LDH supplement

Supplementary Note. FinnGen DF9 Ethics statement Fig. S1.1 Regional plot of association on chr1 near ALPL Fig. S1.2 Regional plot of association on chr1 near NGF Fig. S1.3 Regional plot of association on chr1 near TGFB2 Fig. S1.4 Regional plot of association on chr1 near HHIPL2 Fig. S1.5 Regional plot of association on chr2 near GPR1 Fig. S1.6 Regional plot of association on chr3 near HYAL2 Fig. S1.7 Regional plot of association on chr3 near PDZRN3 Fig. S1.8 Regional plot of association on chr3 near ADCY5 Fig. S1.9 Regional plot of association on chr3 near NCK1 Fig. S1.10 Regional plot of association on chr3 near SHOX2 Fig. S1.11 Regional plot of association on chr4 near *IBSP* Fig. S1.12 Regional plot of association on chr5 near HDAC3 Fig. S1.13 Regional plot of association on chr5 near FGF18 Fig. S1.14 Regional plot of association on chr6 near TRIM38 Fig. S1.15 Regional plot of association on chr6 near HLA Fig. S1.16 Regional plot of association on chr6 near HLA Fig. S1.17 Regional plot of association on chr6 near TBX18 Fig. S1.18 Regional plot of association on chr7 near ELN Fig. S1.19 Regional plot of association on chr7 near ZC3HC1 Fig. S1.20 Regional plot of association on chr7 near STMP1 Fig. S1.21 Regional plot of association on chr9 near TUSC1 Fig. S1.22 Regional plot of association on chr9 near LPAR1 Fig. S1.23 Regional plot of association on chr9 near DNM1 Fig. S1.24 Regional plot of association on chr10 near AKR1C1 Fig. S1.25 Regional plot of association on chr10 near HTRA1 Fig. S1.26 Regional plot of association on chr11 near MYOEV Fig. S1.27 Regional plot of association on chr11 near SIK2 Fig. S1.28 Regional plot of association on chr12 near GLI1 Fig. S1.29 Regional plot of association on chr12 near KMT5A Fig. S1.30 Regional plot of association on chr13 near *DIAPH3* Fig. S1.31 Regional plot of association on chr17 near CA10 Fig. S1.32 Regional plot of association on chr18 near NPC1 Fig. S1.33 Regional plot of association on chr18 near SETBP1 Fig. S1.34 Regional plot of association on chr18 near DCC Fig. S1.35 Regional plot of association on chr19 near TECR Fig. S1.36 Regional plot of association on chr19 near LENG8 Fig. S1.37 Regional plot of association on chr21 near SLC5A3 Fig. S1.38 Regional plot of association on chrX near PCYT1B Fig. S1.39 Regional plot of association on chrX near ITM2A Fig. S1.40 Regional plot of association on chrX near *Empty* Fig. S1.41 Regional plot of association on chrX near CHRDL1 Fig. S2 Beta estimates of lead variants in every dataset used in the study Fig. S3 Beta estimates of lead variants observed in meta-analysis and sensitivity analyses Fig. S4 Manhattan plot for meta-analysis and SURG GWAS Fig. S5 Results of MAGMA gene-based test and MAGMA tissue expression analysis Fig. S6 Kaplan-Meier plot for GSDMC and CHST3 variants between ages 20-30 Fig. S7 Kaplan-Meier plots with M51.1 diagnoses Fig. S8.1 Scatterplot for Overweight that could possibly be causal for LDH Fig. S8.2 Scatterplot for lumbar spine bone mineral density that could possibly be causal for LDH Fig. S8.3 Scatterplot for higher level of education that could possibly be causal for LDH Fig. S9.1 Scatterplot for frequency of tiredness in last 2 weeks for which LDH is potentially causal Fig. S9.2 Scatterplot for back pain for which LDH is potentially causal Fig. S10.1 Leave-one-out: Overweight ->LDH Fig. S10.2 Leave-one-out: Lumbar spine bone mineral density ->LDH Fig. S10.3 Leave-one-out: Higher level of education ->LDH Fig. S11.1 Leave-one-out: LDH -> Frequency of tiredness in last 2 weeks

Fig. S11.2 Leave-one-out: LDH -> Back pain

 Table S1 The International Classification of Diseases codes used in phenotype characterization.

Table S2 A list of lead variants at the 64 genome-wide significant loci that were associated with LDH in metaanalysis

Table S3 Genomic locations and potential biological role of association signals

 Table S4 Effect differences between meta-analysis and SURG GWAS

Table S5 Genome-wide significant (p<5x10⁻⁸) lead variants associated with LDH related surgical operation

- Table S6 Cumulative morbidities and cumulative operations observed for every LDH associated variant
- Table S7 Results of genetic correlations for all 438 phenotypes

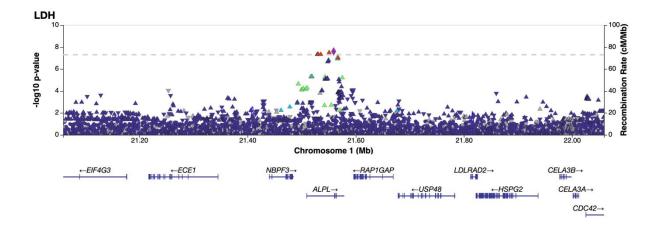
Table S8 Potentially causal exposures for LDH

 Table S9 Outcomes that LDH is potentially causal

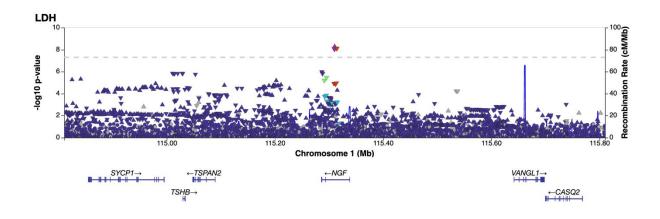
Table S10 A list of risk factors studied in Mendelian randomization

Table S11 A list of FinnGen authors and their affiliations

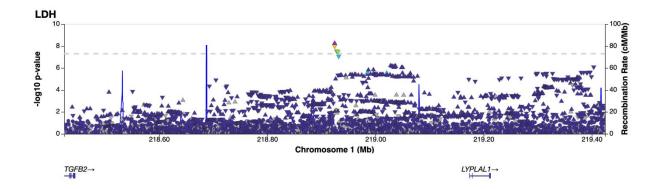
Table S12 A list of Estonian Biobank Research team authors and their affiliations

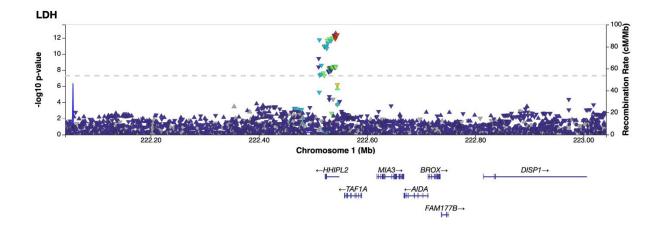

References

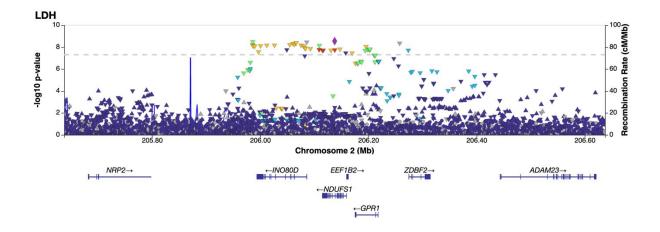
Supplementary Note. FinnGen DF9 Ethics statement

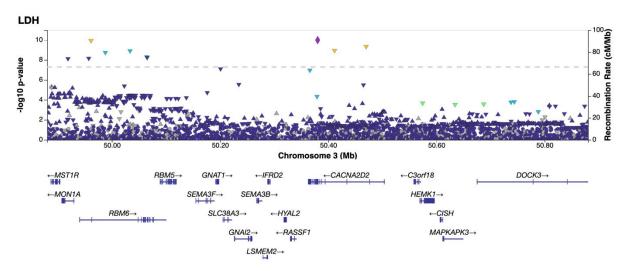

Patients and control subjects in FinnGen provided informed consent for biobank research, based on the Finnish Biobank Act. Alternatively, separate research cohorts, collected prior the Finnish Biobank Act came into effect (in September 2013) and start of FinnGen (August 2017), were collected based on study-specific consents and later transferred to the Finnish biobanks after approval by Fimea (Finnish Medicines Agency), the National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank protocols approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) statement number for the FinnGen study is Nr HUS/990/2017.

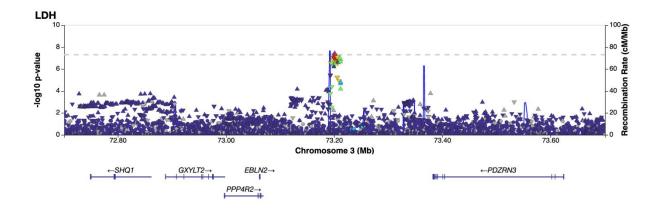
The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution (permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/2020), Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020,,THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/202, Statistics Finland (permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-20) TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases permission/extract from the meeting minutes on 4th July 2019.

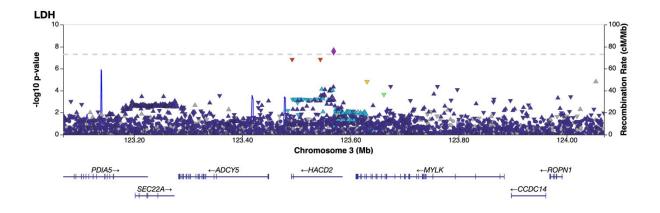

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 9 include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, Auria Biobank AB17-5154 and amendment #1 (August 17 2020), AB20-5926 and amendment #1 (April 23 2020) and it's modification (Sep 22 2021), Biobank Borealis of Northern Finland_2017_1013, Biobank of Eastern Finland 1186/2018 and amendment 22 § /2020, Finnish Clinical Biobank Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), Central Finland Biobank 1-2017, and Terveystalo Biobank STB 2018001 and amendment 25th Aug 2020.

