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Abstract 

Epidemiological studies often have missing data, which are commonly handled by multiple 

imputation (MI). MI is valid (given correctly-specified models) if data are missing at random, 

conditional on the observed data, but not (unless additional information is available) if data 

are missing not at random (MNAR). In this paper we explore a previously-suggested 

strategy, namely, including an auxiliary variable predictive of missingness but not the 

missing data in the imputation model, when data are MNAR. We quantify, algebraically and 

by simulation, the magnitude of additional bias of the MI estimator, over and above any bias 

due to data MNAR, from including such an auxiliary variable. We demonstrate that where 

missingness is caused by the outcome, additional bias can be substantial when the outcome 

is partially observed. Furthermore, if missingness is caused by the outcome and the 

exposure, additional bias can be even larger, when either the outcome or exposure is 

partially observed. When using MI, it is important to identify, through a combination of data 

exploration and considering plausible casual diagrams and missingness mechanisms, the 

auxiliary variables most predictive of the missing data (in addition to all variables required for 

the analysis model and/or to minimise bias due to MNAR).  
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Main Article 

1. Introduction 

Epidemiological studies often have missing data, with multiple imputation (MI) a commonly-

used, flexible, and general method for analysing partially observed datasets [1]. When 

imputation models are appropriately specified and compatible with the substantive analysis 

model (i.e. containing the same variables and including any required non-linear terms or 

interactions) [2], MI gives valid inferences if data are missing completely at random (MCAR) 

or missing at random (MAR), conditional on the observed data, but not (unless additional 

information is available) if data are missing not at random (MNAR) (Table 1).  

 

Table 1. Missing data definitions 

Term Definition 

Complete Records 
Analysis (CRA) 

Analysis is restricted to subjects who have complete data for all 
variables in the analysis model. 

Missing Completely 
At Random (MCAR) 

The probability that data are missing is independent of the 
observed and missing values of variables in the analysis model, 
and of any related variables. Data can be MCAR if missingness is 
caused by a variable independent of those in the analysis model 
e.g. if missingness is for administrative reasons. 

Missing At Random 
(MAR) 

Given the observed data, the probability that data are missing is 
independent of the true values of the partially observed variable. 
Any systematic differences between the observed and missing 
values can be explained by associations with the observed data.   

Missing Not At 
Random (MNAR) 

If data are not MCAR nor MAR, data are said to be MNAR. The 
probability that data are missing depends on the (unobserved) 
values of the partially observed variable, even after conditioning on 
the observed data. 

Multiple Imputation 
(MI) 

MI is a method for handling missing data. It consists of three steps:  
1. An imputation model is fitted to the observed data (this is 

usually some form of regression model). The missing values 
are replaced with draws (“imputed”) from its predictive 
distribution (after first perturbing the model parameters). This 
imputation stage is carried out multiple (M) times, to give M 
completed datasets.  

2. The analysis model is fitted to each of the M completed 
datasets.   

3. The M sets of results are combined using Rubin’s rules, [3] to 
correctly account for the uncertainty about the missing values.   

Predictive Mean 
Matching (PMM) 

PMM is an MI approach that uses an alternative method in Step 1 
of the MI process: instead of imputing missing values directly from 
the conditional predictive distribution of the missing data given the 
observed data, each missing value is replaced with an observed 
value randomly chosen from a donor pool anchored on the 
conditional predicted mean.  

Auxiliary variable A variable that is not in the analysis model but that is included as a 
predictor in the imputation model. 
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For example, consider a longitudinal cohort study where we are interested in the association 

between a partially observed outcome, child’s IQ, and a fully observed exposure, duration of 

breastfeeding. If the probability that child’s IQ is missing (its “missingness”) is related to 

neither observed nor missing values of child’s IQ, given the observed data for the other 

analysis model variables, and all these variables are included in both analysis and 

imputation models, then both MI and complete records analysis (CRA) estimates of the 

outcome-exposure association will be unbiased [4]. On the other hand, suppose that 

missingness in child’s IQ is caused by child’s IQ itself, as depicted in the causal diagram (or 

directed acyclic graph, DAG) in Figure 1 (with X, Y, and Rind denoting our exposure (duration 

of breastfeeding), outcome (child’s IQ), and missingness indicator, respectively). In this 

case, even after conditioning on the observed data, child’s IQ is MNAR. Since child’s IQ is 

the outcome of the substantive analysis, both CRA and MI estimates of the outcome-

exposure association will be biased [4]. 

 

Common strategies when data are suspected to be MNAR include exploring the sensitivity of 

MI results to departures from the MAR assumption using a “pattern mixture” approach [5], 

which allows the observed and missing values to differ by a value, or set of values, δ (the 

“sensitivity parameter”); applying an MI method that can accommodate data MNAR [6]; or 

including a “proxy” for the partially observed variable (i.e. a variable that is predictive of the 

missing values) as an auxiliary variable (see Table 1) in the imputation model [7]. In this 

paper, we highlight the consequences of using an inclusive strategy as has been suggested 

previously (and, anecdotally, is common practice) [8-10]: including a predictor of 

missingness as an auxiliary variable in the imputation model. We demonstrate that when 

data are MNAR and such a variable is, in truth, unrelated to the partially observed variable, 

then the bias due to data being MNAR may be increased rather than reduced, in a similar 

way to bias amplification in the presence of unmeasured confounding when conditioning on 

variables that only influence an exposure [11]. Returning to our example, including the proxy 

“child’s educational attainment score” in the imputation model for child’s IQ may reduce the 

bias in the exposure-outcome association due to child’s IQ being MNAR [7, 12] because 

child’s educational attainment score is highly correlated with child’s IQ. However, including a 

predictor of missingness in the imputation model where this is unrelated to child’s IQ 

