 4 shows our findings, where variability in tissue-weighted performance
w  induced by varying train-test-fold splits during cross-validation is also displayed. We see that for
12 Celiac Disease (EF0:0001060), Systemic Scleroderma (EF0:0000717), Chronic Lymphocytic Leukemia
s (EFO:0000095) and Sclerosing Cholangitis (EF0:0004268) performance is consistently improved for
1 all three tissue-weighted scores, while for Retinopathy (EF0:0003839), Endometriosis (EF0:0001065),
s Diabetic Nephopathy (EF0:0000401) and HIV-1 Infection(EF0:0000180) we find no improvement.
s We also note that disease terms with pronounced improvement appear to have better baseline (i.e.,
7 tissue-mean) performance than disease terms where we find little or no benefit of the tissue-weighted
138 approach. Improvement for diseases shown in Fig. 4 is largest for DHS, but, consistent with Fig. 3,

130 we see improvement for Fitcons2 and Genoskyline as well.

1w 2.3.2 DNase I hypersensitivity (DHS) scoring outperforms other tissue specific scores

1w To quantify relative performance of the three different tissue-specific scores, we proceed similarly
12 to organism-level scores. Focusing on pairwise comparisons we find that DHS scores outperform
s Genoskyline and Fitcons2 for most disease terms, and on average (see Tab. 2). This observation
ue is consistent with Fig. 3 and 4, which often show higher average precision values for DHS than
s for the other two scores. Notably, baseline (i.e., tissue-mean) performance of DHS does not appear
us  significantly better than that of Genoskyline (Fig. 3). Suppl. Data SD8 and SD9 contain details for
w7 comparisons between DHS, Fitcons2 and Genoskyline for all disease terms. Next, we explored whether

us disease-specific tissue weights outperform organism-level scores.

uw 2.3.3 DNase I hypersensitivity (DHS) tissue-weighted scoring outperforms organism-

150 level variant scores

11 To compare the DHS tissue-weighted score with organism-level scores, we directly contrasted their
152 performance. Similar to before, Tab. 3 summarizes DHS “wins” (= significantly better performance
153 of DHS tissue-weighted, p-value < 0.05), losses, and ties, compared with five organism-level variant
15 scores, individually (i.e., per disease term) and aggregated across disease terms. In addition, Tab. ST4
155 summarizes pair-wise comparisons between tissue-weighted DHS and each organism-level score. We
155 find that DHS tissue-weighted outperforms all organism-level scores in the aggregated analyses, and

157 that it outperforms all other scores on the majority of disease terms (it only performs significantly
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Figure 3: Disease-specific tissue weights improve variant prioritization. Performance of three
tissue-specific variant scores (DHS, Fitcons2, Genoskyline) is used to prioritize non-coding disease-
associated variants for disease terms using two approaches: tissue-mean (i.e., disease-agnostic, baseline)
on the left side and and tissue-weighted (i.e., disease specific) on the right side. P-values were calculated
using a Wilcoxon signed-ranks test (A). Scatter plot of tissue-mean vs. tissue-weighted performance
(average precision) for each tissue-specific score; dashed line denotes the diagnonal (B).

158 worse than any other score in 44 out of 550 comparisons).

150 GenoCanyon is the most competitive organism-level score, where DHS is significantly better for 92
o terms out of 111 (~83%). Interestingly, LINSIGHT performs better against DHS than GenoCanyon,
10 which is the best overall performing organism-level score (see Tab. ST4). Suppl. Data SD10 contains
12 detailed results for each comparison. We also find that DHS outperforms organism-level scores when
163 aggregating over disease terms (also see Suppl. Data SD11).

164 To illustrate the gain in performance, we selected four example disease terms where disease-
165 specific variant prioritization yielded high improvements, medium improvements, comparable per-
16 formance, and worse performance, respectively. Selection was based on ranking differences between
1w DHS and GenoCanyon: best improvement, ranks 1-4; medium improvements, ranks 25-28; compa-
s rable performance, ranks 64-67; GenoCanyon better, ranks 108-111. Results are summarized in
1o Fig. 5, where we find substantial improvements using tissue-weightes scoring for Systemic Scelero-
o derma (EF0:0000717), Celiac Disease (EF0:0001060), Sclerosing Chalangitis (EF0:0004268) and Mul-
i tiple Sclerosis (EF0:0003885), for which we have already noticed substantial improvement of DHS
2 tissue-weighted over DHS tissue-mean. Disease terms where GenoCenyon is performing better include
3 Venous Thromboembolism (EF0:0004286), Diverticular Disease (EF0:0009959), Non-small Cell Lung
s Carcinoma (EF0:0003060), and Lung Adenocarcinoma (EF0:0000571).

175 To make DHS tissue-weighted scores available, we generated pre-computed scores for 111 diseases
s at every base across the genome (for chromosomes 1-22, available at https://doi.org/10.7910/DVN/
wr  AUAJT7K). Scores were calculated at 25 bp resolution, the same as DHS scores.
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By disease term Aggregated
Score/Method Wins Losses Ties Wins Losses Ties
DHS 180 22 20 2 0 0
Genoskyline 96 94 32 1 1 0
Fitcons2 19 179 24 0 2 0

Table 2: DHS outperforms other tissue-specific scores. Wins, Losses, Ties refer to significantly
better (or worse, or tied) performance across all possible score pairings (see Methods). The first
three columns summarize separate comparisons for each disease term (for each row there are two
other methods and 111 terms, i.e., 222 comparisons), while the last three columns represent results
of comparisons aggregated over disease terms. Average precision was used as the performance metric,
and the Wilcoxon singed-ranks test to determine wins and losses (p-values less than 0.05 are reported
as ties).

By disease term Aggregated
Score/Method Wins Losses Ties Wins Losses Ties
DHS 474 44 37 5 0 0
GenoCanyon 314 198 43 4 1 0
LINSIGHT 298 230 27 1 2 2
GWAVA 233 289 33 1 2 2
eigen 223 299 33 1 2 2
CADD 28 510 17 0 5 0

Table 3: DHS outperforms organism-level variant scores. Wins, Losses, Ties refer to signifi-
cantly better (or worse, or tied) performance across all possible score pairings (see Methods). The
first three columns summarize separate comparisons for each disease term (for each row there are two
other methods and 111 terms, i.e., 555 comparisons), while the last three columns represent results
of comparisons aggregated over terms. Average precision was used as the performance metric, and
the Wilcoxon singed-ranks test to determine wins and losses (p-values less than 0.05 were reported as
ties).
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Figure 4: Improvement through disease-specific tissue weights is consistent across scores
but varies with disease term. Shown is the performance of tissue-weighted variant scores (colored
points) vs. tissue-mean (black asterisks) as a baseline, for three tissue scores (rows) and four diseases,
stratified by improvement observed: best improvement for the fist column, moderate improvement for
the middle column, and least improvement for the right column. X-axes denote disease terms, the
y-axis average precision. Different points for tissue-weighted scores represent different data-splits in
the nested cross validation procedure.

w 2.4 DDNase I hypersensitivity (DHS) scoring performs well compared with
179 DIVAN

1w Here we compare the performance of tissue-weighted DHS scoring with DIVAN [19], a disease-specific
1 variant score for 45 diseases. DIVAN is based on a more complicated feature-selection and ensemble-
12 learning framework, and it uses a variety of other functional genomics features, in addition to DNase I
183 hypersensitivity. To compare our method with DIVAN, we mapped EFO disease terms to MeSH terms
1 (as used by DIVAN) and use MeSH terms for this section (See Suppl. Data SD12). Because DIVAN
15 uses as supervised learning approach, and because the published model was trained using GWAS SNV,
186 it 'was necessary to create specific train and test datasets to ensure a meaningful comparison between
7 tissue-weighted DHS and DIVAN.