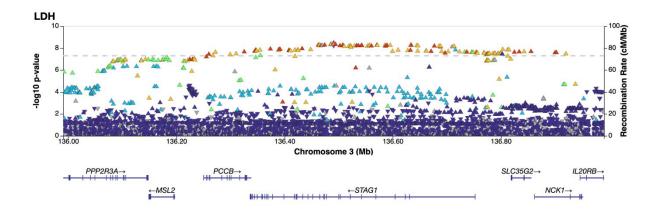

Fig. S1.1 Regional association plot of novel LDH association on chromosome 1 limited to the area of 21059185-22059185. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *ALPL (alkaline phosphatase, biomineralization associated)*.

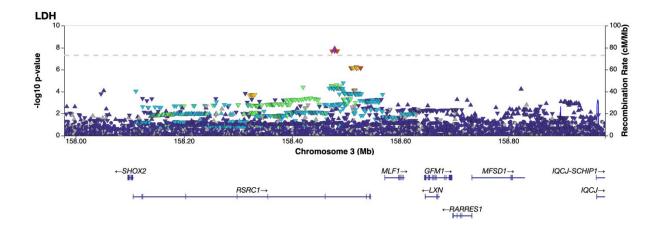

Fig. S1.2 Regional association plot of novel LDH association on chromosome 1 limited to the area of 114810363-115810363. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *NGF (nerve growth factor)*.

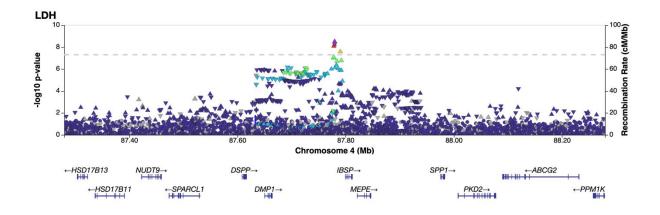

Fig. S1.3 Regional association plot of novel LDH association on chromosome 1 limited to the area of 218424545-219424545. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *TGFB2 (transforming growth factor beta 2)*.

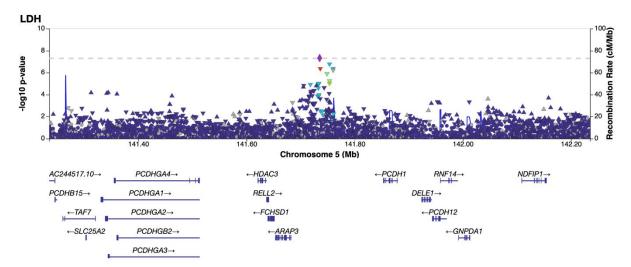

Fig. S1.4 Regional association plot of novel LDH association on chromosome 1 limited to the area of 222041797-223041797. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *HHIPL2 (HHIP like 2)*.


Fig. S1.5 Regional association plot of novel LDH association on chromosome 2 limited to the area of 205637590-206637590. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *GPR1 (G-protein coupled receptor 1)*, also known as *CMKFR2 (chemerin like receptor 2)*.


Fig. S1.6 Regional association plot of novel LDH association on chromosome 3 limited to the area of 49880254-50880254. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *HYAL2 (hyaluronidase 2)*.


Fig. S1.7 Regional association plot of novel LDH association on chromosome 3 limited to the area of 72700973-73700973. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *PDZRN3 (PDZ domain containing ring finger 3)*.


Fig. S1.8 Regional association plot of novel LDH association on chromosome 3 limited to the area of 123068959-124068959. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *ADCY5 (adenylate cyclase 5)*.


Fig. S1.9 Regional association plot of novel LDH association on chromosome 3 limited to the area of 135990708-136990708. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *NCK1 (NCK adaptor protein 1)*.

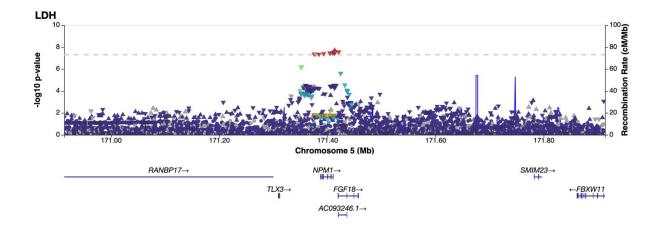
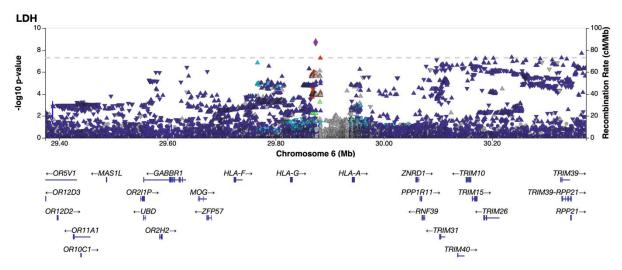
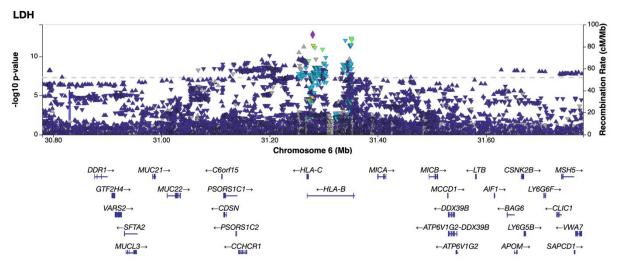
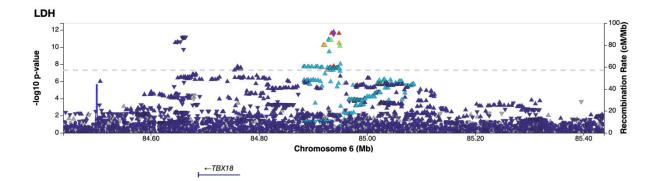
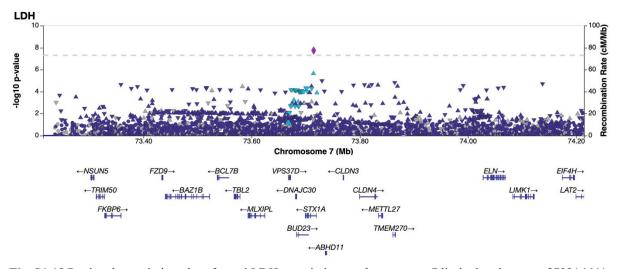

Fig. S1.10 Regional association plot of novel LDH association on chromosome 3 limited to the area of 157978549-158978549. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *SHOX2 (short stature homeobox 2)*.

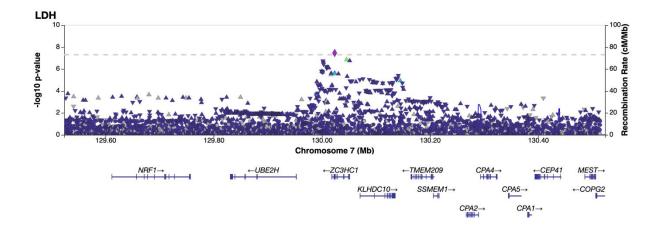

Fig. S1.11 Regional association plot of novel LDH association on chromosome 4 limited to the area of 87279677-88279677. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *IBSP (integrin binding sialoprotein)*.

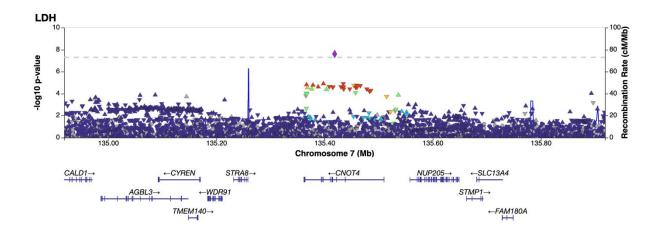

Fig. S1.12 Regional association plot of novel LDH association on chromosome 5 limited to the area of 141235121-142235121. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *HDAC3 (histone deacetylase 3)*.

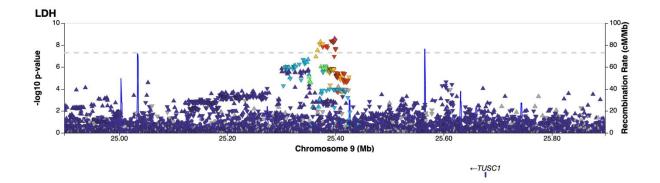

Fig. S1.13 Regional association plot of novel LDH association on chromosome 5 limited to the area of 170913500-171913500. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly FGF18 (fibroblast growth factor 18).

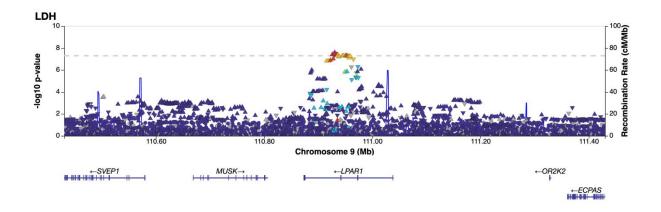

Fig. S1.14 Regional association plot of novel LDH association on chromosome 6 limited to the area of 25776422-26776422. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *TRIM38 (tripartite motif containing 38)*.

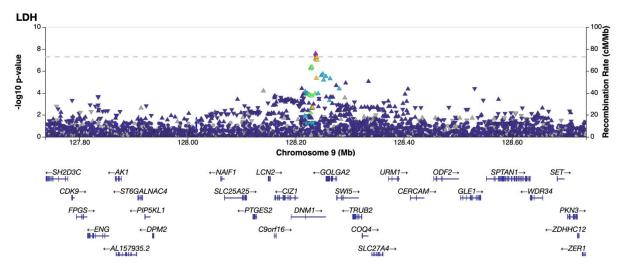

Fig. S1.15 Regional association plot of novel LDH association on chromosome 6 limited to the area of 29373925-30373925. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *HLA*.

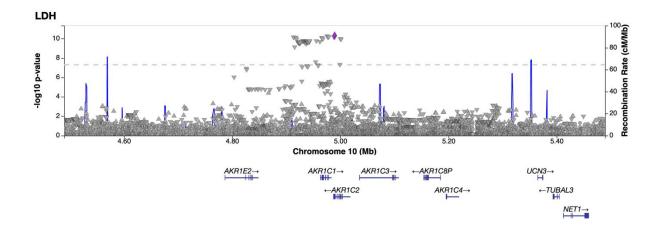

Fig. S1.16 Regional association plot of novel LDH association on chromosome 6 limited to the area of 30779637-31779637. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *HLA*.