(denoted by Z in Figure 1, e.g. whether the mother smoked during pregnancy) may increase 

the bias of the MI estimate. Note (depending on the magnitude and direction of the 

associations), bias due to data MNAR may also increase even if auxiliary variables are 

predictive of both the missing values and missingness, particularly if the auxiliary variable is 

a collider [13]. 
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In this paper we quantify the magnitude of the additional bias of the MI estimator due to 

using an auxiliary variable that predicts missingness, but not the values of the partially 

observed variable itself, when data are MNAR. By “additional bias”, we mean the difference 

between the MI estimator when including a predictor of missingness in the imputation model 

(as well as the other analysis model variables) and the MI estimator when including just the 

other analysis model variables in the imputation model (noting that both estimators will yield 

biased estimates of the true outcome-exposure association when data are MNAR). We 

consider settings in which either the outcome or exposure are MNAR, where the partially 

observed variable is either continuous or binary, and where missingness is caused by the 

partially observed variable itself and/or another related variable. We quantify the additional 

bias using algebraic methods and by simulation, and illustrate our results using the real data 

example described above. Throughout the paper, we assume that MI is performed by 

replacing missing values with draws from a suitable regression model (i.e. a linear or logistic 

regression model when the partially observed variable is continuous or binary, respectively) 

using a linear combination of the specified predictors. We focus on this approach, rather 

than e.g. predictive mean matching (PMM) [14] because MI using draws from a correctly 

specified model will generally yield more precise estimates than PMM [15]. All analyses were 

conducted using Stata (17.0, StataCorp LLC, College Station, TX). Stata code to perform the 

simulation studies is included in Supplementary Material, Section S6. Stata code to perform 

the real data analysis is included in Supplementary Material, Section S7. 

 

Figure 1. Directed acyclic graph depicting the relationship between outcome Y, exposure X, 

missingness indicator Rind, and potential auxiliary variable Z. Lines indicate related variables, 

with arrows indicating the direction of the relationship; absent lines represent variables with 

no direct causal relation 

 

2. Scenario 1. Additional bias of the MI estimator from including a predictor only 

of missingness in the imputation model when continuous outcome Y is 

partially observed and missingness is caused by Y  

2.1. Methods 
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We first consider the setting in Figure 1, discussed above, in more detail. This simplified 

setting is chosen to give insights into the more complex settings that typically occur in 

epidemiological practice. We are interested in the relationship between a continuous 

outcome Y and a continuous exposure X, with 𝛽𝑌𝑋 denoting the parameter of interest. We 

assume that X is fully observed and Y is partially observed, with variable Rind denoting the 

missingness indicator for Y (Rind = 1 if Y is observed, and 0 otherwise) and 𝜋1 denoting the 

probability that Rind = 1, or 𝜋1 = P(Rind = 1). Our substantive model is simply the regression of 

Y on X; we do not adjust for (fully observed) continuous variable Z because it does not 

confound the X-Y relationship. Since Y is MNAR, with missingness caused by Y itself, the MI 

estimator will be biased (as will CRA).  

 

2.2. Maximum additional bias of the MI estimator  

Here we provide general expressions for the maximum additional bias of the MI estimator 

(when using X and Z as predictors in the imputation model for Y compared with just X), when 

continuous outcome Y is MNAR and missingness is caused by Y. A full derivation of the 

results is included in the Supplementary Material (Section S1). Equations were verified by 

simulation (Supplementary Material Section S2).  

 

We assume that Y, X, Z, and R are normally distributed, where R is a variable with mean 𝜇𝑅 

and variance 𝑉𝑅 such that 𝜋1 = P(Rind = 1) = P(R ≤ r) = 𝛷 (
𝑟 − 𝜇𝑅

√𝑉𝑅
), with 𝛷 denoting the 

cumulative distribution function of the standard normal distribution. We assume that both Y 

and R are a linear combination of the variable(s) causing them plus an error term (with X and 

Z having no direct causes), with no interactions, all errors uncorrelated, no model mis-

specification, and no measurement error. Finally, we assume an ordinary least squares 

(OLS) estimator is used to obtain estimates in both analysis and imputation models.  

 

In this setting, the maximum additional bias of the MI estimator is equal to 𝛽𝑌𝑋|𝑍,𝑅 − 𝛽𝑌𝑋|𝑅. 

This follows from the argument of Curnow et al. [16], such that the MI estimator of 𝛽𝑌𝑋 

(denoted by 𝛽𝑌𝑋
𝑀𝐼) equals the regression parameter for X from the imputation model for Y 

based on records with observed values of Y (we denote this parameter by 𝛼1
𝑂𝐵𝑆). In other 

words, when the imputation model includes only X as a predictor, 𝛽𝑌𝑋
𝑀𝐼 =  𝛼1

𝑂𝐵𝑆 = 𝛽𝑌𝑋|𝑅𝑖𝑛𝑑=1. 