188 Therefore, to assess performance of both DIVAN and DHS, we created a test set of disease-
1o associated variants (and their matched controls) that were published later than 2016 (DIVAN’s pub-
wo lication date). That is, these variants are unlikely to have been a part of DIVAN’s training data. We
1 also created a training set for DHS tissue-weightd containing only SNVs published prior to 2016. This
12 resulted in training data that (a) is distinct from the test set and (b) draws on similar information that

3 was available for DIVAN’s training. Further on, we only selected disease terms for this training/test
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Figure 5: DHS disease-specific tissue weights improve variant prioritization compared
with organism-level scores. For four strata (best improvement, middle improvement, comparable
performance, and worse performance) we selected four disease terms and compared performance results.
GenoCanyon (best organism-level score) performance is denoted in black, DHS tissue-weighted in red.
Different performances of DHS tissue-weighted represent variation different data splits during nested
cross validation (see Methods).

e data combination where at least 20 term-associated SN'Vs were present in the training data, and where
05 at least 50 SN'Vs were present in the test data. This approach yielded 29 disease terms for this analysis.
s We then re-trained tissue-weighted DHS on this training data and compared with DIVAN on the test
17 data. In addition, we added the organism-level GenoCanyon score as a reference.

108 To assess performance, we performed all pairwise comparisons for each disease term, and evaluated
o performance based on average precision. Tab. 4 summarizes observations, where we find that DHS per-
200 forms significantly better than GenoCanyon and DIVAN in a majority of comparisons; however, there
21 s a substantial number of comparisons (22 out of 58) where either GenoCanyon or DIVAN outperform
22 DHS. Fig. 6 further illustrates these comparisons. In panel A we show performance across disease
203 terms, grouped by the best-performing method. We see that tissue-weighted DHS outperforms DIVAN
20 and GenoCanyon substantially on Multiple Sclerosis (MeSH:D009103), Psoriasis (MeSH:D011565) and
205 Inflammatory Bowel Disease (MeSH:D015212); DIVAN outperforms GenoCanyon and DHS on Arthri-
205 tis, Theumatoid (MeSH:D001172) and Heart failure (MeSH:D006333); GenoCanyon outperforms DHS
2 and DIVAN on Stroke (MeSH:D020521) and Alzheimer disease (MeSH:D000544). In panels B-D
208 we directly summarize comparison results; we observe that the DHS tissue-weighted score often has
20 an advantage in terms where prioritization efforts are overall more successful (upper right quadrants).
20 Finding overall good performance for our approach, we next more closely examined the disease-specific

i tissue aggregation weights we derive with our approach.

2 2.5 Disease-specific tissue weights reflect biomedical relevance

a3 In addition to prioritizing SNPs, we can interpret the disease-specific tissue weights that our model
21 learns in the context of disease mechanisms. Specifically, large tissue weights implicate tissues with a
215 prominent role in associating SNVs with a disease in our model; therefore, one may hypothesize that
216 such tissues or cell-types have a function in the etiology of that disease. To investigate this hypothesis,

a7 we analyzed tissue weights of the top-performing models we derived, where each model represents a

10
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Score Wins Losses Ties Winning percent
DHS 34 22 2 61
GenoCanyon 26 31 1 46
DIVAN 25 32 1 44

Table 4: DHS tissue-weighted disease-specific scoring outperforms DIVAN. Across 29 dis-
ease terms, this table summarizes all pairwise comparison for DHS tissue-weighted, GenoCanyon and
DIVAN using a specifically created test dataset. Wins, losses, and ties refer to significantly better (or
worse, or tied) performance. Average precision was used as the performance metric, and the Wilcoxon
singed-ranks test to determine wins and losses (p-values less than 0.05 were ties). Winning percent =
#Wins/ (#Wins+#Losses)

28 different disease.

219 Results are summarized in Tab. 5; they include the two top-performing models, Systemic sclero-
20 derma (rank 1) and Sclerosing cholangitis (rank 2). In order to report a diverse range of diseases,
21 we next excluded any diseases that are descendants of immune system disease (EF0:0000540) or lym-
22 phoma (EF0:0000574). From the remaining diseases, we identify the next three highest-ranked models:
23 Colorectal adenoma (rank 15), Atrial fibrillation (rank 20), and Cutaneous melanoma (rank 21). For
24 each diseases, we list the five tissues with the largest tissue-weights, and their tissue group.

25 The tissues we associate with disease, overall, appear reasonable and generally are in-line with
26 existing knowledge about disease mechanisms. Systemic scleradoma is an autoimmune disorder that
27 can affect skin and internal organs [24]. We find that GM12878 lymphoblastoid cells (a type of B cell)
»s are among highest-weighted tissues, as were other types of B cells (primary B cell and B cell lymphoma,
20 respectively). This in-line with previous studies that have shown that B cells play a role in system
a0 scleroderma [25, 26]. Sclerosing cholangitis is an inflammatory condition that leads to scarring and
a1 narrowing of the bile ducts [27]. We highlight various inflammation-related types of blood cells, such
2 as T cells and monocytes, which were previously suggested to play a role in the disease [28]. Colorectal
23 adenoma is a benign tumor that develops in the lining of the colon or rectum. Our model identified
2 rectal mucosa and stomoch mucosa as the most-highly weighted tissues, and the function of rectal
25 mucosa in colorectal cancer has been previously studied [29]. While the direct relationship between
26 other gastrointestinal tissues and the development of colorectal adenoma has not been established,
a7 the association between gastrointestinal microbiome and colorectal adenomas has been discovered [30].
28 Regarding atrial fibrillation, our approach highlights fetal heart and lung tissues. In addition, we
230 identified skeletal muscle cells. In the case of cutaneous melanoma, a type of skin cancer, our approach
a0 emphasizes foreskin melanocyte cells and a specific type of T cell. Apart from these, we highlight
2 cervical carcinoma cell lines and endothelial primary cells.

242 Overall, we conclude that the tissue weights we derive carry biomedically meaningful information
a3 and are able to highlight tissue contexts that may play a role in disease etiology. To further explore
2 this finding, we used a resource of the epimap consortium [15], where disease-tissue associations are
a5 reported that derived differently from the one we obtained in two key ways: First, epimap uses their
a6 enhancer definitions based on a much larger set of genome annotations. Second, epimap’s enrichment
a7 test contrasts disease-associated SNP enrichment in a specific tissue’s enhancer set compared to all
28  enhancers, whereas our method effectively compares open chromatin harboring disease-associated SNPs
29 vs control SNPs tissue-by-tissue. Nevertheless, results are summarized in Suppl. Data ST7, and we
0 find that out of the 25 tissues we associate with disease terms 14 have an estimated false discovery

51 rate of less than 4% in the epimap analysis as well. Notably, a ground truth for these association is

11
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Figure 6: DHS tissue-weighted scoring outperforms DIVAN . Performance of DIVAN, Geno-
Canyon, and DHS tissue-weighted across a test set, with disease terms grouped by the best-performing
method. Vertical striped indicates the minimum and maximum performance of 30 bootstrap samples
(A). Performance scatter plots of GenoCanyon vs. DIVAN performance (B); GenoCanyon vs. DHS-
weighted (C); DIVAN vs. DHS-weighted performance (D). Average precision was used for these plots;
dashed lines denote equal performance. Percentages denote the fraction of points above and below the
diagonal, respectively.