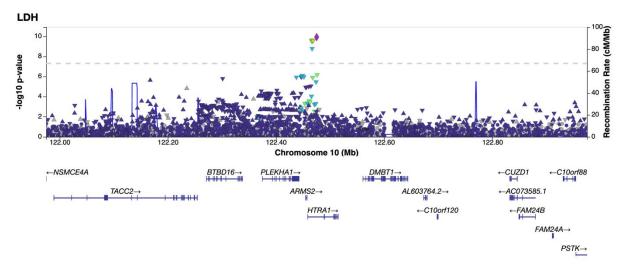

Fig. S1.17 Regional association plot of novel LDH association on chromosome 6 limited to the area of 84438145-85438145. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *TBX18 (T-box transcription factor 18)*.

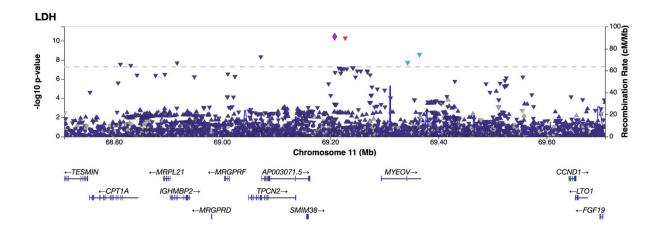

Fig. S1.18 Regional association plot of novel LDH association on chromosome 7 limited to the area of 73214641-74214641. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *ELN (elastin)*.

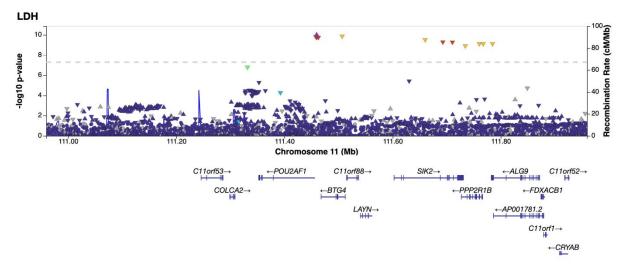

Fig. S1.19 Regional association plot of novel LDH association on chromosome 7 limited to the area of 129523656-130523656. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *ZC3HC1 (zinc finger C3HC-type containing 1)*.

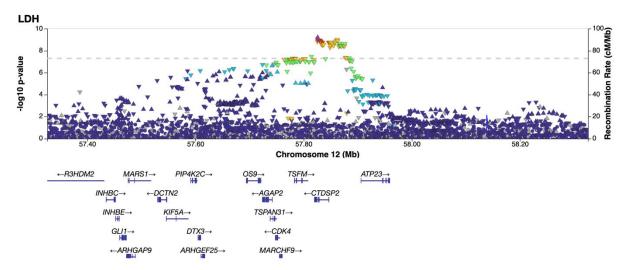

Fig. S1.20 Regional association plot of novel LDH association on chromosome 7 limited to the area of 134918700-135918700. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *STMP1 (short transmembrane mitochondrial protein 1)*.

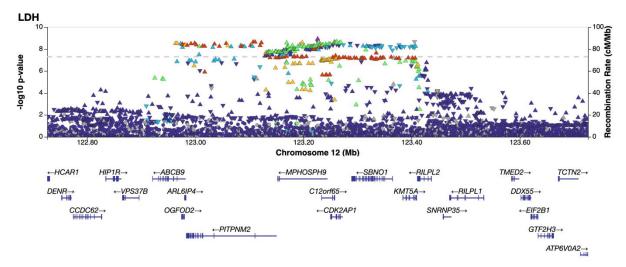

Fig. S1.21 Regional association plot of novel LDH association on chromosome 9 limited to the area of 24898495-25898495. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *TUSC1 (tumor suppressor candidate 1)*.

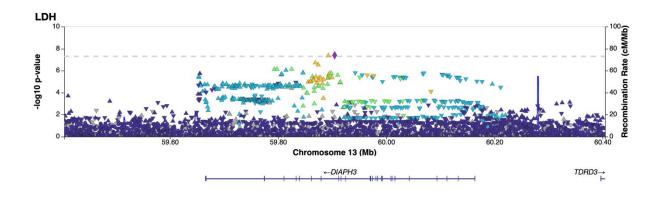

Fig. S1.22 Regional association plot of novel LDH association on chromosome 9 limited to the area of 110430238-111430238. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *LPAR1 (lysophosphatidic acid receptor 1)*.

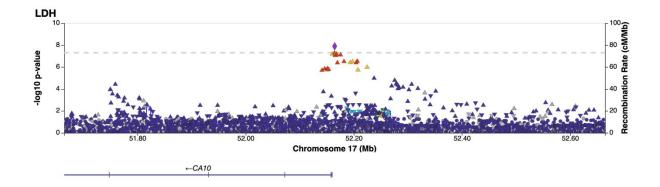

Fig. S1.23 Regional association plot of novel LDH association on chromosome 9 limited to the area of 127736873-128736873. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *DNM1 (dynamin 1)*.


Fig. S1.24 Regional association plot of novel LDH association on chromosome 10 limited to the area of 4489436-5489436. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *AKR1C1 (aldo-keto reductase family 1 member C1)*.


Fig. S1.25 Regional association plot of novel LDH association on chromosome 10 limited to the area of 121975088-122975088. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *HTRA1 (HtrA serine peptidase 1)*.


Fig. S1.26 Regional association plot of novel LDH association on chromosome 11 limited to the area of 68708032-69708032. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *MYEOV (myeloma overexpressed)*.


Fig. S1.27 Regional association plot of novel LDH association on chromosome 11 limited to the area of 110959420-111959420. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *SIK2 (salt inducible kinase 2)*.


Fig. S1.28 Regional association plot of novel LDH association on chromosome 12 limited to the area of 57325898-58325898. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *GLI1 (GLI family zinc finger 1)*.

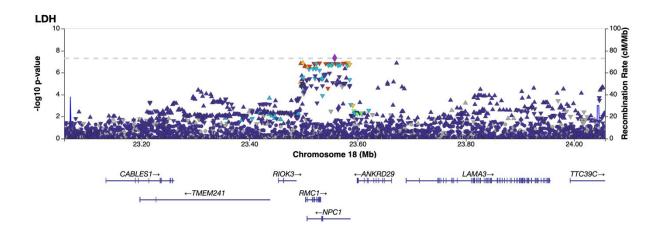
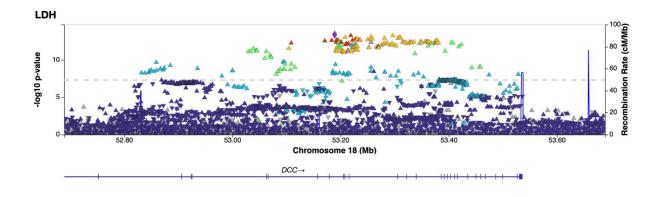
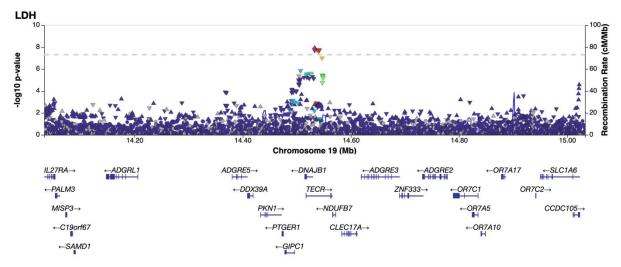
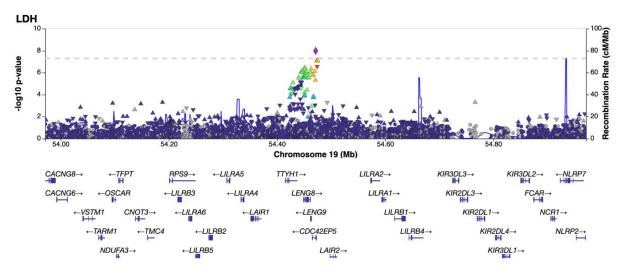
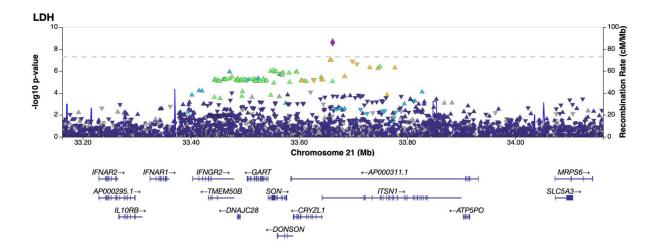

Fig. S1.29 Regional association plot of novel LDH association on chromosome 12 limited to the area of 122726288-123726288. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *KMT5A (lysine methyltransferase 5A)*.

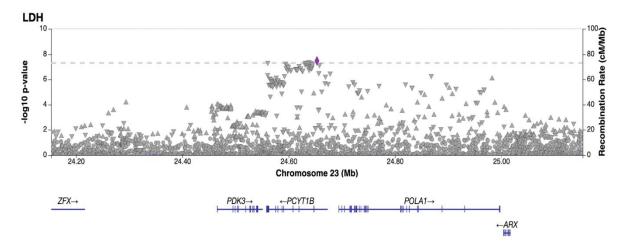

Fig. S1.30 Regional association plot of novel LDH association on chromosome 13 limited to the area of 59404471-60404471. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *DIAPH3 (diaphanous-related formin 3)*.

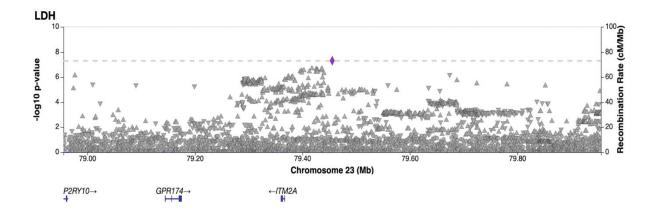

Fig. S1.31 Regional association plot of novel LDH association on chromosome 17 limited to the area of 51664544-52664544. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *CA10 (carbonic anhydrase 10)*.

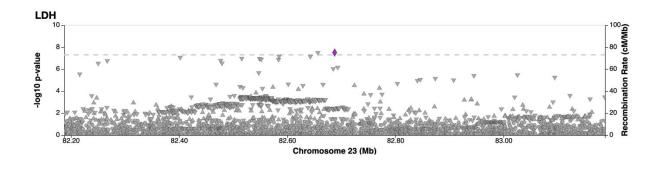

Fig. S1.32 Regional association plot of novel LDH association on chromosome 18 limited to the area of 23057478-24057478. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *NPC1 (NPC intracellular cholesterol transporter 1)*.


Fig. S1.33 Regional association plot of novel LDH association on chromosome 18 limited to the area of 44071296-45071296. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *SETBP1 (SET binding protein 1)*.