Curnow et al. showed that, in general, 𝛽𝑌𝑋|𝑅𝑖𝑛𝑑=1 = ∫ 𝛽𝑌𝑋|𝑅=𝑠 𝑝(𝑠)𝑑𝑠
𝑟

−∞
 where r = 𝛷−1(𝜋1) and 

𝑝(𝑠) denotes the probability that R = s given s ∈ (−∞, r]. Similarly, when the imputation 

model includes X and Z as predictors, 𝛽𝑌𝑋
𝑀𝐼 = 𝛽𝑌𝑋|𝑍,𝑅𝑖𝑛𝑑=1 = ∫ 𝛽𝑌𝑋|𝑍,𝑅=𝑠 𝑝(𝑠)𝑑𝑠

𝑟

−∞
. Thus it 

follows that the additional bias of the MI estimator from including Z, as well as X, in the 
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imputation model for Y is equal to: ∫ {𝛽𝑌𝑋|𝑍,𝑅=𝑠 −  𝛽𝑌𝑋|𝑅=𝑠} 𝑝(𝑠)𝑑𝑠
𝑟

−∞
. Furthermore, Curnow et 

al. showed that any bias in the MI estimator will increase with the proportion of missing 

values, and will tend to its maximum value as the proportion of missing values tends to one 

(or equivalently, since r = 𝛷−1(𝜋1), as r tends to −∞). In this case, 𝑝(𝑠) ≈ 0 for all s < r, with 

𝑝(𝑟) ≈ 1. Hence, the maximum additional bias is equal to: 𝛽𝑌𝑋|𝑍,𝑅=𝑟 −  𝛽𝑌𝑋|𝑅=𝑟, or more 

generally, 𝛽𝑌𝑋|𝑍,𝑅 − 𝛽𝑌𝑋|𝑅, since the magnitude of this expression does not depend on the 

value of r (see Supplementary Material, Section S1). 

 

2.3. Maximum additional bias of the MI estimator in terms of the direct effect sizes 

We next provide a general expression for the maximum additional bias of the MI estimator in 

terms of the direct effect sizes and error variances, such that: 

𝛽𝑌𝑋|𝑅 = 𝛽𝑌𝑋  ×  {1 −
𝛽𝑅𝑌

2 𝜎𝑌
2

𝛽𝑅𝑌
2 𝜎𝑌

2+𝛽𝑅𝑍
2 𝜎𝑍

2+𝜎𝑅
2 

} (2.1) 

and 

𝛽𝑌𝑋|𝑍,𝑅 = 𝛽𝑌𝑋 × {1 −
𝛽𝑅𝑌

2 𝜎𝑌
2

𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2 

} (2.2) 

where the direct effect sizes are denoted by 𝛽.., e.g. 𝛽𝑅𝑌 denotes the direct effect of Y on R, 

and the error variances are denoted by 𝜎.
2, e.g. 𝜎𝑌

2 denotes the error variance of Y.  

Since 0 < 
𝛽𝑅𝑌

2 𝜎𝑌
2

𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2+𝛽𝑅𝑍

2 𝜎𝑍
2 
 < 

𝛽𝑅𝑌
2 𝜎𝑌

2

𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2 
 < 1 (assuming all parameters are non-zero), |𝛽𝑌𝑋|𝑍,𝑅| < 

|𝛽𝑌𝑋|𝑅| < |𝛽𝑌𝑋|, that is, the MI estimator of 𝛽𝑌𝑋 will be biased towards zero, with the bias 

greater in magnitude when the imputation model includes X and Z as predictors than when it 

includes only X.  

 

Then the maximum additional bias of the MI estimator from including Z as a predictor is: 

−𝛽𝑌𝑋𝛽𝑅𝑌
2 𝛽𝑅𝑍

2 𝜎𝑌
2𝜎𝑍

2

(𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2+𝛽𝑅𝑍

2 𝜎𝑍
2)(𝛽𝑅𝑌

2 𝜎𝑌
2+𝜎𝑅

2 ) 
  (2.3)  

 

Equation (2.3) shows that the magnitude of the maximum additional bias will depend on the 

strength of the Y-X, R-Y, and R-Z relationships, as well as on the size of the error variances. 

There will be no additional bias if at least one of 𝛽𝑌𝑋, 𝛽𝑅𝑌, or 𝛽𝑅𝑍 is equal to zero, consistent 

with the underlying DAG (Figure 1). Note that we can also express the effect on the MI 

estimator of including Z as a predictor in the imputation model in terms of bias amplification 

(defined as the bias of 𝛽𝑌𝑋|𝑍,𝑅 divided by the bias of 𝛽𝑌𝑋|𝑅): when Z (as well as X) is included 

in the imputation model for Y, the maximum bias due to Y being MNAR is amplified by a 

factor of: {1 +
𝛽𝑅𝑍

2 𝜎𝑍
2 

𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2 

}  (2.4) 
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Note that if instead X was partially observed and Y was fully observed, MI would yield 

unbiased results (given a correctly specified imputation model) because in this case R would 

not be related to X after conditioning on Y. However, CRA would still be invalid because 

missingness depends on the analysis outcome. 

 

2.4. Illustration of maximum additional bias of the MI estimator 

We illustrate how the maximum additional bias varies with the direct effect sizes using a 

numerical example. In this example, we used moderate values of the direct effect sizes 𝛽𝑌𝑋, 

𝛽𝑅𝑌, and 𝛽𝑅𝑍 (relative to the error variances 𝜎𝑌
2 and 𝜎𝑅

2, which were equal to one): direct 

effect sizes were each set to 0.00, 0.25, 0.50, 0.75, or 1.00. For 𝛽𝑅𝑌 and 𝛽𝑅𝑍, note that these 

values correspond approximately to odds ratios (from a logistic regression model for Rind) of 

1.00, 1.50, 2.30, 3.50, or 5.30 (using the general rule for transforming a parameter from a 

logistic to a probit model [17]). Figure 2 illustrates the impact of the direct effect sizes 𝛽𝑌𝑋, 

𝛽𝑅𝑌, and 𝛽𝑅𝑍 on various measures of bias. Panel A depicts the maximum bias of the MI 

estimator (due to Y being MNAR) when the imputation model includes only X as a predictor. 