»2  generally unknown; but we interpret the overlap in associations as encouraging, while complementary
253 associations are expected, given the differences in methodology. Based on this overall finding of
s meaningful disease-tissue associations, we next further explored the use of tissue-weights in disease

x5 charactrization.

» 2.6 Disease-term similarity based on DHS tissue-weighted modeling reveals
257 meaningful groups
8 Disease-specific tissue weights for aggregating DHS scores, which are learned by our approach, can

250 highlight tissues and cell-types with a role in the disease (see previous section). Therefore, we derived

x0 and explored a measure for disease similarity based on these weights.

s 2.6.1 Disease similarities based on disease-specific tissue weights for non-coding variant

262 prioritization

%3 In our DHS tissue-weighted approach, for each disease term DNA accessibility across the same set of
x4 tissue and cell-type contexts is used to predict whether a certain SNV is disease-associated, or not.

265 This results in disease-specific tissue aggregation weights (that is, coefficients in our logistic regression

12
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Rank 1D Tissue name Group

Systemic scleroderma

1 E116 GM12878 Lymphoblastoid Cells blood

2 E032 Primary B cells from peripheral blood blood

3 EO041  Primary T helper cells PMA-I stimulated blood

4 E123 K562 Leukemia Cells blood

5 E030 Primary neutrophils from peripheral blood blood
Sclerosing cholangitis

1 E116 GM12878 Lymphoblastoid Cells blood

2 E061 Foreskin Melanocyte Primary Cells skin03 skin

3 E102 Rectal Mucosa Donor 31 gi_rectum

4 E041 Primary T helper cells PMA-I stimulated blood

5 EO029 Primary monocytes from peripheral blood blood
Colorectal adenoma

1 E102 Rectal Mucosa Donor 31 gi_rectum

2 E110 Stomach Mucosa gi-stomach

3 E057  Foreskin Keratinocyte Primary Cells skin02 skin

4 E101 Rectal Mucosa Donor 29 gi_rectum

5 E028 Breast variant Human Mammary Epithelial Cells (VHMEC) breast
Atrial fibrillation

1 E083 Fetal Heart heart

2 E108  Skeletal Muscle Female muscle

3 E107  Skeletal Muscle Male muscle

4  EO088 Fetal Lung lung

5 E120 HSMM Skeletal Muscle Myoblasts Cells muscle
Cutaneous melanoma

1 E061 Foreskin Melanocyte Primary Cells skin03 skin

2 E059 Foreskin Melanocyte Primary Cells skin01 skin

3 E117 HeLa-S3 Cervical Carcinoma Cell Line cervix

4 E041 Primary T helper cells PMA-I stimulated blood

5 E122 HUVEC Umbilical Vein Endothelial Primary Cells vascular

Table 5: Top-ranked tissues for five diseases. For five diseases when show the top-five tissues
with the largest tissue weights in the corresponding model we derive. The first column is the tissue
rank, the second the tissue’s roadmap ID, the third the tissue name, the fourth the tissue group, and
the fifth listst the adjusted p-value in an enrichment analysis performed by epimap [15].

266 model) {B(i) S Rd}?

=1
27 and d denotes the number of tissues/cell-types with DHS scores. For our similarity measure between

where ¢ is indexing disease terms, n is the number of disease terms studied,

% two diseases, say ¢ and j, we then use a version of the Pearson correlation between 39 and ()that
20 takes uncertainty in the estimated aggregation weights into account (see Methods). That is, if an
20 overlapping set of tissues/cell-types drive the prioritization of SNVs for two diseases, similarity is high;
on  if different tissues are used, similarity is low.

2 Using this approach we calculated disease similarities for the 111 disease terms we study. Result-
o ing similarities are visualized in (Fig. 7), where we show a similarity-based two-dimensional UMAP
o projection of disease terms. We observe that disease terms segregate into separate groups, with a
25 coarse grouping between immune related diseases (lower left inlay, black) and others (lower left inlay,
o6 gray). A higher-resolution group structure was obtained by sub-clustering, where we grouped disease
o terms into seven groups (main panel, Fig. 7). Clusters names are based on EFO disease terms that
2 include a large amount of cluster members as child-terms (see Methods and Suppl. Fig. S10-S16);
29 Tab. 6 lists disease terms per cluster. In addition to the clear separation of immune-related diseases
20 from others, we also find a very homogeneous group consisting of mental and behavioural disorders,
21 containing terms like schizophrenia (EF0:0000692) and anxiety disorder (EFO:0006788), and a group
s of skin cancers. The remaining three groups are more heterogeneous, but with two of them con-
23 taining several terms related to cardiovascular disease (EF0:0000319) and digestive system disorders
2 (EF0:1000218), respectively. By design similar tissues in each group drive SNP-disease associations,
s and we next examined which tissues play a role in each of the clusters.

286 In order to find group-specific tissues, we examined for each cluster the top five tissues that (a)

13
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27 contribute most to disease association and (b) are cluster specific (see Methods). Results are summa-
xs  rized in Fig. 8; we note that both disease groups related to the immune system highlight blood tissues
20 (such as E043: Primary T helper cells from peripheral blood and E116: GM12878 Lymphoblastoid
20 Cells, see Suppl. Data SD23 for all names of standard epigenomes), with the group containing in-
21 flammatory bowel disease, Crohn’s disease, and ulcerative colitis also containing rectum tissues (such
22 as E101: Rectal Mucosa Donor 29). Brain tissues contribute to disease associations for mental and
203 behavioral disorders, skin tissues to skin cancer, and gastro-intestinal / stomach tissue to the cluster
2a  with digestive system diseases. We also note that a clear association of specific tissues with a dis-
205 ease group correlates with better classification performance of our model for SNP-disease association
26 (Fig. 8; for example, see the immune and immune/autoimmune clusters). We note, though, that
27 not for all clusters the corresponding tissue associations are equally compelling, as illustrated in the
208 same figure. While the clusters we derive resemble broader disease groups, for each disease a specific
200 combination of tissues is used to derive whether a variant might be associated, and some tissues con-
w0 tribute to several clusters. For instance, one blood cell type (E116, GM12878 Lymphoblastoid Cells)
sn  contributes to both immune clusters, but also to diseases in the digestive/cancer, heterogeneous and
32 skin cancer clusters. Another blood cell type (E043, Primary T helper cells from peripheral blood)
s displays a similar pattern. Suppl. Fig. S9 shows the same heatmap as Fig. 8, but for all tissues.