Fig. S1.34 Regional association plot of novel LDH association on chromosome 18 limited to the area of 52689047-53689047. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *DCC (DCC netrin 1 receptor)*.


Fig. S1.35 Regional association plot of novel LDH association on chromosome 19 limited to the area of 14033044-15033044. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *TECR (trans-2,3-enoyl-CoA reductase)*.


Fig. S1.36 Regional association plot of novel LDH association on chromosome 19 limited to the area of 53971384-54971384. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *LENG8 (leukocyte receptor cluster member 8)*.


Fig. S1.37 Regional association plot of novel LDH association on chromosome 21 limited to the area of 33162166-3416166. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *SLC5A3* (solute carrier family 5 member 3).

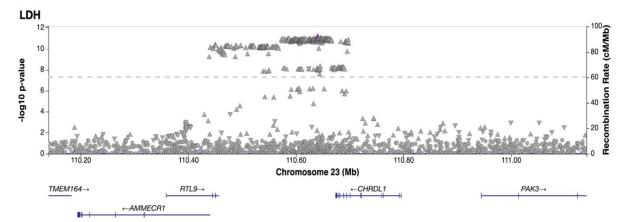

Fig. S1.38 Regional association plot of novel LDH association on chromosome X limited to the area of 24153216-34153216. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *PCYT1B* (*phosphate cytidylyltransferase 1B*).

Fig. S1.39 Regional association plot of novel LDH association on chromosome X limited to the area of 78955466-79955466. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *ITM2A (integral membrane protein 2A)*.

Fig. S1.40 Regional association plot of novel LDH association on chromosome X limited to the area of 82187578-83187578. The association is based on the results of a meta-analysis. There was not any protein coding gene in this locus, so it was classified as Empty.

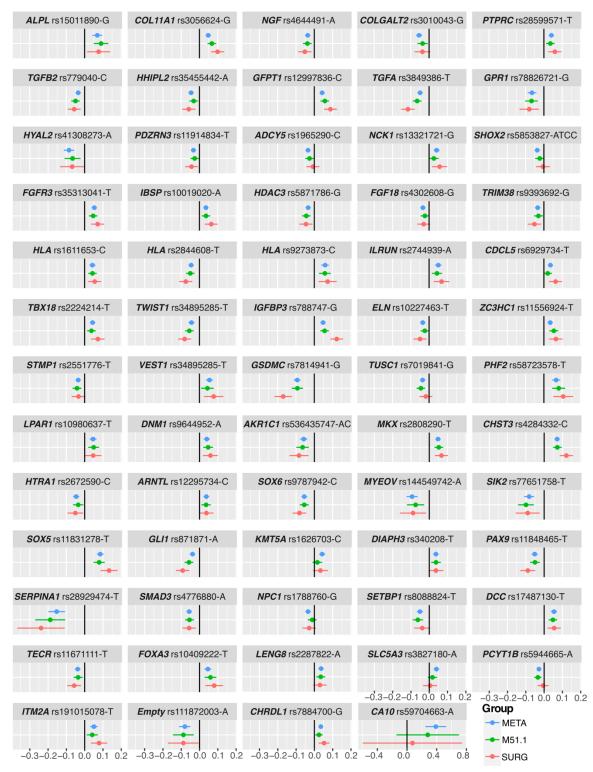
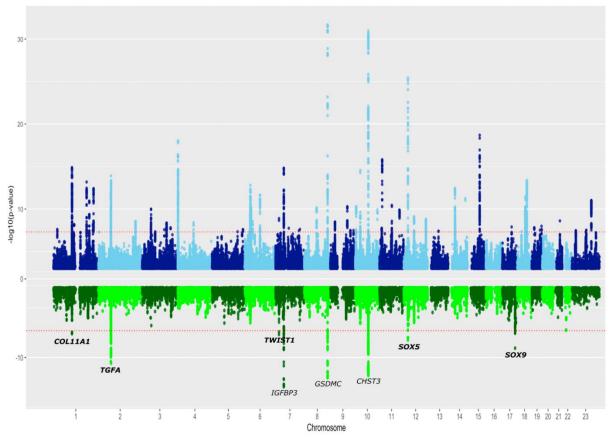
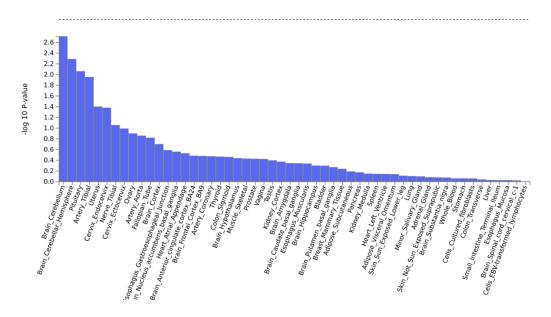
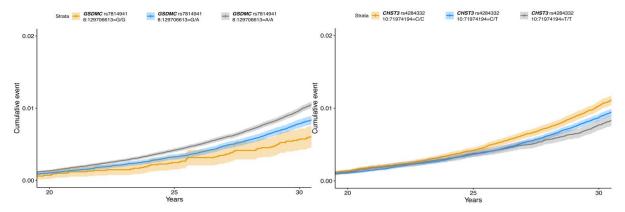


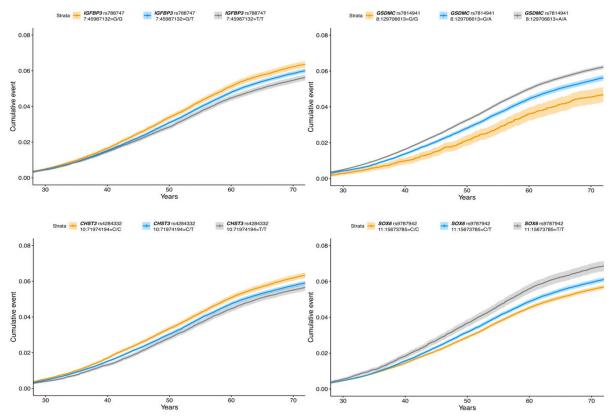
Fig. S1.41 Regional association plot of novel LDH association on chromosome X limited to the area of 110140115-111140115. The association is based on the results of a meta-analysis. According to our research, the gene explaining the association of the locus is possibly *CHRDL1 (chordin like 1)*.

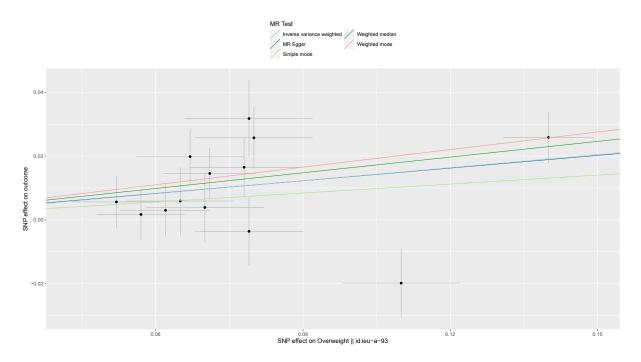


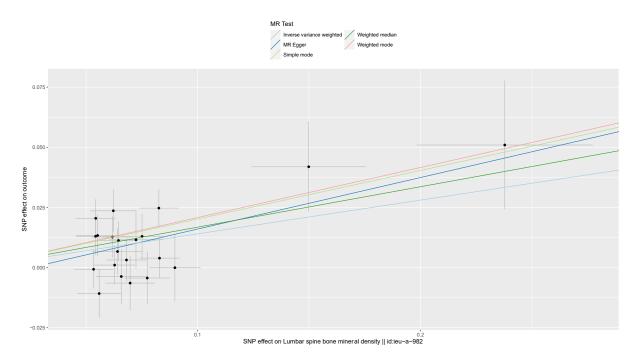
Beta estimate (95% CI)

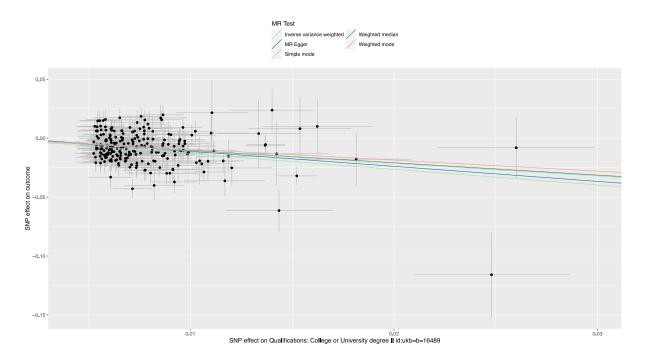

Fig. S2. Effect estimates of lead variants and their 95% confidence intervals in the forest plot. Variants are identified by candidate gene, rsid and effect allele. The diagram shows the effect estimates for each variant both in the meta-analysis and in each dataset separately (FinnGen, ESTBB, UKBB).

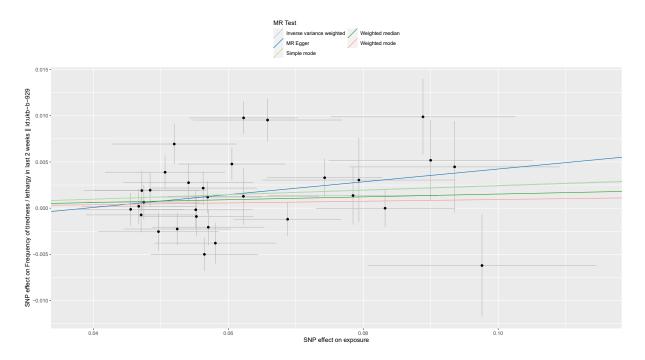

Fig. S3. Effect estimates of lead variants observed in meta-analysis and sensitivity analyses. Variants are identified by candidate gene, rsid and effect allele. The diagram shows the effect estimates for each variant both in the meta-analysis and sensitivity analyses (M51.1, SURG). M51.1 contains only cases that had only M51.1 diagnoses. M51.1 GWAS contains 18857 cases and 270 964 controls. Also, GWAS was performed for patients that had had an LDH related operation. This phenotype contains all patients that had surgical codes of ABC07, ABC16, ABC26. SURG GWAS contains 7347 cases and 270 964 controls. We did not observe any statistically significant effect differences between meta-analysis and M51.1. Between meta-analysis and SURG we observed statistically significant effect differences for *COL11A1*, *GFPT1*, *TGFA*, *TWIST1*, *IGFBP3*, *GSDMC*, *CHST3*, *SOX5* and *GLI1* variants. Results of the effect differences can also be seen from Table S3.