Panels B-D depict the maximum additional bias (compared to the bias due to Y being 

MNAR), the maximum total bias (the sum of the maximum bias due to Y being MNAR and 

the maximum additional bias), and the maximum relative additional bias (maximum 

additional bias multiplied by 100, divided by 𝛽𝑌𝑋), respectively, when the imputation model 

includes both X and Z as predictors. The distribution of each box-plot is due to variation in 

𝛽𝑅𝑌.  

 

Each measure of bias is equal to zero if 𝛽𝑌𝑋 is equal to zero (additionally, the maximum 

additional bias is equal to zero if any of the direct effect sizes are equal to zero), and 

negative otherwise. The maximum bias due to Y being MNAR increases in magnitude with 

𝛽𝑌𝑋, but for a given value of 𝛽𝑌𝑋, decreases in magnitude as 𝛽𝑅𝑍 increases. However, the 

maximum additional bias increases in magnitude with each of the direct effect sizes, as do 

the maximum total bias (which depends on 𝛽𝑌𝑋 and 𝛽𝑅𝑌 but not 𝛽𝑅𝑍) and the maximum 

relative additional bias (which depends on 𝛽𝑅𝑍 and 𝛽𝑅𝑌 but not 𝛽𝑌𝑋). Note that all parameters 

have a zero or positive value in this illustration. However, if, for example, we take the same 

parameter values as mentioned above for 𝛽𝑅𝑌 and 𝛽𝑅𝑍, but set 𝛽𝑌𝑋 to negative values, then 

the measures of bias would be of the same magnitude but positive.  

 

When the relationships are as depicted in Figure 1, but Y is binary, the results described 

here will still approximately apply (see Supplementary Material, Figure S1). This follows by 

assuming that Y has an underlying normal distribution (which is valid provided the probability 
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of each value of Y is not close to 0 or 1).  

 

Figure 2. Bias of the MI estimator of 𝛽𝑌𝑋 when continuous outcome Y is missing not at 

random, with missingness caused by Y itself, and the imputation model includes exposure X, 

or X and a predictor of missingness but not the missing values, Z, varying the direct effect 

sizes 𝛽𝑌𝑋, 𝛽𝑅𝑌, and 𝛽𝑅𝑍. Panel A depicts the maximum bias when the imputation model 

includes X. Panels B-D depict the maximum additional bias, maximum total bias, and 

maximum relative additional bias, respectively, when the imputation model includes X and Z. 

The distribution of each box-plot is due to variation in 𝛽𝑅𝑌. Note that maximum total depends 

on 𝛽𝑌𝑋 and 𝛽𝑅𝑌 but not 𝛽𝑅𝑍; maximum relative additional bias depends on 𝛽𝑅𝑍 and 𝛽𝑅𝑌 but 

not 𝛽𝑌𝑋. 

 

 

3. Scenario 2. Additional bias of the MI estimator from including a predictor only 

of missingness in the imputation model when continuous outcome Y or 

continuous exposure X are partially observed and missingness is related to Y 

via an unmeasured variable 

We next consider the setting in which missingness of the partially observed variable (either Y 

or X) is related to Y via an unmeasured variable, U, as depicted in Figure 3. In this setting 

(given the same assumptions and using the same analysis model and MI method as in the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297137doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297137
http://creativecommons.org/licenses/by/4.0/


10 

 

previous scenario), we would expect the CRA estimator and the MI estimator to be biased 

because missingness is related to our analysis outcome Y (conditional on X), via U. 

However, in the special case in which partially observed variable Y is continuous and the 

analysis model is a linear regression, both the CRA and MI estimators (using either X, or X 

and Z, as predictors in the imputation model for Y) are unbiased. Proof is provided in 

Supplementary Material, Section S3. Note that this is not the case if Y is binary, although the 

bias is generally small (see Supplementary Material, Figures S2-3).  

 

Figure 3. Directed acyclic graph depicting the relationship between outcome Y, exposure X, 

missingness indicator Rind, potential auxiliary variable Z, and unmeasured variable U. Lines 

indicate related variables, with arrows indicating the direction of the relationship; absent lines 

represent variables with no direct causal relation 

 

When X is partially observed, the MI estimator (using either Y, or Y and Z, as predictors in 

the imputation model for X) will be biased because missingness is related to X, conditional 

on Y. The theoretical magnitude of the maximum additional bias has a more complicated 

form when X is partially observed because the imputation and analysis models are not the 

same. Again following the argument of Curnow et al. [16], the MI estimator will be unbiased 

only if unbiased estimates of all the imputation model parameters can be obtained using 

records with observed values of X. However, taking the imputation model parameter for Y  

as an example, and using a similar argument to the previous setting, we find that this 

parameter is biased, taking its maximum value of 𝛽𝑋𝑌|𝑅 when the imputation model includes 

only Y, and 𝛽𝑋𝑌|𝑅,𝑍 when the imputation model includes Y and Z, as the proportion of missing 

values tends to one.   