304 Overall, these results suggest that our modeling approach successfully identifies tissues with a role
s in disease etiology. Finally, we explore how our disease similarities relate to genetic similarities as

;s measured by genetic correlation between diseases.
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Figure 7: Simalarity-based two-dimensional projection visualizes 111 diseases. Two dom-
inant disease groups emerge in this visualization (immune system related disease terms (black) and
others (gray), in the inlay). Hierarchical clustering was used to group diseases into seven clusters, with
colors indicating broad disease types (see Tab. 6 for details).
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Figure 8: Heatmap of top-five tissue-weights for 111 diseases. Regularized model coefficients
(i.e., tissue weights) of five disease-cluster-specific tissues (columns) are shown for 111 diseases (rows).
Coefficients are scaled by disease, and rows are grouped into sets of cluster-specific tissues (see Meth-
ods section). Bottom annotation shows tissue names of cluster-specific tissues (names are shown in
the format of ‘Tissue name’ - *Tissue group’; annotation on the left side shows disease cluster, and
annotating on the right side shows model performance in terms of AUPRC).

v 2.6.2 Model-based similarities are complementary to genetic correlation.

w8 Here we compare the disease-disease similarities we derived (s,,) with genetic correlations from the
200 GWAS Atlas (sg), where genetic correlation measures shared genetic causes between two traits [31].
s For 6,105 possible disease pairs of the 111 diseases terms we study, estimates of genetic correlation for
au 595 pairs were available from the GWAS Atlas (see Methods). Overall, for these 595 disease pairs
a2 we observe only weak (but statistically significant) correlation between model similarities and genetic
a3 correlations (r = 0.32, p value = 2.4F — 15), where the scatter plot is shown in Fig. 9 panel A.

314 We also see that most disease pairs are not annotated with substantial genetic correlations, or
a5 with high model-based similarities (90% of disease pairs have s,,, < 0.25, and s, < 0.2). Therefore, we
us  explored three different regimes: Disease pairs where both similarity measures are high (s,, > 0.25 and
a7 Sg > 0.20), pairs with high genetic correlations and low model similarity (s, < 0.25 and s, > 0.20)
as  vice versa (quadrants indicated in Fig. 9A, named quadrants B, C and D). The top eight most
a9 extreme examples from each regime are summarized in Tab. 7. In the following we discuss some
20 examples in more detail. Specifically we explore two immune system diseases for quadrant B; two

sn mental or behavioral disorders for quadrant C; and one immune system disease and one mental or
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s behavioral disorder for quadrant D. We note that the pairs we examine have no annotated parent-
s23  child relationships in the EFO.

324 - Ulcerative colitis (UC, EF0:0000729) and Crohn’s disease (CD, EFO:0000384) have both high
325 genetic correlation (s, = 0.53) and model similarity (s, = 0.84), see Fig. 9A. This suggests
326 that they share genetic causes, and that the same tissues are informative for SNP-disease as-
327 sociation. While shared genetic causes for UC and CD have been pointed out (e.g., [32]), our
328 model for SNP-disease association allows us to explore relevant tissue contexts. In Fig. 9B we
329 show a scatter plot of tissue weights for both diseases, where color indicates the importance of
330 each tissue to model similarity (see Methods). We observe that open chromatin in blood (E116,
331 GM12878 Lymphoblastoid Cells; E124, Monocytes-CD144+ RO01746 Primary Cells; E041, Pri-
3% mary T helper cells PMA-I stimulated) and rectum (E102, Rectal Mucosa Donor 31) is positively
333 associated with SNP-disease association in both diseases; this is consistent with a previous study
334 where blood cell types are found to be relevant in many autoimmune diseases, including UC and
335 CD [33]. In addition, symptoms or complications in rectum is also observed in UC and CD [34].
336 Interestingly, open chromatin in GI-intestine (E085, fetal intestine small) is negatively associated
337 with SNP-disease association, along with ohter intestine tissues (E084, fetal intestine large and
338 E109, small intestine, with the 61th and 86th smallest tissue weight, respectively, amongst 127
339 contexts). This indicates fetal intestine or small intestine might be less involved in UC and CD
340 etiology, compared to their juvenile and adult counterparts.

31 - Autism spectrum disorder (ASD, EF0:0003756) and anorexia nervosa(AN, EF0:0004215)] is an
342 example where we observe a low genetic correlation (s, = —0.05) and a moderate high model
33 similarity (s,, = 0.34); a scatter plot of their tissue weights is shown in Fig. 9C. Note that we did
344 not choose one of the highlighted pairs in Tab. 7 for this quadrant, because we already discussed
345 a immunesystem realted disease pair. We observe that both disease models give heart and brain
346 tissue (E083, fetal heart and E081, fetal brain male) high tissue weights. This is consistent with
347 the observation of brain abnormalities in ASD and AN [35, 36]. While the presence of fetal
348 heart is less intuitive, we note that children with abnormal heart development are more likely
349 to develop ASD, suggesting a connection between the disease and the fetal heart [37]. We also
350 note that while genetic correlation between ASD and AN is low, a link between the two diseases
351 on the phenotypic level is being suggested [38, 39]; the tissue context we identified could provide
352 information about shared molecular aspects of disease etiology as well.

353 - For obsessive compulsive disorder (EF0:0004242) and celiac disease (EF0:0001060) we observe
354 low model similarities (s,, = —0.26) and moderately high genetic correlation(s, = 0.36); Fig. 9
355 D shows the scatter plot of tissue weights. Several studies have shown that nervous system disease
356 and immune related diseases have shared genetic background [40, 41]. However, in contrast to the
357 other two examples, there is little relation between tissue weights in these two diseases. Blood
358 cell types are highlighted in celiac disease, while brain and fetal heart tissues are highlighted
350 in obsessive compulsive disorder. For celiac disease, the top six tissue contexts are blood cells,
360 including different types of T cells (E041, Primary T helper cells PMA-I stimulated; E043,
361 Primary T helper cells from peripheral blood and E034, Primary T cells from peripheral blood)
362 and lymphoblasts (E116, GM12878 Lymphoblastoid Cells), which is consistent with findings that
363 alterations in T cells and lymphoblasts can lead to celiac disease [42, 43].

364 Overall, these examples illustrate that the disease similarities we derive are complementary to

s genetic correlation. In addition, tissue contexts highlighted by our tissue-weights allow for biomedical
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interpreations of observed similarities (i.e., which are the relevant tissue contexts) and can be used to
generate molecular hypotheses about disease etiology.

In summary, our results show that disease-specific variant prioritization performs well for non-coding
GWAS variants, compared with organism-level approaches. We also demonstrate that disease-specific
tissue-weights are biomedically meaningful and can be used to generate hypotheses about disease
mechanism. Therefore, we believe this type of variant characterization is a useful tool for researchers
studying the molecular and genetic causes of disease.