Fig. S4 Above, Manhattan plot of the variants we detected to be associated with LDH in the meta-analysis and below variants we detected to be associated with LDH related surgical operation. Meta-analysis contains 80724 LDH cases and 748 975 controls, consisting of data from FinnGen, the Estonian Biobank, and the UK Biobank. SURG GWAS, where LDH patients who had undergone an LDH-related operation (ABC07, ABC16, ABC26) formed a case group of 7347 and controls of 270 964. Results for the SURG GWAS can be seen in Table S4.


Fig. S5. Results of MAGMA tissue expression analysis¹, no genome-wide significant results were observed in tissue expression analysis. All bars fell below the dashed line, which serves as a marker for genome-wide significant results. y-axis, -log 10 P-value; x-axis, tissues (GTEx Output-General tissues). Analysis was done by using FUMA².


Fig. S6 Closer look for *GSDMC (8:129706613:G:A, rs7814941)* and *CHST3 (10:719741194:C:T, rs4284332)* variants. The same variants are used, and the curves correspond to the curves in Fig. 3, but in this graph, the development can only be seen at the age of 20–30 years. For these variants, a statistically significant difference between the genotypes was observed even before the age of 30. *GSDMC* 8:12970613-A/A differed from the variant's other genotypes at the age of 26 (p=0.0005). *CHST3* 10:71974194-C/C homozygotes became significantly different at the age of 25 (p=2.22e⁻⁵).


Fig. S7 Kaplan-Meier plots for *IGFBP3 (7:45987132:G:T), CHST3 (10:719741194:C:T), GSDMC (8:129706613:G:A), SOX6 (11:15673785:C:T).* These plots were done as a sensitivity analysis based only M51.1 cases. Age can be seen on the x-axis of the graphs, and cumulative disease severity on the y-axis. The orange line of the graphs depicts homozygotes for the effect allele, gray homozygotes for the other allele, and blue correspondingly heterozygotes who have one of each allele.


Fig. S8.1 Scatterplot for overweight that could possibly be causal for lumbar disc herniation. In Mendelian randomization analysis, performed with TwoSampleMR-database. We focused on the results of the Inverse variance Weighted (IVW) model, with the significance limit of (P < 0.05).

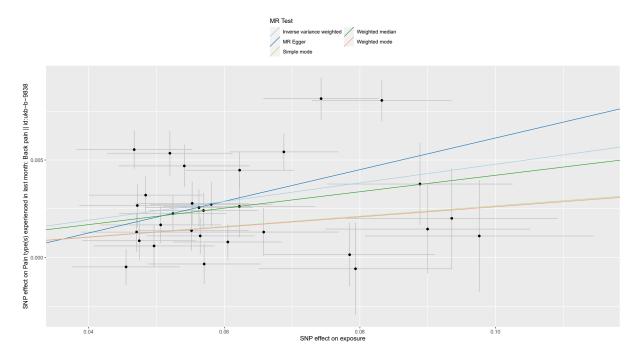

Fig. S8.2 Scatterplot for lumbar spine bone mineral density that could possibly be causal for lumbar disc herniation. In Mendelian randomization analysis, performed with TwoSampleMR-database. We focused on the results of the Inverse variance Weighted (IVW) model, with the significance limit of (P < 0.05).

Fig. S8.3 Scatterplot for Higher level of education that could possibly be causal for lumbar disc herniation. In Mendelian randomization analysis, performed with TwoSampleMR-database. We focused on the results of the Inverse variance Weighted (IVW) model, with the significance limit of (P < 0.05). Original endpoint name is Qualifications: College or University degree || id:ukb-b-16489.

Fig. S9.1 Scatterplot for frequency of tiredness in last 2 weeks-endpoint for which lumbar disc herniation is potentially causal. In Mendelian randomization analysis, performed with TwoSampleMR-database. We focused on the results of the Inverse variance Weighted (IVW) model, with the significance limit of (P < 0.05).

Fig. S9.2 Scatterplot for back pain for which lumbar disc herniation is potentially causal. In Mendelian randomization analysis, performed with TwoSampleMR-database. We focused on the results of the Inverse variance Weighted (IVW) model, with the significance limit of (P < 0.05).

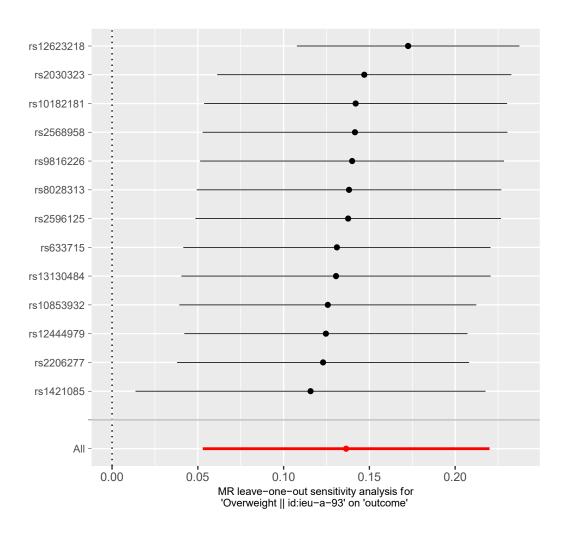


Fig. S10.1 Leave-one-out, overweight (id:ieu-a-93) as an exposure and lumbar disc herniation as an outcome

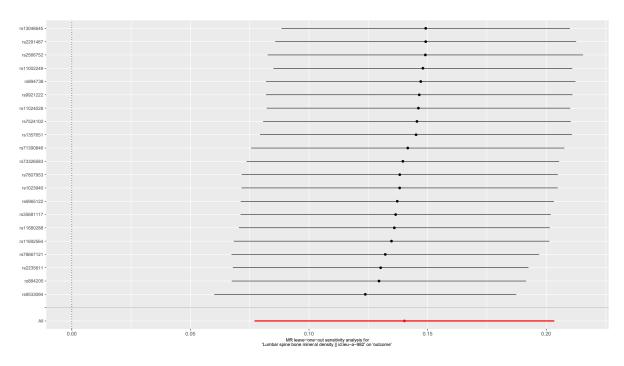


Fig. S10.2 Leave-one-out, lumbar spine bone mineral density (id:ieu-a-982) as an exposure and lumbar disc herniation as an outcome

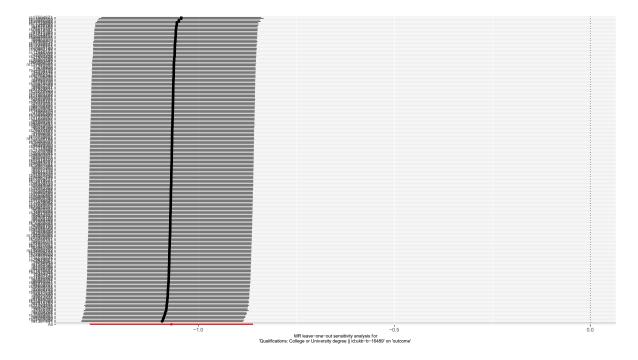


Fig. S10.3 Leave-one-out, higher level of education as an exposure and lumbar disc herniation as an outcome. Original endpoint name is Qualifications: College or University degree \parallel id:ukb-b16489.

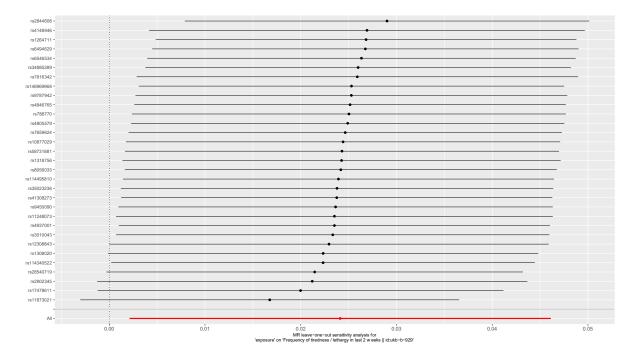


Fig. S11.1 Leave-one-out, lumbar disc herniation as an exposure and frequency of tiredness in last 2 weeks (id:ukb-b-929) as an outcome.

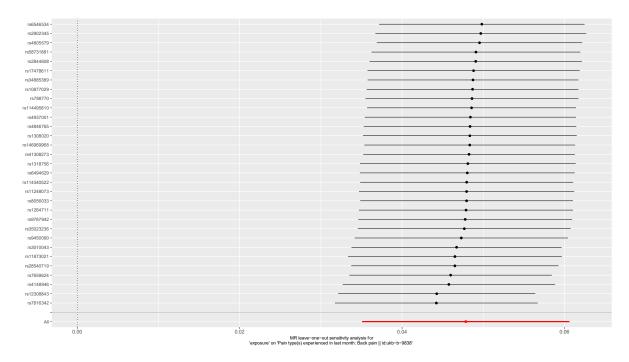


Fig. S11.2 Leave-one-out, lumbar disc herniation as an exposure and back pain (id:ukb-b-9838) as an outcome.

Table S1 General information about the study populations. The International Classification of Diseases codes that were used to characterize phenotypes. Below, the number of cases and controls in the study.