 

In terms of the direct effect sizes and error variances,  

𝛽𝑋𝑌|𝑅 = 𝛽𝑋𝑌  × 
1

 1−{𝛽𝑌𝑈
2 𝛽𝑅𝑈

2 𝜎𝑈
4 /(𝛽𝑌𝑋

2 𝜎𝑋
2 +𝛽𝑌𝑈

2 𝜎𝑈
2 +𝜎𝑌

2)(𝛽𝑅𝑍
2 𝜎𝑍

2+𝛽𝑅𝑈
2 𝜎𝑈

2 +𝜎𝑅
2)}

 (3.1) 

and 

𝛽𝑋𝑌|𝑅,𝑍 = 𝛽𝑋𝑌 ×
1

1 −{𝛽𝑌𝑈
2 𝛽𝑅𝑈

2 𝜎𝑈
4 /(𝛽𝑌𝑋

2 𝜎𝑋
2 +𝛽𝑌𝑈

2 𝜎𝑈
2 +𝜎𝑌

2)(𝛽𝑅𝑈
2 𝜎𝑈

2 +𝜎𝑅
2)} 

 (3.2) 
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where the direct effect sizes are denoted by 𝛽.., e.g. 𝛽𝑅𝑈 denotes the direct effect of U on R, 

and the error variances are denoted by 𝜎.
2, e.g. 𝜎𝑌

2 denotes the error variance of Y. Since 

|𝛽𝑋𝑌|𝑅,𝑍| > |𝛽𝑋𝑌|𝑅| > |𝛽𝑋𝑌|, bias of the Y coefficient will be amplified when Z is also included 

as a predictor in the imputation model for X (see Supplementary Material, Section S3, for 

derivation of these results).  

 

Due to its complexity in the setting in which X is partially observed, an expression for the 

theoretical magnitude of the maximum additional bias of the MI estimator is not derived here. 

However, we illustrate the effect on the MI estimate from including auxiliary variable Z in the 

imputation model by simulation (see Supplementary Material Section S4 for further details). 

Note that we refer to the MI or CRA “estimate” when describing simulation study results, 

rather than “estimator” (which we have used when describing algebraic results).  

 

Figure 4. Additional bias of the MI estimate of 𝛽𝑌𝑋 when continuous exposure X is missing 

not at random, conditional on outcome Y, and the imputation model includes Y and an 

auxiliary variable Z that predicts missingness but not the missing values, with missingness 

related to Y via an unmeasured variable U. Results shown when 50% of values are missing, 

varying the direct effect sizes 𝛽𝑌𝑋, 𝛽𝑌𝑈, 𝛽𝑅𝑈, and 𝛽𝑅𝑍. The distribution of additional bias in 

each box-plot is averaged over the values of 𝛽𝑌𝑈 and 𝛽𝑅𝑈.  

 

Figure 4 illustrates the impact of the direct effect sizes on the additional bias of the MI 

estimate when the imputation model includes Z as a predictor and X is partially observed 

(with 50% missing values). As before, the additional bias is plotted against 𝛽𝑌𝑋 and 𝛽𝑅𝑍. The 

distribution of the maximum bias for each value of 𝛽𝑌𝑋 and 𝛽𝑅𝑍 (represented as a box-plot) is 

due to the variation in 𝛽𝑌𝑈 and 𝛽𝑅𝑈. Figure 4 shows that the additional bias is small, 
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regardless of the direct effect sizes. Results are similar if X is binary (see Supplementary 

Material, Figure S4).  

 

4. Scenario 3. Additional bias of the MI estimator from including a predictor only of 

missingness in the imputation model when continuous outcome Y or continuous 

exposure X are partially observed and missingness is caused by both X and Y 

Finally, we consider the setting in which the CRA and MI estimators are biased if either Y or 

X are partially observed: when Y and X directly cause missingness, as per Figure 5.  

 

Figure 5. Directed acyclic graph depicting the relationship between outcome Y, exposure X, 

missingness indicator Rind, and potential auxiliary variable Z. Lines indicate related variables, 

with arrows indicating the direction of the relationship; absent lines represent variables with 

no direct causal relation 

 

In this setting (given the same assumptions and using the same analysis model and MI 

method as in the previous scenarios), we can express both the maximum bias due to Y 

being MNAR (when using X as the predictor in the imputation model for Y) and the maximum 

additional bias (from including Z as well as X in the imputation model) in terms of the direct 

effect sizes and error variances (see Supplementary Material, Section S5, for derivation), as 

follows: 

maximum bias = −
𝛽𝑌𝑋𝛽𝑅𝑌𝜎𝑌

2(𝛽𝑅𝑌+
𝛽𝑅𝑋
𝛽𝑌𝑋

)

𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2+𝛽𝑅𝑍

2 𝜎𝑍
2  (4.1) 

and 

maximum additional bias = 
−𝛽𝑌𝑋𝛽𝑅𝑌𝛽𝑅𝑍

2 𝜎𝑌
2𝜎𝑍

2(𝛽𝑅𝑌+
𝛽𝑅𝑋
𝛽𝑌𝑋

)

(𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2+𝛽𝑅𝑍

2 𝜎𝑍
2)(𝛽𝑅𝑌

2 𝜎𝑌
2+𝜎𝑅

2) 
 (4.2) 

 

where the direct effect sizes are denoted by 𝛽.., e.g. 𝛽𝑅𝑌 denotes the direct effect of Y on R, 

and the error variances are denoted by 𝜎.
2, e.g. 𝜎𝑌

2 denotes the error variance of Y, as 

before. Note that in this setting, the maximum bias may be towards or away from zero, 

depending on the sign and magnitude of the direct effects, relative to the magnitude of the 
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error variances. However, the maximum additional bias will always be in the same direction 

as the maximum bias, and will amplify the bias by a factor of {1 +
𝛽𝑅𝑍

2 𝜎𝑍
2 

𝛽𝑅𝑌
2 𝜎𝑌

2+𝜎𝑅
2 

} (4.3) 

Note that this is identical to the amplification factor in Scenario 1 (although the bias due Y 

being MNAR in this setting may be greater or smaller than in Scenario 1, depending on the 

sign and magnitude of 
𝛽𝑅𝑋

𝛽𝑌𝑋
).  