A B model_sim=0.84 E116-p{00D

E102-GI_RECTUM

e genetic_corr=0.53 E124-BLOOD—E404-GI_ARECTUM
y=0.9925x + 0.000334 Eo61-sKyf E041-BLOOD
0.1
c
O v | P 80
= o =
% 8\ 0.0
= g : 60
8 g 40
< 3
% ° S 20
O o 7
€ -0.1
n
3
T T T T -02 -0.1 0.0 0.1 02
-0.5 0.0 0.5 1.0 crohn's_disease
genetic correlation
model_sim=0.34 model_sim=-0.26
C - E083-HEART D ’
genetic_corr=-0.05 E041-BLOOD genetic_corr=0.36
y=0.8385x + —0.000326 E081-BRAIN y=—0.02266x + —7.07e-05
0.10
v
% 01 E£043-BLOOD
o
@ ®
S E118-LIVER E008-ESC 2 E084-BLOOD
| < scbo 125
£ 005 60 3 E116<820DD
2 ZIEMUSCLE 50 S E03s-BLbED ° 100
2 ° 40 9 Eos7-BLe0D * . 75
& . E059-SKIN 30 8 . . o .
? 20 g ., LE1fBoon o [, 50
£ oo 2o . 10 ~ eost-lodd® o 0T 4L
2 . o
5 o e
3 E080-ADRENAL 3 o T T '=Edzyl;H'A|'N
E123-BLOOD . . - E083-HEART
E091-PLACENTA, o g te
o E070-BRAIN
-0.05 86-KIDNEY E081-BRAIN
E079-GI_ESPPHAGUS " E106-GI_COLON -0.1 E082-BRAIN

-0.10 -0.05 0.00 0.05 0.10 0.15

anorexia_nervosa

-0.0025 0.0000 0.0025 0.0050

obsessive—compulsive_disorder

0.0075

Figure 9: Genetic correlation and model similarity. (A) Genetic correlation vs. model similarity
for 595 disease pairs. Each point is a disease pair, where the z-axis denotes the genetic correlation
and y-axis is the disease model similarity. For three quadrants we highlight disease pairs, denoted
by B, C, and D). (B-D) Scatter plot of tissue coefficients in three example disease pairs, where (B)
shows Crohn’s disease vs inflammatory bowel disease; (C) shows anorexia nervosa vs autism spectrum
disorder and (D) shows celiac disease vs obsessive compulsive disorder. Lines denote a weighted linear
regression line underlying our disease similrities. Color codes for the weight for each tissue when
conducting weighted regression analysis.
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Disease 1 Disease 2 Sg S Quadrant
Inflammatory bowel disease Ulcerative colitis 1.00 0.88 B
Diabetes mellitus Type ii diabetes mellitus 0.91 0.91 B
Crohn’s disease Inflammatory bowel disease 0.72 0.91 B
Sclerosing cholangitis Ulcerative colitis 0.63 0.82 B
Crohn’s disease Ulcerative colitis 0.53 0.84 B
Ankylosing spondylitis Sclerosing cholangitis 0.35 0.90 B
Inflammatory bowel disease Sclerosing cholangitis 0.44 0.76 B
Bipolar disorder Schizophrenia 0.71 0.42 B
Rheumatoid arthritis Systemic lupus erythematosus  -0.47 0.51 C
Celiac disease Systemic lupus erythematosus  -0.16 0.58 C
Sclerosing cholangitis Systemic lupus erythematosus  -0.24 0.49 C
Crohn’s disease Sclerosing cholangitis 0.17 0.83 C
Rheumatoid arthritis Sclerosing cholangitis 0.07 0.69 C
Crohn’s disease Rheumatoid arthritis 0.06 0.66 C
Systemic lupus erythematosus Ulcerative colitis -0.16 0.43 C
Crohn’s disease Systemic lupus erythematosus  -0.10 0.49 C
Type i diabetes mellitus Type ii diabetes mellitus 0.85 0.10 D
Diabetes mellitus Type i diabetes mellitus 0.91 0.20 D
Celiac disease Obsessive-compulsive disorder 0.36  -0.26 D
Diabetes mellitus Obesity 0.54 0.01 D
Obesity Osteoarthritis 0.49 0.02 D
Attention deficit hyperactivity disorder Obesity 0.44 0.03 D
Attention deficit hyperactivity disorder Osteoarthritis 0.40 0.00 D
Obesity Type i diabetes mellitus 0.40 0.00 D

Table 7: Example disease pairs of genetic correlation and model similarities. This table
shows the genetic correlation and model similarity for some disease pairs as we selected. s4: genetic
correlation; s,,: model similarity. For quadrant B, C, D we pick 8 disease pairs, where sy +5p,, g — 5m
and s, — sy are the highest, respectively.

+ 3 Discussion

s Most variant scores prioritize non-coding variants either at the level of the whole organism (e.g, CADD
ws  [8], GenoCanyon [44]), or they provide tissue-specific scores (e.g, GenoSkyline [11], Fitcons2 [12]). Here
s we present a straightforward strategy to combine tissue-specific variant scores in a disease-specific
s manner. We show that for common genetic variants in the GWAS catalog [1] our approach leads to
s better performance than organism-level or tissue-specific scores (see Fig. 5). Pre-computed disease-
s specific prioritization scores are available at https://doi.org/10.7910/DVN/AUAJ7X.

;0 Comparing different variant prioritization methods we note that we use area under the precision-recall
s curve as an evaluation metric, and that the performance of all methods is modest. We believe that
s is because our analysis (@) focuses explicitly on non-coding variants, (b) stratifies SNVs by disease-
33 phenotype, and (¢) utilizes unbiased matching of control-SNVs (SNPsnap-matching, see Section 4.1.2).
s« Fach of these points affects the SNV sets we use for our analysis, and therefore the performance metrics
s we report. For transparency we provide all disease-associated variants we use (with matched negatives)
s in our supplemental data. As a more general point we also note that associations reported in the
s GWAS catalog contain causal as well as non-causal SNPs, which will also contribute to sub-optimal
s performance measures of all the variant scores we assess.

389 We included a comparison with the DIVAN method in our evaluation, which also includes compar-
s0  ing GenoCanyon with DIVAN. Part of this comparison is analogous to results reported in Chen et al.
s [19]; however, the performances we observed do not agree perfectly, as detailed in Suppl. Data SD15.
32 Broadly, looking at overlapping/matching disease terms, our results appear more favorable for Geno-
33 Canyon. These differences are likely due to different test sets used in the two evaluations (i.e., the
;0 GWAS catalog (this study) vs. GRASP).

305 We also note that there is other research associating variants with disease terms in a similar
w6 setting, notably PINES [20] and LSMM [45]. We did not compare directly with PINES, because no
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s7  pre-computed scores are available; also, we note that while performance reported in this publication
38 in terms of AUROC is higher than our results, a less stringent un-matched test set of random/control
30 variants was used in these analyses. For LSMM we note that we leverage variants associated with
w EFO disease terms across studies, while LSMM uses summary statistics on a per-study basis. Using
w1 aggregate data from different studies allows our approach to consider parent-child relationships of the
w2 EFO ontology using variant aggregation (see Section 2.1).

403 We demonstrate that our approach can be used to calculate similarities between disease terms, see
w4 Section 2.6.1. Since this similarity measure is derived from non-coding SNVs associated with disease,
w05 one could expect it is largely congruent with genetic correlation between disease traits. However, that
ws 18 not the case (see Fig. 9), most likely because we focus on a small subset of disease-associated SNVs
w7 reported in the GWAS catalog. For example, obsessive-compulsive disorder and celiac disease have
w0 a high genetic correlation (s, = 0.36) but do not share noncoding SNPs in the GWAS catalog (and
w0 low model similarity s,, = —0.26); on the other hand, autism spectrum disorder and anorexia nervosa
a0 have a low genetic correlation (s, = —0.05) but share a number of significant SNPs in the GWAS
a  catalog (and relative high model similarity s,, = 0.34). In addition, interpretation of model similarity
a2 between disease terms is different from genetic correlation; high model similarity implies that disease-
a3 associated SNVs reside in DNA-accessible regions in an overlapping set of tissues, but the identity of
a4 individual SNVs (and whether they overlap) is inconsequential. For example, asthma and rheumatoid
a5 arthritis have only 15 shared SNPs (out of 732 and 1283 SNPs in rheumatoid arthritis and asthma,
as  respectively), but exhibit high model similarity (s,, = 0.53). This shows that model similarity between
a7 two diseases can involve similar tissues even if they do not share a genetic background. Further on, we
s note that estimates of genetic correlation also may depend on the study used. For example, systemic
a0 lupus erythematosus (SLE) has a negative genetic correlation (s, = —0.47) with rheumatoid arthritis
20 (RA) (and other inflammatory diseases) when using the SLE summary statistics from Julia et al. [46]
o (as retrieved from the GWAS Atlas [31]), whereas another study (Lu et al., [47]) found SLE to have a
a2 positive genetic correlation (sy = 0.41) with RA when using the SLE summary statistics from Bentham
w2 et al. [48].