Study	Revision /	Codes	Codes
Meta-analysis			
EstBB	ICD-10		M51 (M510, M511, M512, M513, M514, M518, M519)
<u>UKBB</u>	ICD-10		M51 (M510, M511, M512, M513, M514, M518, M519)
<u>FinnGen</u>	ICD-10		M51 (M510, M511, M512, M513, M514, M518, M519)
	ICD-9		7221A, 7221C, 7223A, 7225A, 7225B, 7226X, 7228C, 7229X
	ICD-8		72510, 72519, 72520, 72551, 72559, 72588, 72599
Sensitivity analysis			
LDH cases with radiculopat	hy		
Step 1) Characterization of pa	tients with radicul	opathy	
	ICD-10		M51.1
	ICD-9		7221A
	ICD-8		72510
Step 2) Patients with other LE	OH diagnosis code	s were excluded fro	om the analysis.
Surgical GWAS			
Step 1) Characterization of LI	DH patients in Fin	nGen	
	ICD-10		M51 (M510, M511, M512, M513, M514, M518, M519)
	ICD-9		7221A, 7225A, 7225B, 7225C
	ICD-8		72510, 72519
Step 2) Patients that have been	n surgically operat	ed were picked fro	m the characterized LDH patients group
		O, version 1.15	ABC07, ABC16, ABC26
Step 3) LDH cases that have operated patients without LDI			cluded from the analysis. Also, surgically
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<u> </u>
Study population	Cases	Controls	Sample prevalence Total

Study population	Cases	Controls	Sample prevalence	Total
FinnGen	37 636	270 964	12.2 %	308 600
Estonian Biobank	34 035	66 533	33.8 %	100 568
UK Biobank	9053	411 478	2.2 %	420 531
Meta-analysis	80 724	748 975	9.7 %	829 699
FinnGen subgroup analysis				
LDH cases with radiculopathy	18 857	270 964	6.5 %	289 821
Surgical GWAS	7347	270 964	2.6 %	278 311

Table S2. The list of lead variants at the 64 genome-wide significant ($p \le 5x10^{-8}$) loci that were associated with LDH in the meta-analysis, that contained total of 80 724 LDH cases and 748 975 controls from FinnGen, the Estonian Biobank, and the UK Biobank. We also performed conditional analyzes for the loci to identify possible secondary signals. The analyzes were performed with the GCTA software package³, and the lead variants detected from the loci were used as a covariate. Those observed secondary signals The detected secondary signals are in the table under the lead variant used as a covariate, and the results of the secondary signal are also conditional on the lead variant used as a covariate.

	Candidate gene	CHR: POS			OA	OR	OR 95Cl				
1p36.12	ALPL	1:21559185	rs150211890	G	т	1.07	1.05-1.10	2.5e-08	0.05	2.6	Nov
1p21.1	COL11A1	1:102882172	rs3056624	G	GTATT	1.05	1.04-1.06	1.29e-15	0.51	1.1	4
1p13.2	NGF	1:115310363	rs4644491	Α	G	0.96	0.95-0.98	6.78e-09	0.63	0.96	Nov
1q25.3	COLGALT2	1:183973041	rs3010043	G	Α	0.95	0.93-0.96	6.64e-14	0.78	1.0	4
1q32.1	PTPRC	1:198768851	rs28599571	Т	G	1.04	1.03-1.05	1.15e-11	0.55	1.1	4
1q41	TGFB2	1:218924545	rs779040	С	G	0.97	0.95-0.98	7.13e-09	0.55	1.0	Nov
1q41	HHIPL2	1:222541797	rs35455442	Α	С	0.96	0.94-0.97	3.96e-13	0.33	1.3	Nov
2p13.3	GFPT1	2:69304791	rs12997836	С	Т	1.04	1.03-1.06	9.44e-13	0.43	1.1	4
2p13.3	TGFA	2:70496764	rs3849386	Т	С	0.95	0.94-0.96	1.27e-14	0.35	1.1	4
	TGFA*	2:69569876	rs6546534	T	G	1.05	1.04-1.07	4.47e-12	0.30	1.29	
2q33.3	GPR1	2:206137590	rs78826721	G	A	0.94	0.92-0.96	2.85e-09	0.11	1.22	Nov
3p21.31	HYAL2	3:50380254	rs41308273	A	Т	0.92	0.89-0.94	1.02e-10	0.05	2.4	Nov
3p13 3q21.1	PDZRN3 ADCY5	3:73200973 3:123568959	rs11914834 rs1965290	T C	C T	0.97	0.96-0.98	4.85e-08 2.67e-08	0.44	1.1	Nov
3q22.3	NCK1	3:136490708	rs13321721	G	A	1.04	1.03-1.06	4.49e-09	0.33	1.1	Nov
3q25.32	SHOX2	3:158478549	rs5853827	ATCC	A	0.96	0.95-0.98	1.55e-08	0.33	0.91	Nov
4p16.3	FGFR3	4:1694376	rs35313041	Т	C	1.05	1.04-1.07	9.14e-19	0.52	0.91	4
4p10.5 "	FGFR3*	4:1185425	rs7659624	T	c	1.05	1.04-1.07	2.99e-15	0.69	0.97	
4q22.1	IBSP	4:87779677	rs10019020	A	G	1.04	1.02-1.05	4.07e-09	0.49	0.85	Nov
5q31.3	HDAC3	5:141735121	rs5871786	G	GT	0.97	0.96-0.98	4.71e-08	0.44	1.0	Nov
5q35.1	FGF18	5:171413500	rs4302608	G	A	0.97	0.95-0.98	2.61e-08	0.55	0.98	Nov
6p22.2	TRIM38	6:26276422	rs9393692	G	A	0.97	0.95-0.98	4.46e-08	0.58	1.2	Nov
6p22.1	HLA	6:29873925	rs1611653	С	G	1.04	1.03-1.06	1.98e-09	0.58	0.93	Nov
6p21.33	HLA	6:31279637	rs2844608	т	с	0.96	0.94-0.97	1.58e-13	0.39	1.1	Nov
. "	HLA*	6:32236907	rs3134924	т	G	1.06	1.04.1.08	4.51e-08	0.15	0.89	
6p21.32	HLA	6:32661873	rs9273873	С	т	1.06	1.04-1.08	4.42e-10	0.21	NA	5
6p21.31	ILRUN	6:34580429	rs2744939	А	Т	1.05	1.04-1.07	6.36e-11	0.17	1.4	4
6p21.1	CDC5L	6:44478351	rs6929734	Т	G	1.04	1.02-1.05	2.72e-09	0.54	0.98	4
6q14.3	TBX18	6:84938145	rs2224214	Т	С	1.04	1.03-1.06	2.33e-12	0.37	1.0	No
7p21.1	TWIST1	7:19442778	rs34895285	Т	TA	0.96	0.94-0.97	1.29e-09	0.52	0.99	4
7p12.3	IGFBP3	7:45987132	rs788747	G	Т	1.05	1.04-1.06	1.53e-15	0.50	0.96	4
7q11.23	ELN	7:73714641	rs10227463	Т	С	0.97	0.95-0.98	1.82e-08	0.41	1.2	Nov
7q32.2	ZC3HC1	7:130023656	rs11556924	т	С	1.04	1.02-1.05	3.48e-08	0.36	0.84	No
7q33	STMP1	7:135418700	rs2551776	Т	С	0.97	0.95-0.98	2.48e-08	0.64	1.1	Nov
8q13.2	VEST1	8:68665207	rs2164198	G	А	1.06	1.04-1.07	7.35e-11	0.18	0.45	4
"	VEST1*	8:69499061	rs1968555	С	G	1.03	1.02-1.05	2.18e-08	0.40	1.32	
8q24.21	GSDMC	8:129706613	rs7814941	G	А	0.91	0.90-0.93	2.1e-32	0.19	0.94	6
9p21.3	TUSC1	9:25398495	rs7019841	G	Α	0.96	0.95-0.98	3.34e-09	0.54	0.96	No
9q22.32	PHF2	9:93911476	rs58723578	Т	С	1.07	1.05-1.09	5.18e-11	0.10	1.2	4
9q31.3	LPAR1	9:110930238	rs10980637	Т	С	1.05	1.03-1.06	3.28e-08	0.13	1.9	Nov
9q34.11	DNM1	9:128236873	rs9644952	Α	С	104	1.03-1.05	3.3e-08	0.22	1.1	Nov
10p15.1	AKR1C1	10:4989436	rs536435747	AC	Α	0.94	0.93-0.96	5.02e-11	0.13	1.2	No
10p21.1	MKX	10:27611953	rs2808290	T	С	1.05	1.04-1.06	2.75e-15	0.46	0.78	4
10q22.1	CHST3	10:71974194	rs4284332	С	T	1.07	1.06-1.09	1.13e-31	0.58	0.89	7
l0q26.13	HTRA1	10:122475088	rs2672590	С	Α	0.95	094-0.97	1.2e-10	0.24	0.89	No
"	HTRA1*	10:122301287	rs10788274	Α	G	0.96	0.95-0.97	4.52e-11	0.55	1.18	4
11p15.3	ARNTL	11:13270734	rs12295734	C	G	1.04	1.02-1.05	1.81e-08	0.71	1.0	4
11p15.2	SOX6	11:15673785	rs9787942	C	T T	0.95	0.93-0.96	1.55e-16	0.75	0.85	
11q13.3	MYEOV	11:69208032	rs144549742	A	Т	0.91	0.88-0.94	3.66e-11	0.04	2.8	No
11q23.1	SIK2	11:111459420	rs77651758	T	C	0.92	0.90-0.95	1.32e-10	0.05	2.1	Nov 4
12p12.1 12q14.1	SOX5 GLI1	12:23807795	rs11831278	T	С G	1.09 0.96	1.07-1.10	3.73e-26	0.16	1.0 1.3	No
12q14.1 L2q24.31	KMT5A	12:57825898 12:123226288	rs871871 rs1626703	A C	A	1.04	0.95-0.97	7.98e-10 1.55e-09	0.35	1.0	No
13q21.2	DIAPH3	13:59904471	rs340208	т	A	1.04	1.03-1.06	3.98e-08	0.73	1.0	No
14q13.3	PAX9	14:37002513	rs11848465	T	c	0.95	0.94-0.96	3.58e-00	0.22	1.2	4
14q13.3 L4q32.13	SERPINA1	14:94378610	rs28929474	T	C	0.95	0.94-0.90	5.59e-13	0.22	1.2	4
.5q22.33	SMAD3	15:67072653	rs4776880	A	G	0.95	0.93-0.96	2.02e-12	0.35	1.1	4
17q22	CA10	17:52164544	rs59704663	A	G	1.48	1.34-1.61	1.29e-08	0.003	0.12	No
18q11.2	NPC1	18:23557478	rs1788760	G	A	0.97	0.95-0.98	4.62e-08	0.67	1.0	No
18q12.3	SETBP1	18:44571296	rs8088824	Т	c	0.95	0.94-0.96	3.76e-12	0.78	1.1	No
18q21.2	DCC	18:53189047	rs17487130	T	c	1.06	1.04-1.07	4.16e-14	0.40	0.92	No
10q21.2 19p13.12	TECR	19:14533044	rs11671111	T	c	0.96	0.95-0.98	1.56e-08	0.25	1.6	No
19q13.32	FOXA3	19:45876389	rs10409222	T	c	1.05	1.03-1.06	2.97e-08	0.17	0.8	4
L9q13.42	LENG8	19:54471384	rs2287822	A	G	1.04	1.02-1.05	1.05e-08	0.30	1.33	No
21q22.11	SLC5A3	21:33662166	rs3827180	A	G	1.04	1.03-1.05	2.48e-09	0.28	1.3	No
Xp22.11	PCYT1B	23:24653216	rs5944665	A	G	0.97	0.96-0.98	3.36e-08	0.60	NA	Nov
		23:79455466	rs191015078	Т	C	1.05	1.03-1.07	4.85e-08	0.12	NA	Nov
Xq21.1	ITM2A	23.73433400	13131013078								