 

When X is partially observed, the maximum additional bias of the Y coefficient in the 

imputation model for X (i.e. in addition to the bias due to X being MNAR) from including Z as 

a predictor in the imputation model is equal to:  𝛽𝑋𝑌𝛽𝑅𝑋 {
𝛽𝑅𝑌𝜎𝑌

2

𝛽𝑌𝑋
+ 𝛽𝑅𝑋𝜎𝑋

2 (1 −
𝛽𝑌𝑋

2 𝜎𝑋
2

𝛽𝑌𝑋
2 𝜎𝑋

2 +𝜎𝑌
2)} ×

{
1

𝛽𝑅𝑋
2 𝜎𝑋

2 +𝛽𝑅𝑍
2 𝜎𝑍

2+𝜎𝑅
2−{𝛽𝑌𝑋

2 𝛽𝑅𝑋
2 𝜎𝑋

4 /(𝛽𝑌𝑋
2 𝜎𝑋

2 +𝜎𝑌
2)} 

−
1

𝛽𝑅𝑋
2 𝜎𝑋

2 +𝜎𝑅
2−{𝛽𝑌𝑋

2 𝛽𝑅𝑋
2 𝜎𝑋

4 /(𝛽𝑌𝑋
2 𝜎𝑋

2 +𝜎𝑌
2)} 

}  (4.4) 

  

As in the previous scenario, we explored the effect of this additional bias on the MI estimate 

by simulation, due to the complexity of the theoretical expression for the maximum additional 

bias when X is partially observed (see Supplementary Material Section S4 for further 

details).   

 

Figures 6 and 7 illustrate the impact of the direct effect sizes on the maximum additional bias 

when Y is partially observed and the additional bias when 50% of values of X are missing, 

respectively, when the imputation model includes Z as a predictor. The distribution of each 

box-plot is due to the variation in 𝛽𝑅𝑌 and 𝛽𝑅𝑋. When Y is partially observed, Figure 6 shows 

that the maximum additional bias is negative and increases in magnitude with the direct 

effect sizes (and is larger than in Scenario 1 for the same direct effect sizes). When X is 

partially observed, Figure 7 shows that the additional bias is negative and increases in 

magnitude with 𝛽𝑅𝑍, as well as with 𝛽𝑌𝑋 when 𝛽𝑌𝑋 ≤ 0.5. However, the additional bias is 

smaller in magnitude when 𝛽𝑌𝑋 = 1. Results for partially observed Y are similar if Y is binary 

(see Supplementary Material, Figure S5). If X is binary, additional bias when X is partially 

observed increases with both 𝛽𝑌𝑋 and 𝛽𝑅𝑍 (see Supplementary Material, Figure S6). The 

difference between results when X is continuous or binary may be due to the choice of 

distribution of X in each case: in the continuous case, X is normally distributed, with mean 

equal to 0 and variance equal to 1; in the binary case, X takes values of 0 or 1 with 

probability 0.5 (equivalent to a mean of 0.5 and a variance of 0.25). 
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Figure 6. Maximum additional bias of the MI estimator of 𝛽𝑌𝑋 when continuous outcome Y is 

missing not at random, with missingness caused by Y and X, and the imputation model 

includes exposure X and a predictor of missingness but not the missing values, Z, varying 

the direct effect sizes 𝛽𝑌𝑋, 𝛽𝑅𝑌, 𝛽𝑅𝑋, and 𝛽𝑅𝑍. The distribution of additional bias in each box-

plot is averaged over the values of 𝛽𝑅𝑌 and 𝛽𝑅𝑋.  

 

 

Figure 7. Additional bias of the MI estimate of 𝛽𝑌𝑋 when continuous exposure X is missing 

not at random, with missingness caused by Y and X, and the imputation model includes 

exposure Y and a predictor of missingness but not the missing values, Z. Results shown 

when 50% of values are missing, varying the direct effect sizes 𝛽𝑌𝑋, 𝛽𝑅𝑌, 𝛽𝑅𝑋, and 𝛽𝑅𝑍. The 

distribution of additional bias in each box-plot is averaged over the values of 𝛽𝑅𝑌 and 𝛽𝑅𝑋.  
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5. Real data example 

5.1. Methods  

We illustrate this situation using data from the Avon Longitudinal Study of Parents and 

Children (ALSPAC). ALSPAC is a prospective study which recruited pregnant women with 

expected dates of delivery between 1st April 1991 and 31st December 1992, in the Bristol 

area of the UK [18, 19]. We use data from the initial recruitment phase, in which 14,541 

pregnant women enrolled, resulting in 14,062 live births (13,988 alive at one year). This 

study uses data from all singletons and twins, where neither the mother nor child had 

withdrawn consent at the time of analysis (N=13,923). Children and their mothers have been 

followed up since birth through questionnaires, clinics, and linkage to routine datasets. 

ALSPAC has a searchable data dictionary: http://www.bristol.ac.uk/alspac/researchers/our-

data/, describing all available data. Ethical approval was obtained from the ALSPAC Ethics 

and Law Committee and local research ethics committees. Informed consent for the use of 

data collected via questionnaires and clinics was obtained from participants following the 

recommendations of the ALSPAC Ethics and Law Committee at the time.  