424 We note that in our analyses we used the EFO ontology to aggregate variants annotated in the
s NIH/EBI GWAS catalog. That is, for each disease term directly-annotated variants were used, and,
26 in addition, variants annotated to descendant terms in the ontology were also included. This approach
a7 allowed us to compile a more exhaustive set of variants per term. However, some amount of caution
s should be exercised when using disease models with more general terms, such as ”cardiovascular
20 disease” for example, as they may encompass heterogeneous diseases.

430 Our approach is expected to improve as more variants are associated with disease, and as disease-
a1 associations get more refined. In addition, increasing amounts of epigenomics data, such as epimap
2 [15] and ENCODES5 [6], could be incorporated and they have the potential to improve the disease
43 associations we learn.

434 In summary, we have provided a straightforward method to leverage tissue-specific variant scores
a5 for disease-specific variant prioritization. We show that this approach performs well compared with
a6 current methods, and we show that the resulting association models are interpretable and lead to useful
a7 characterization of disease terms. Overall, our contributions are useful for the following two reasons:
s Conceptually, because they highlight the value of disease-specific variant prioritization. In addition,
10 we provide pre-computed association scores for 111 disease terms that researchers can use in practice

o to interpret their variant data.
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« 4 Methods

« 4.1 Data sources and processing
s 4.1.1 Disease-associated variants

ws Disease-associated non-coding single nucleotide variants were retrieved from the NHGRI-EBI Catalog
ws  of human genome-wide association studies database (GWAS catalog, version 2020-12-02, downloaded
ws from https://www.ebi.ac.uk/gwas/docs/file-downloads). These data contained 122,396 unique
w7 non-coding SNPs spanning 2,782 phenotypes, where non-coding was defined as variants not overlap-
ws  ping protein-coding sequence (GENCODEvV36); we also excluded variants annotated as protein coding
wo  sequence variants (e.g. missense variants, frameshift variants) as a SNP’s ”"functional class” in the
s  GWAS Catalog. Further, variants in the GWAS Catalog are annotated with phenotypes using the Ex-
s perimental Factor Ontology (EFO, https://www.ebi.ac.uk/efo) [49]. We focused on variants with
2 phenotype terms annotated in disease domain of the EFO (i.e., all terms/traits/phenotypes we con-
w53 sider are descendants of the term “disease” (EF0:0000408, EFO version 3.24.0, accessed 2020-11-17).
¢ Further on, SNPs in the HLA region, and SNPs with minor allele frequency (MAF) less than 1% in
5 the European population as reported by the International Genome Sample Resource were excluded (as
w6 they cannot be matched to control SNPs with the SNPsnap approach, see below). Out of 31103 SNV,
7 a total of 5225 SNVs were removed. Finally, in our analyses we restricted ourselves to phenotypes
s with at least 100 annotated non-coding SNPs. Suppl. Data SD1 and SD2 contain 111 phenotypes
w0 and 77,028 phenotype-associated SNPs we used in this study. We also grouped SNPs in LD blocks
w0 (SNPsnap, r? > 0.5) and identify SNPs with the minimum p-value per block(“representative SNP”); we

w1 provide this information, which we use in some of the analyses described below, in Suppl. Data SD2.

w2 4.1.2 Control variants

w3 For each disease-associated SNP we generated matched control non-coding variants MAF >1%) using
ws  four different strategies, where the non-coding is again defined discussed above (Section 4.1.1). The

w5 four strategies are:

w6 Random For each disease-associated SNP, we selected ten SNPs from common variants in 1000G

a67 EUR at random (i.e., equal probability for all SNPs) as controls.

ws  TSS-matching We processed common non-coding SNVs and selected a subset of these variants

469 as controls, where the distribution of distances to the nearest protein-coding gene’s transcrip-
470 tion start site (T'SS) are matched between control set and disease-associated SNPs (similar to
n GWAVA, [23]). Specifically, we sorted all common non-coding SNPs by the distance to the near-
oo est TSS and divided them into 50 bins, where each bin contains the same number of SNVs. Then,
473 for each disease-associated SNP, we randomly selected ten control SNPs from the bin containing
ara the disease-associated SNP’s distance to the nearest gene.

s SNPsnap-matching Using SNPsnap [22], we matched control SNPs to disease-associated variants in

476 terms of minor allele frequency, gene density (distance cutoff 1d0.8), distance to the nearest gene
ar7 TSS, and number of SNPs in LD. Our parameters for maximum allowable deviation were: 5%,
a78 50%, 20% and 50%, respectively. We randomly selected ten control SNPs per disease-associated
a7 SNP form SNPsnap’s results, and we ensured there are no duplicated control SNPs for different
480 disease-associated SNPs. If there were less than 10 control SNPs returned by SNPsnap, we kept
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481 all of the control SNPs. If no control SNPs were matched, we removed the disease-associated
182 SNVs (a total of 311 SNVs) from our analyses.

w3 SNPsnap-TSS-matching Essentially the same as in SNPsnap-matching, but controlling only for

484 the distance to the nearest genes (maximum allowable deviation: 20%); for three other attributes
ass “maximum allowable deviation” is set to 10,000%. We note that in both SNPsnap-matching and
286 SNPsnap-TSS-matching, distance is measured by distance to the nearest gene, whereas for TSS-
ag7 matching only protein-coding genes are considered.

s In all four matching strategies we excluded variants annotated in the GWAS catalog as control SNPs.

w0 Suppl. Data SD3 contains the four sets of control variants.

w0 4.1.3 Additional data sources, variant scores

w1 We used pre-computed SNP annotations from the following sources:

102 - CADDv.1.3: http://krishna.gs.washington.edu/download/CADD/v1.3/1000G_phase3.tsv.
493 gZ

a0 - EigenPC v.1.1: https://xionitiO1.u.hpc.mssm.edu/v1.1

405 - Fitcons2: http://compgen.cshl.edu/fitCons2/hgl9

496 - GenoCanyon: http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html

407 - GenoSkylinePlus: http://genocanyon.med.yale.edu/GenoSkylineFiles/GenoSkylinePlus/
498 GenoSkylinePlus_bed.tar.gz

499 - GWAVA v.1.0: ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/vl.0/VEP_plugin/
500 gwava_scores.bed.gz

501 - LINSIGHT: http://compgen.cshl.edu/%7Eyihuang/tracks/LINSIGHT. bw

502 - DIVAN: https://sites.google.com/site/emorydivan

503 - DHS accessibility: We downloaded Avocado-imputed [50] DNasel hypersensitive sites (DHS)
504 signal for 127 ENCODE biological contexts (tissues / cell types) from https://noble.gs.
505 washington.edu/proj/avocado/data/avocado_full/DNase/.