Xq23	CHRDL1	23:110640115	rs7884700	G	Α	1.04	1.03-1.05	9.64e-12	0.40	NA	Novel
Candidate ge	ne, a gene at	a new locus the bi	ological function	on of whi	ch is likely	to explai	n the LDH as	ssociation; CH	R: POS,	chromos	ome and
position (gen	ome build hg	38); rsid; SNP mai	rkers identificat	tion numl	ber; EA, eff	fect allele	; OA, other a	allele; OR, odd	ls ratio; 9	5% Cl, o	dds ratio
95% confide	ence interval;	EAF, effect allel	le frequency; I	Fin Enric	., enrichm	ent in Fi	nns (calcula	ted FIN AF/N	FEE AF	in the	Genome
Aggregation	Database [gn	omAD], FIN AF is	s the allele frequ	uency in l	Finns and N	FEE AF	is the allele f	requency in E	uropeans	(does no	t include
Finns or Esto	onians)); NA,	not available; REI	F, reference to I	literature	reporting a	n LDH a	ssociation in	the vicinity (±	: 1MB) o	f the lead	l variant,
if lead varian	it was novel i	t was also bolded.	*, for this varia	ant p-valı	ue and OR	have been	n adjusted for	r the effect of	original l	ead varia	ant at the
locus through	n conditional	analysis, the origin	nal lead variant	is alway	s above the	e conditio	nal variant ir	n the table.	-		
_				-							

Table S3 Genomic locations and potential biological role of the association signals. Candidate gene, a gene at a novel locus which biological function is likely to explain the lumbar disc herniation association; rsid, SNP markers identification number, OR, odds ratio, Variant type, genomic location of associated variant, Het pval, p-value for heterogeneity. For the loci that had not been reported in association with LDH in prior studies, we determined a potential candidate gene with a relevant biological function with the help of literature and databases (Genbank⁸, UniProt⁹, GTEX-Portal¹⁰). Even though potential genes have been systematically identified, there is little clarity regarding their causality, so further studies are needed.

Candidate gene	rsid	OR	Variant type	Het Pval	A possible function related to LDH pathogenesis
ALPL	rs150211890	1.07	intron	0.178	 ALPL boosts inorganic phosphate local rates, promotes mineralization, and lowers extracellular pyrophosphate concentration, which acts as a mineral formation inhibitor¹¹. Greater ALPL activity has been associated with IVD degeneration and calcification¹², as according to findings from earlier studies that found that IVD's with degenerative changes had higher levels of ALPL activity and calcification potential than control IVD's without degenerative changes¹³.
COL11A1	rs3056624	1.05	intron	0.263	
NGF	rs4644491	0.96	intron	0.215	<i>NGF</i> promotes collateral sprouting of the peripheral sensory nerves and axonal regeneration in the central nervous system. The IVD may experience nociceptive nerve ingrowth as a result of <i>NGF</i> production ^{14,15} .
COLGALT2	rs3010043	0.95	intron	0.612	-
PTPRC	rs28599571	1.04	intergenic	0.738	-
TGFB2	rs779040	0.97	intergenic	0.0225	This gene encodes a secreted ligand of the TGF- β superfamily of proteins. Ligands of this family bind various TGF- β receptors leading to recruitment and activation of <i>SMAD</i> family transcription factors that regulate gene expression ¹⁶ . TGF- β signaling is necessary for the development and growth of IVD, and can play a protective role in the restoration of IVD tissues by stimulating matrix synthesis, inhibiting matrix catabolism, inflammatory response and cell loss. However, excessive activation of TGF- β signaling is detrimental to the IVD, and inhibition of the aberrant TGF- β signaling can delay IVD degeneration ¹⁷ .
HHIPL2	rs35455442	0.96	intron	0.539	Iron excess can limit <i>HHIPL2</i> gene expression and decrease osteoblastic activity in human MG-63 cells ¹⁸ . <i>HHIPL2</i> is an inhibitor of the hedgehog signalling pathway, this pathway has previously been linked together with <i>GL11</i> to hypertrophy of the ligamentum flavum ¹⁹ . <i>HHIPL2</i> has also been found to be involved in extracellular matrix synthesis in IVDs ²⁰ .
GFPT1	rs12997836	1.04	intergenic	0.298	-
TGFA	rs3849386	0.95	intron	0.402	-
GPR1	rs78826721	0.94	intron	0.171	 GPR1 is a chemerin receptor that may mediate chemerin activities in inflammation²¹. Chemerin can induce many inflammatory cytokines, activate NF-kB signaling pathway²². GPR1 deficiency has also been found to reduce bone mass and BMD (osteopenia) in mouse studies^{23,24}.
HYAL2	rs41308273	0.92	intron	0.498	<i>HYAL2</i> codes for hyaluronidase that degrades hyaluronan. Degradation of hualyronan is not a benign event, as it reduces the size of the aggrecan aggregates and can promote their diffusion ^{25,26} .
PDZRN3	rs11914834	0.97	regulatory region	0.984	Possibly a negative regulator of Wnt/β-catenin signaling ²⁷ . Activation of the Wnt/β-catenin pathway has been found to be associated with endplate degeneration, increased IVD cell senescence, and extracellular matrix degradation ^{28,29} .
ADCY5	rs1965290	0.97	intron	0.0391	ADCY5 has a role in osteogenic differentiation and may be associated with vertebral fractures and BMD ^{30,31} .
NCK1	rs13321721	1.04	intron	0.822	<i>NCK1</i> inhibits the ability of <i>DCC</i> to induce neurite outgrowth, thus playing role in axonal guidance ³² .
SHOX2	rs5853827	0.96	intron	0.492	SHOX2 prevents the onset of early chondrocyte differentiation and controls the transition of chondrocytes from mature to hypertrophic by regulating the expression of transcription factors, such as <i>SOX6</i> , <i>SOX9</i> , and <i>RUNX2</i> . Inhibition of <i>SHOX2</i> decreases expression of aggrecan and collagen II in nucleus pulposus and thus can lead to degenerative changes in IVDs ³³ .
FGFR3	rs35313041	1.05	intron	0.0086	-
IBSP	rs10019020	1.04	intergenic	0.439	Dysregulation of <i>IBSP</i> may induce de-adhesion, characterized by disruption of extracellular matrix organization and focal adhesions, which can accelerate IVD degeneration ³⁴ .

HDAC3	rs5871786	0.97	intron	0.729	<i>HDAC3</i> is a highly pleiotropic epigenetic regulator. TGF-β signaling pathway is regulated by <i>HDACs</i> and acetylation, and a number of TGF-β-induced genes involved in the remodelling and regulation of the extracellular matrix are regulated by <i>HDAC</i> inhibition. HDAC3 plays a central role in these reactions. ^{35,36} . <i>HDAC3</i> can also mediate HIF-1α stability in IVDs ³⁷ . In addition, it has been found to interact with <i>RUNX2</i> to repress the osteocalcin promoter and thus regulate osteoblast differentiation ³⁸ .
FGF18	rs4302608	0.97	downstream	0.897	<i>FGF18</i> is a well-characterised anabolic growth factor involved in cartilage homeostasis ³⁹ . Its function in the IVD is not fully understood, but it has been found that <i>FGF18</i> could delay the degeneration of the IVD by inhibiting the apoptosis of NPs and the expression of matrix-degrading enzymes ⁴⁰ .
TRIM38	rs9393692	0.97	upstream	0.831	TRIM38 protects chondrocytes from IL-1β-induced apoptosis and degeneration via negatively modulating nuclear factor (NF)-κB signalling ⁴¹ . IL-1β is also a key risk factor for intervertebral disc degeneration ⁴² .
HLA	rs1611653	1.04	intron	0.224	-
HLA	rs2844608	0.96	intron	0.0185	-
HLA	rs9273873	1.06	noncoding transcript exon variant	0.491	-
ILRUN	rs2744939	1.05	upstream	0.0231	-
CDC5L	rs6929734	1.04	regulatory region	0.0318	-
TBX18	rs2224214	1.04	intergenic	0.664	<i>TBX18</i> acts as a transcriptional repressor involved in the developmental processes of the vertebral column. In studies conducted in mice, the <i>TBX18</i> null mutation has been found to affect perinatal lethality with shortened axial skeletons; effects included kinks in the thoracic vertebral column, malformed, flattened discs, and vertebral bodies, expanded pedicles, and transverse processes ⁴³ .
TWIST1	rs34895285	0.96	intron	0.202	-
IGFBP3	rs788747	1.05	upstream gene variant	0.578	-
ELN	rs10227463	0.97	intron	0.768	Elastin is important structural component of ECM and present in connective tissues. In IVD's elastin may function to restore lamellar structure under radial loads that potentially cause delamination. The observed increases in elastin with degeneration may reflect both newly synthesized elastic fibers and/or degraded elastin peptides trapped in matrix as part of the degenerative cascade ⁴⁴ .
ZC3HC1	rs11556924	1.04	missense	0.286	ZC3HC1 encodes an F-box-containing protein that is a component of an SCF-type E3 ubiquitin ligase complex that regulates the onset of cell division. The G2/M transition in the cell cycle requires the interaction of the proteins cyclin B1 and cyclin-dependent kinase 1. The activated ubiquitin ligase complex targets the protein cyclin B1 for degradation, preventing this transition to mitosis ⁴⁵ .
STMP1	rs2551776	0.97	intron	0.318	STMP1 potentially has a role in bone remodeling, it has previously been associated with Paget's disease of bone. It also potentially plays a role in regulating the NLRP3 inflammasome ^{46,47} .
VEST1	rs2164198	1.06	intron	0.0367	-
GSDMC	rs7814941	0.91	splice region variant	0.00552	-
TUSC1	rs7019841	0.96	intergenic	0.696	The connection between <i>TUSC1</i> and LDH is not yet known, and it has become known mainly as a potential tumor suppressor in human cancers. It has been found to suppress cell proliferation and cell cycle progression ⁴⁸ . It is possible that it also affects intervertebral disc degeneration by regulating these pathways, but there is no research evidence for this yet.
PHF2	rs58723578	1.07	intergenic	0.034	-
LPAR1	rs10980637	1.05	intron	0.395	The increased expression of and <i>LPAR1</i> has been associated with the fibrosis and hypertrophy of the ligamentum flavum ⁴⁹ . <i>LPAR1</i> deletion can also cause neurodevelopmental disorders such as demyelination diseases and neuropathic pain ⁵⁰ .
DNM1	rs9644952	1.04	intron	0.807	<i>DNM1</i> plays a central role in the transmission of nociceptive messages within the nociceptive circuits in the dorsal horn of the spinal cord, where <i>DNM1</i> -mediated endocytosis of synaptic vesicles enables sustained neurotransmission ⁵¹ .