 

Here, our substantive model of interest is a linear regression of child’s IQ at age 15 years 

(IQ15) on breastfeeding duration (bf: categorised as never/< 3 months versus 3 months 

plus). Guided by previous studies [7, 12], we adjust for six confounders of the breastfeeding-

IQ relationship, namely child’s sex, mother’s educational level (whether the child’s mother 

held a post-16 years qualification or not), mother’s occupational social class (professional, 

managerial, or non-manual skilled occupation vs. manual skilled, semi-skilled, or unskilled 

occupation), mother’s age and parity (number of previous births), and housing tenure 

(whether the family home was owned/mortgaged, privately rented, or rented from the local 

council or a housing association).  

 

IQ15 was not reported for 8913 (64%) participants in the study. Previous studies [7, 12] used 

linked educational attainment data to explore the missingness mechanism for IQ15. They 

found that IQ15 was more likely to be missing for individuals with lower educational 

attainment (highly correlated with IQ15), which suggests IQ15 is MNAR. We explore the 

consequences of performing MI when IQ15 is likely to be MNAR, focusing particularly on the 

effect of including an auxiliary variable that is predictive of missingness but not the missing 

values of IQ15. Our chosen auxiliary variable is whether the mother smoked during the first 

trimester of pregnancy (matsmok). Note that there were also missing values for bf, 

confounders, and matsmok: bf was missing for 1406 (10%) individuals, values of one or 

more confounders were missing for 4394 (32%) individuals (although child’s sex and 

maternal age were fully observed), and matsmok was missing for 817 (6%) individuals. For 
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simplicity, and purely for illustrative purposes, we assume that bf, confounders, and 

matsmok are MAR, conditional on the observed data.  

 

Figure 8 depicts our hypothesised relationships between IQ15, bf, confounders (with 

confounders collectively denoted by C – for simplicity, we do not depict the relationships 

between individual confounders and/or missingness indicators for variables other than IQ15), 

potential auxiliary variable matsmok, and missingness indicator RIQ15 (a binary variable 

indicating whether IQ15 is observed), plus related, unmeasured variable(s), U (e.g. markers 

of child’s behaviour). Here, we assume the setting is similar to that depicted in our 

theoretical Scenario 1 i.e. we assume missingness is caused by IQ15 but not by our 

exposure, bf, or confounders (although we cannot rule out the possibility that missingness is 

caused by unmeasured variable(s) that are also related to IQ15). In Figure 8, black lines 

depict the relationships assumed in theoretical Scenario 1; grey lines depict additional 

relationships that are plausible in this real data setting.  

 

Figure 8. Directed acyclic graph depicting the relationship between child’s IQ at age 15 years 

(IQ15), duration of breastfeeding (bf), confounders of the IQ15-bf relationship (C), whether 

the mother smoked during the first trimester of pregnancy (matsmok), missingness indicator 

RIQ15 (a binary variable indicating whether IQ15 is observed), and unmeasured variable(s) U.   

Lines indicate related variables, with arrows indicating the direction of the relationship. Black 

lines depict the relationships assumed in theoretical Scenario 1; grey lines depict additional 

relationships that are plausible in our real data example; absent lines represent variables 

with no direct causal relationship. 

 

We first assessed whether the hypothesised relationships between IQ15, RIQ15, bf, and 

matsmok were plausible by exploring the relationships in the observed data. We then 
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applied our equation (Equation 2.4) for maximum bias amplification due to including 

predictor of missingness matsmok in the imputation model for IQ15. We assumed (without 

loss of generality) that R had a mean of zero and a variance of one. Therefore, we used the 

following version of Equation 2.4: maximum bias amplification = 1 +
𝛽𝑅𝑍

2 𝜎𝑍
2 

1−𝛽𝑅𝑍
2 𝜎𝑍

2−𝛽𝑅𝑌
2 𝛽𝑌𝑋

2 𝜎𝑋
2  

 

where, in our setting, X denotes bf and Z denotes matsmok. Parameter 𝛽
𝑅𝑍

 and the product 

𝛽
𝑅𝑌

𝛽
𝑌𝑋

 were estimated as 0.6  the coefficient for matsmok and bf, respectively, from a 

logistic regression of RIQ15 on matsmok, bf, and confounders (as before, multiplying by 0.6 to 

transform the parameters to the equivalent parameters from a probit regression of the 

underlying normal variable R [17]). We estimated 𝜎𝑋
2 = Var(X) and 𝜎𝑍

2 = Var(Z) using the 

normal approximation to the binomial because X and Z were binary. We assumed that the 

estimates used in our maximum bias amplification equation were unbiased (which may not 

have been the case if there were unmeasured confounders of the relationship between 

matsmok, bf, and RIQ15).   

 

We compared our estimate of the maximum bias amplification to both the CRA estimate and 

MI estimates using no auxiliary variables or using matsmok as an auxiliary variable. We 

used MI by chained equations [20] to impute missing values of IQ15, bf, confounders, and 

(where used) matsmok, including all other variables as predictors in the imputation model for 

each partially observed variable. We used a linear regression model to impute IQ15, logistic 

regression to impute bf, binary confounders, and matsmok, ordered logistic regression to 

impute parity, and multinomial logistic regression to impute housing tenure. We used 20 

iterations in the imputation step and a large number of imputations (100) to ensure we 

obtained stable estimates of the exposure coefficient and its SE.     