s 4.2 Tissue-weighted variant prioritization based on DNasel hypersensitiv-

507 lty
ss 4.2.1 A penalized logistic regression model for context-weighted score averaging

so0  For predicting SNP’s associations with a disease term, we consider SNPs as observations, and each
s0. SNP is described as a vector x € R? of variant scores in d tissues/contexts; we arrange vectors {x*}7 ;
su  for n observations in a matrix X € R"*?, together with a vector y of n binary entries, indicating for
sz each SNP association with a specific disease term (no=0/yes=1). In addition, we denote the average
si3 score (across contexts) for a SNP i by z%, which is also a basline score because it aggregates across
54 contexts.

sis We use a logistic regression model of the form

Di

log = — =ap+az' +Bx' st a>0 (1)
—Di
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ss where ag € R, € Ry and B € R? are regression coefficients, and p; is the probability that SNP i is

siz - associated with a disease that is studied. We fit a regularized version of the negative log likelihood

n

—_ pi
arg min —EZ [log(l—pi)—f—yilogl p + A8z (2)

ap,a,3 i=1 -

sis  where the dependence on «, 3 of the first term is through Equation (1). For large regularization
sio  parameters A this will yield small 3 — 0 and recover the baseline (Z) of unweighted averaging of
s0 context scores (scaled by a non-negative factor o). We implemented this approach using the R package
s1 glmnet (version 2.0-18, [51]) and determined the regularization parameter via 5-fold cross validation
s2 (cv.glmnet function) through maximizing the area under the (cross-validated) ROC curve. Class

s3  weights were employed to balance skewed class sizes.

s 4.2.2 Disease similarities from context-weighted score averaging

ss  Context-weighted score averaging, as described above, results in disease-specific coefficient vectors
26 ({89}, with i indexing disease terms), together with bootstrap estimates for the standard deviation
57 of each coefficient (that can be arranged in corresponding vectors {v("}). Specifically, we use 5-fold
8 cross-validation repeated 10 times, yielding 50 coefficient vectors for each disease. We use their mean
s20  for our estimate of ,B(i), and their standard deviation as an estimate of ~(%).
For a pair of diseases (d;,d;) we then define a disease similarity through similarity of associated
coefficient vectors 3 @) and B ( ), taking into account our estimates of coefficient variability. Specifically,
we fit a weighted linear regression model (i.e., regressing ,B(i) on ,B(j )), with regression weights taking

into account coefficient variability as follows:

wy P = 1/\/@ and 5§ =ay” +(1—a)ym for o€ {ij},

s where we chose m to be the 25% quantile of all (esitmated) standard deviations observed, and o = 3/4.
s Therefore, sj» and si are shrunken versions of the standard deviations for the regression coefficients
s of disease ¢ and disease j in tissue/context k, respectively. Finally, for disease pairs with a positive
533 coefficient from the weighted linear regression we take the coefficient of determination (R?) as a simi-
s% larity measure; for disease pairs with a negative coefficient, we take —R2. We note that for constant
535 regression weights {w,(:’j )} this is equal to the Pearson correlation between the coefficient vectors we

s obtain from context-weighted score averaging (i.e., cor(8®, 89))).

s 4.3 Variant prioritization performance
s 4.3.1 Tissue-weighted cross-validation performance

s To measure the cross-validation performance of Tissue-weighted, we use repeated cross-validation [52]
so0  to reduce the variance (due to the random partitioning of data into 5 folds). Here, we repeated 5-
sa fold cross-validation 30 times, and record the performance of each repeat. We later use the mean
seo  performance of the 30 repeats as the performance of that method and we also show the variance in

=3 figures such as Fig. 4.

sa 4.3.2 Comparing organism level scores

sss  For each disease we have disease-associated and control SNVs, and corresponding pre-computed

.6 organism-level scores. With this setup we calculate performance metrics of interest (area under the
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se - receiver operator characteristic curve (AUROC) and average precision (AUPR)), and obtain disease-
sis  specific performance metrics for each scoring approach. To compare performance between organism-
ss9  level scores on the same disease we use performance measures computed on 30 bootstrap samples
s0  (each bootstrap sample randomly contains 90% of disease and control variants) and then employ the
ssi - Wilcoxon signed-ranks test to test to assess differences in performance. This yields p-values as reported
2 in Suppl. Data SD4.

553 With respect to aggregating comparisons across diseases, we note that disease terms can (and do)
sss  share SNVs, so performance metrics in different terms are not necessarily independent. Also, disease
ss5  terms can vary substantially in the number of annotated SNPs. We again use Wilcoxon singed-ranks
sss  test [53] on performance metrics (computed using all disease-associated- and control-SNVs for each
s disease term) to compare two organism-level variant scores aggregate across diseases. This approach

s yields p-values, as reported in Suppl. Data SD5.

0 4.3.3 Comparing tissue-weighted scores

o0 Tissue-weighted baseline scores (see above) are calculated in the same way as organism-level scores.
s For tissue-weighted scores with data-driven tissue-specific weighting (see above), we use cross-validated
s> performance measure for each bootstrap sample and the same 30 bootstrap samples as when we com-
sss  pared between organism-level scores. And then we use the same Wilcoxon signed-ranks tests to mea-
ssa  sure the difference. For comparing scores aggregated across diseases we again proceed analogous to
sss  organism-level scores and use a Wilcoxon singed-ranks test on cross-validated disease-specific perfor-

ss6  mance measures. Results are summarized in Suppl. Data SD8 and SD9.

ssv 4.3.4 Comparing organism-level and tissue-weighted scores

sss  For comparisons between organism-level and tissue-combined scores we again use a bootstrap approach:
sso  for a specific disease term we use the Wilcoxon signed-ranks tests as discussed above to compare per-
s formance measures from organism-level scores with tissue-weighted scores. We note that this approach
sn  does not take into account: (@) Variability in the organism-level scores originating form variability of
s»  the data they are derived from, and (b) The possibility that organism-level scores may have already
s3 used SNPs in their score derivation process, and we use them again for evaluation in their score
sz derivation process. However, we don’t expect these issue to substantially confound or results, and we
s;5 note that incurred bias in our comparisons would expected to be in favor of organism-level scores.
st Results are summarized in Suppl. Data SD6, SD7, SD10 and SD11.

s7 4.3.5 DIVAN performance assessment and comparison.

s To assess and compare our performance with DIVAN [19], we generated a test set of SNPs from the
sv  GWAS catalog that were i) added after DIVAN had been published (i.e., after 05/28/2016) and ) not
ss0 present in the database used to train DIVAN (Association Result Browser https://www.ncbi.nlm.
sss nih.gov/projects/gapplus/sgap_plus.htm) and éii) not within 1kb distance around SNPs used to
s2  train DIVAN and iv) were annotated to a disease phenotype addressed by DIVAN.

583 Control SNPs were generated using SNPsnap matching, as described above. To be able to satisfy
s criterion 7v), we mapped our disease terms (EFO terms) to disease terms used by DIVAN (MeSH terms)
sss  using the EMBL-EBI Ontology Xref Service (OxO, https://www.ebi.ac.uk/spot/oxo/, retrieved
s.6 on April 19, 2020) and were able to resolve 41 out of 45 terms (Suppl. Data SD12). Of these, we
ss7 keep terms with 20 or more disease associated SNPs in the test set and 50 or more SNPs in a training
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s,s  set that we also construct (see below), yielding 29 overall disease phenotypes we use in our analysis.
ss0  In order to fairly compare DIVAN with our logistic regression approach we constructed a training
s set using disease-associated SNPs from the GWAS catalog and the Phenotype-Genotype Integrator
s (PheGenl, https://www.ncbi.nlm.nih.gov/gap/phegeni) [54], excluding SNPs in the test dataset
s describe above, or SNPs within 1kb around test SNPs. Suppl. Data SD13 summarizes test and
s03  training data used for this analysis. Results are summarized in Suppl. Data SD14.

su  4.3.6 Performance assessment using chromosome hold-out

ss 10 assess the performance of our DHS tissue-weighted score we also used a chromosome hold-out
so6  strategy, with test SNPs on different chromosomes from training data. Specifically, for each disease,
so7  we choose a set of chromosomes that contains approximately 20% SNVs with a 1/10 positive to negative
ss ratio (the same as the cross-validation setting) as a test set. Selection of test chromosomes is performed
so0 for each disease term separately, as disease-associated SNPs differ. To automate the procedure, we
0 deployed (binary) linear programming to pick out chromosomes in test set for each disease.

601 Specifically, for each disease term we solve the optimization problem

22
argmax ¢, y22 E iy CiTi

22
subject to Z_il w;z; <0.2and x; € {0,1},

o2 where {x;} are binary indicator variables whether a chromosome is included in the test/hold-out set;
o3 w; and w; are the fraction of disease-associated (w;") and control SNPs (w; ) on chromosome i and
ssa weights in the objective function are defined as ¢; = wj' — |wj' —w; |. This approach selects, for each
s disease term, a set of chromosomes to hold out that contain about 20% of disease-associates SNPs
ws and that approximately reflects the overall imbalance between disease-associated and control SNPs.

sor  Suppl. Fig. S17 and S18 contain performance evaluations on chromosome hold-out sets.

ws 4.3.7 Performance assessment using one SNP per LD block

oo To assess the effect of SNP correlation on our results we also performed analyses using only a single
e representative SNP per LD block (defined by r? > 0.5, see Section 4.1.1). Results are shown in
su  Suppl. Fig. S19 and S20.

a2 4.4 Comparison with genetic correlation

sz We retrieved genetic correlation values from the GWAS atlas [31]. To be able to use these data we
s mapped EFO disease terms (used in the NIH-NCBI GWAS Catalog and in our study) to terms used
as in the GWAS atlas study. To do so, we extracted synonyms of each EFO term (as listed on EFO
a5 ontology) and compared each synonym to the "trait” and ”uniqtrait” column in the GWAS atlas data.
s All matches (with one tolerated letter substitution) will be used.
In this approache a single EFO term can map to multiple GWAS atlas traits and studies. To
estimate the genetic correlation between two EFO terms (say d; and d;), we use a weighted combination

of genetic correlation values:
ro(diyd;) = wimrg(s(di)i, 5(d;)m)
Im
ais  where 74(-,-) is the genetic correlation of two diseases, {s(d;)}/_; and {s(d;)}5_, are the GWAS atlas

i j=1
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s studies that are mapped to EFO term d; and dj, respectively; wy,, is a weight for each combination of
s20 the GWAS atlas studies accounting for the sample sizes of different studies used to estimate genetic

e21 correlation values. We choose
Wi, = W(s(d;)1) - W(s(dj)m)

62 where

w(s(d;);) = size(s(d;);)/ Zsize(s(di)k)
k

e23  where ”size” denotes the sample size of a study. This schene puts higher weights on studies with large

s sample sizes and smaller weights to studies with smaller sample sizes.

o 4.5 Notes about epimap comparison, cluster annotation and display
e 4.5.1 Epimap trait-tissue association for Table 5

s7  We obtained the latest snp-centric GWAS enrichments table from the EpiMap Repository at http:
s //compbio.mit.edu/epimap/. We retrieve tissues with adjusted p-values for each disease. We map the
s20 tissue names used in our study (Standard Roadmap Epigenomes, as labed by EID) to tissue names used
s in epimap (biosamples, as labeld as BSS biosample id) by adapting the scripts from https://github.
s com/cboix/EPIMAP_ANALYSIS/blob/master/metadata_scripts/get_roadmap_mapping.R. If there
62 are more than one biosamples tissues mapped to roadmap tissues, we reported the p value of the tissue

63 with the most significant results.

63 4.5.2 Cluster names in Table 6

3 To name each cluster/group of diseases/EFO terms we choose the EFO term that contains most of
s the cluster/group members. In Suppl. Data SD21 we summarize the terms with high term frequency
s in each cluster, where term frequency is the fraction of descendant terms present. For example, the
s  EFO term ”immune system disease” (EF0:0000540) has a term frequency of 0.588 in the ”immune-1
0 cluster”; this means that 58.8% of EFO terms in that cluster are descendants of EF0:0000540. We
s0 exclude the terms that are overly broad such as the term ”disease” or ”experimental factor ontology”.
s For each cluster, we rank the cluster member EFO terms using term frequency and select as name a
s2 meaningful term with the high term frequency. For one cluster where no term had high frequency we
&3 chose the name ”heterogeneous”.

644 We also show a diagrams of EFO disease term relationships in each cluster in Suppl. Fig. S10-S16.
s Occasionally we include ancestor EFO terms not present in the cluster in a diagram, which are marked

&6 by asterisks.

s7 4.5.3 Dimension reduction and coefficient heatmap

ss UMAP plot The two-dimensional UMAP plot of 111 EFO disease terms in Fig. 7 is based on

649 disease similarities based on context-weighted score averaging (see section 4.2.2). The umap
650 function of the uwot R package was used with parameters n neighbors = 15, ret_model = TRUE,
651 PCA_center = FALSE.

Coefficient heatmap The heatmap in Fig. 8 displays coefficient vectors of models for disease asso-

ciation (see section 4.2.1), normalized for each disease. Specifically, for each disease and tissue
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coefficient x;

F; =

{ (zi — Tmin) /To5 x; < Zgs
1

T; > Tos
652 where x,i, is the minimum coefficient for a disease, and xg5 is the 95% quantile.

3 Cluster-associated tissues For each cluster, we show the top-five tissues that are most associated

654 with the cluster (Fig. 8). To identify these tissues we conduct a two-sample Wilcoxon test (one-
655 sided) on every tissue, where we compare normalized tissue coefficients for this cluster to the the
656 other with the highest coefficients on average. The five tissues with the smallest p-value are then
657 selected as top-five tissues.

s Tissue-associated clusters For the heatmap with all tissues in Suppl. Fig. S9, we assigned a cluster
659 to each tissue. For each tissue, we calculated the median (across disease terms of a cluster) of

660 the normalized coefficients for all clusters; the cluster with the highest median was assigned.

. Data and code availability

sz Public data repositories were used as detailed in the Methods section, and data underlying tables and
3 figures is available as supplemental information online. 25bp-resolution tissue-weighted DHS scores
es are available for download at https://doi.org/10.7910/DVN/AUAJ7K, and computer code used to

s generate analyses presented is available at 1ink-to-github.
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