 

5.2. Results 

The estimated association between matsmok and IQ15, adjusted for bf and confounders, 

was -0.79 (95% CI: -1.88, 0.31). The wide CI suggests that matsmok is only weakly 

predictive of IQ15, conditional on bf and confounders. We would expect some association 

between matsmok and IQ15 in the observed data via the matsmok - RIQ15 - IQ15 pathway 

i.e. due to collider/selection bias because we are conditioning on RIQ15. Estimates of the 

coefficient for matsmok and bf from a logistic regression of RIQ15 on matsmok, bf, and 

confounders, were -0.39 (95% CI: -0.51, -0.27) and 0.44 (95% CI: 0.35, 0.53), respectively 

which suggests that, conditional on the confounders, matsmok and bf are strongly predictive 

of missingness of IQ15. These results, combined with our prior knowledge of the data, 

suggest that inclusion of matsmok in the imputation model for IQ15 may amplify any bias 

due to IQ15 being MNAR.   
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Substituting values based on the observed data into our equation, we estimated that 

including matsmok in the imputation model for IQ15 would amplify any bias in the bf 

coefficient due to IQ15 being MNAR by 1% (towards the null). This result suggests that the 

magnitude of bias amplification is small in this particular setting.  

 

Analysis results (Table 2) confirmed that MI estimates of the bf coefficient were very similar, 

regardless of whether auxiliary variable matsmok was used in the MI procedure, with the MI 

estimate based on matsmok smaller than the MI estimate based only on analysis model 

variables, as predicted by our equation. Both MI estimates were smaller than the CRA 

estimate. Based on the conclusions from previous studies [7, 12], both MI and CRA 

estimates under-estimate the true magnitude of the association. Using matsmok, a predictor 

of missingness but not of IQ15 itself, as an auxiliary variable amplifies any bias, albeit the 

size of the bias amplification is small in this particular setting. Note that the directions of bias 

and bias amplification are consistent with results in the theoretical Scenario 1.  

 

Table 2. Relationship between child’s IQ at age 15 years and duration of breastfeeding, 

estimated using different analysis strategies 

Duration of 
breastfeeding 

Mean change in child’s IQ at age 15: estimate (SE)a 

CRA  
(N=4,115) 

MI, no auxiliary 
variables  

(N=13,923) 

MI, including 
auxiliary variableb 

(N=13,923) 

Never/< 3 months - - - 

3 months plus 3.75 (0.40) 3.57 (0.35) 3.54 (0.37) 
CI, confidence interval; CRA, complete records analysis; MI, multiple imputation 

a Adjusted for mother’s educational level, occupational social class, age, parity and housing tenure, 
and child’s sex 
b Whether mother smoked during first trimester of pregnancy  

 

Discussion 

In this paper, we quantify, algebraically and by simulation, the magnitude of the additional 

bias of the MI estimator, in addition to any bias due to data MNAR, from including a predictor 

of missingness but not the missing values themselves in the imputation model. We have 

derived algebraic expressions for the maximum additional bias when a continuous outcome 

is partially observed. We have demonstrated that if missingness is caused by the outcome, 

the additional bias can be substantial, relative to the magnitude of the exposure coefficient 

(and also if the outcome is binary). Furthermore, if missingness is caused by the outcome 

and the exposure, the additional bias can be even larger, when either the (continuous or 

binary) outcome or exposure is partially observed.  
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In addition, when a continuous analysis model outcome Y is partially observed and linear 

regression models are fitted (for both analysis and imputation), we have demonstrated 

algebraically the, perhaps surprising, result that if missingness is only related to Y via 

another variable U (where U causes Y and its missingness but is only related to exposure X 

and confounders via Y), then both CRA and MI will be unbiased even if U is not included in 

the analysis and imputation models. Furthermore, in this scenario, the bias of the MI 

estimate is likely to be small when binary Y (fitting a logistic regression model) or 

(continuous or binary) X is partially observed.  

 

A strength of our approach is that we have considered a range of commonly-occurring 

scenarios, in which the partially observed variable is either the analysis model outcome or 

the exposure, as well as either continuous or binary. By using both algebra and simulation, 

we have been able to provide a detailed illustration of the magnitude of bias due to including 

auxiliary variables that only predict missingness, and how this is related to the magnitude 

and sign of individual assocations between exposure, outcome, auxiliary variables, and 

missingness. A limitation of our study is that we have only considered simple models, 

without interactions or non-linear relationships. However, since our general argument is 

based on a “missingness” DAG [21, 22], which does not make any distributional 

assumptions, our findings can be applied to more complex models (e.g. including an 

exposure-confounder interaction), to avoid using MI in a way which may increase bias 

(noting that the magnitude and direction of additional bias may be different from those 

suggested by our formulae in this case, particularly if either the analysis or missingness 

model includes interactions). A further limitation of our study is that in each of our scenarios, 

only a single variable has missing values. If multiple missingness is handled using MI by 

chained equations (as we did in the real data example), each imputation model only 

considers one variable to have missing values, as here. In this case, auxiliary variables 

should be considered separately for each imputation model, because an auxiliary variable 

may be predictive of one partially observed variable (and/or its missingness), but not 

another.  

 

In summary, we conclude that, whilst auxiliary variables have the potential to improve 

precision of MI estimates and reduce bias due to data MNAR, the naïve and commonly used 

strategy of including all available auxiliary variables should be avoided. Any auxiliary 

variables that predict missingness but are only weakly predictive of the partially observed 

variable may cause additional bias, over and above any bias due to data MNAR. Although it 

is important to identify predictors of missingness to inform analysis strategy (e.g. to 

determine whether CRA is likely to be valid), our results show that such variables should not 
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necessarily be included as predictors in the imputation models i.e. unless they also predict 

the partially observed variable. Given a choice of potential auxiliary variables, we 

recommend including the variables most predictive of the partially observed variable as 

auxiliary variables in the imputation model (in addition to all variables required for the 

analysis model) in order to minimise bias due to data MNAR. These variables can be 

identified through a combination of data exploration and consideration of the plausible 

casual diagrams and missingness mechanisms. 
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