AKR1C1	rs536435747	0.94	3 prime UTR	0.513	<i>AKR1C1</i> is possibly involved in the regulation of inflammatory factors; it is possibly involved in the regulation of <i>IL-1</i> , <i>TNF</i> , and <i>TGFB1</i> -related pathways ^{52,53} .
MKX	rs2808290	1.05	intergenic	0.211	-
CHST3	rs4284332	1.07	intron	0.741	-
HTRA1	rs2672590	0.95	intron	0.521	<i>HTRA1</i> is serine protease that antagonizes TGF-β signaling and has a role in regulation of bone formation ⁵⁴ . It may also degrade proteoglycans such as aggrecan, decorin, and fibromodulin, and thus contribute to the cartilage degradation ⁵⁵ .
ARNTL	rs12295734	1.04	intergenic	0.195	-
SOX6	rs9787942	0.95	intron	0.507	-
MYEOV	rs144549742	0.91	intergenic	0.469	MYEOV has been observed to interact with SOX9 and potentially enhance its transactivity ⁵⁶ .
SIK2	rs77651758	0.92	intron	0.67	Parathyroid hormone can modulate <i>SIK2</i> to promote bone formation and resorption, by inhibiting it's activity ⁵⁷ .
SOX5	rs11831278	1.09	intron	0.805	-
GLII	rs871871	0.96	intron	0.635	The growth plate mediates bone growth where <i>SOX9</i> and <i>GL1</i> factors control chondrocyte proliferation, differentiation and entry into hypertrophy. <i>GL11</i> functions as an activator which is highly expressed in proliferating chondrocytes and perichondrium adjacent to the prehypertrophic and hypertrophic zones ⁵⁸ .
KMT5A	rs1626703	1.04	splice region	0.578	<i>KMT5A</i> inhibits oxidative stress induced autophagy and glial scar formation in astrocytes via the <i>KEAP1-NRF2-ARE</i> signaling pathway ⁵⁹ . <i>KMT5A</i> also has a role in TGF-β response regulation where it is important for turning of activation of <i>SMAD2</i> ⁶⁰ .
DIAPH3	rs340208	1.04	intron	0.445	<i>DIAPH3</i> is involved in cell migration, axon guidance and neuritogenesis ⁶¹ . It has been found to affect spine length and density of neurons ⁶² .
PAX9	rs11848465	0.95	intron	0.999	-
SERPINA1	rs28929474	0.86	missense	0.762	-
SMAD3	rs4776880	0.95	intron	0.0729	-
CA10	rs59704663	1.48	upstream gene variant	0.156	 CA10 blocks the binding of heparan sulfate to neurexin⁶³, which possibly raises neurexin surface levels⁶⁴. Neurexins are pre-synaptic cell adhesion molecules that play a role in connecting neurons at synapses. Heparan sulfate has been found to potentially expand the interactome of neurexins, and they also play a role in fine-tuning synaptic transmission⁶⁵. CA10 is expressed especially in the central nervous system, and it has been associated with chronic pain in previous studies^{64,66}.
NPC1	rs1788760	0.97	intron	0.89	<i>NPC1</i> has a role in cholesterol trafficking, which has a role in mTOR regulation. Changes in this pathway have been found to lead to increased angiogenesis ^{67,68} , which in turn can lead to IVD innervation ⁶⁹ .
SETBP1	rs8088824	0.95	intergenic	0.185	SETBP1 may have a regulatory role in Wnt/β-catenin pathway in neural cells ⁷⁰ , SETBP1 has also been associated with adolescent idiopathic scoliosis ⁷¹ .
DCC	rs17487130	1.06	intron	0.862	In diseased IVD's <i>DCC</i> might play an important role in neurovascular ingrowth/axonal guidance ^{32,72} .
TECR	rs11671111	0.96	intron	0.769	<i>TECR</i> is involved in both the production of very long-chain fatty acids for sphingolipid synthesis and the degradation of the sphingosine moiety in sphingolipids through the sphingosine 1-phosphate metabolic pathway ⁷³ . It has been proposed that <i>TECR</i> , as a synaptic glycoprotein, may have a specialized, as yet unknown, function in the nervous system that affects communication between neurons or synaptic plasticity ⁷⁴ .
FOXA3	rs10409222	1.05	downstream	0.394	
LENG8	rs2287822	1.04	intron	0.394	LENG8 regulates inflammation cascades and can interact with many proteins involved in rheumatoid arthritis, like interleukin-18 ⁷⁵ . Interleukin-18 has also been implicated in the pathogenesis of IVD degeneration ⁷⁶ .
SLC5A3	rs3827180	1.04	intron	0.101	 SLC5A3 cotransports Na+ and myo-inositol, a critical osmotic regulator for cells⁷⁷. Changes in the concentration of myo-inositol have been observed in connection with IVD degeneration. SLC5A3 may contribute to the imbalance of disc osmotic activity in degenerative diseases⁷⁸. SLC5A3 is also attributed a specific role regarding the p53-mediated G1 checkpoint activation and/or the p38 MAPK-dependent G2/M arrest; these cascades are therefore triggered by high osmolality⁷⁹.
PCYT1B	rs5944665	0.97	intron	0.925	<i>PCYT1B</i> could have a role in axon regeneration and branching. It is involved in the regulation of phosphatidylcholine

					biosynthesis, that has been proposed to be key regulatory mechanism for axon regeneration ⁸⁰⁻⁸² .			
ITM2A	rs191015078	1.05	intergenic 0.536 <i>ITM2A</i> may inhibit the initiation of chondrogenesi elevated expression of <i>ITM2A</i> can therefore be linked chondrogenic differentiation potential ^{83,84} . intergenic 0.176					
Empty	rs111872003	0.92	intergenic	0.176	-			
CHRDL1	rs7884700	1.04	downstream	0.438	CHRDL1 can possibly influence BMP-4-SMAD1/5/9 pathways activity and through that it might have an important role in hBMSCs osteogenic differentiation and bone remodeling ⁸⁵ .			

Table S4. Effect differences between meta-analysis and SURG GWAS. Lead variants are variants that were observed in the meta-analysis. Beta estimates and their standard errors were collected from the GWAS result files of meta-analysis and SURG GWAS. Values of $P_{diff} < 0.05$ were considered statistically significant.

Lead variant	Candidate Gene	Beta meta	Beta SURG	Se meta	Se SURG	\mathbf{P}_{diff}
1:21559185:T:G	ALPL	0.069	0.077	0.012	0.031	0.83
1:102882172:GTATT:G	COLIIAI	0.048	0.099	0.006	0.017	0.043
1:115310363:G:A	NGF	-0.036	-0.051	0.006	0.017	0.39
1:183973041:A:G	COLGALT2	-0.055	-0.036	0.007	0.021	0.40
1:198768851:G:T	PTPRC	0.041	0.060	0.006	0.017	0.30
1:218924545:G:C	TGFB2	-0.035	-0.057	0.006	0.017	0.23
1:222541797:C:A	HHIPL2	-0.046	-0.058	0.006	0.017	0.50
2:69304791:T:C	GFPT1	0.043	0.089	0.006	0.017	0.011
2:70496764:C:T	TGFA	-0.049	-0.116	0.006	0.018	0.0004
2:206137590:A:G	GPR1	-0.065	-0.080	0.011	0.026	0.59
3:50380254:T:A	HYAL2	-0.086	-0.068	0.013	0.032	0.61
3:73200973:C:T	PDZRN3	-0.033	-0.043	0.006	0.017	0.56
3:123568959:T:C	ADCY5	-0.034	-0.008	0.006	0.017	0.15
3:136490708:A:G	NCK1	0.041	0.057	0.007	0.020	0.45
3:158478549:A:ATCC	SHOX2	-0.036	-0.005	0.006	0.018	0.11
4:1694376:C:T	FGFR3	0.053	0.072	0.006	0.017	0.30
4:87779677:G:A	IBSP	0.035	0.064	0.006	0.017	0.10
5:141735121:GT:G	HDAC3	-0.033	-0.046	0.006	0.017	0.50
5:171413500:A:G	FGF18	-0.034	-0.029	0.006	0.017	0.80
6:26276422:A:G	TRIM38	-0.034	-0.052	0.006	0.018	0.34
6:29873925:G:C	HLA	0.043	0.055	0.007	0.017	0.50
6:31279637:C:T	HLA	-0.045	-0.075	0.006	0.017	0.10
6:32661873:T:C	HLA	0.059	0.073	0.010	0.024	0.59
6:34580429:T:A	ILRUN	0.050	0.068	0.008	0.021	0.41
6:44478351:G:T	CDC5L	0.036	0.064	0.006	0.017	0.12
6:84938145:C:T	TBX18	0.044	0.073	0.006	0.017	0.12
7:19442778:TA:T	TWIST1	-0.043	-0.081	0.007	0.017	0.041
7:45987132:T:G	IGFBP3	0.048	0.123	0.006	0.017	0.00003
7:73714641:C:T	ELN	-0.035	-0.050	0.006	0.017	0.41
7:130023656:C:T	ZC3HC1	0.035	0.065	0.006	0.018	0.10
7:135418700:C:T	STMP1	-0.035	-0.033	0.006	0.018	0.92
8:68665207:A:G	VESTI	0.055	0.078	0.008	0.026	0.40
8:129706613:A:G	GSDMC	-0.093	-0.170	0.008	0.023	0.001
9:25398495:A:G	TUSCI	-0.036	-0.018	0.006	0.017	0.31
9:93911476:C:T	PHF2	0.067	0.105	0.010	0.026	0.18
9:110930238:C:T	LPARI	0.046	0.047	0.008	0.022	0.97
9:128236873:C:A	DNM1	0.040	0.060	0.007	0.020	0.34
10:4989436:A:AC	AKRICI	-0.058	-0.084	0.009	0.025	0.33
10:27611953:C:T	MKX	0.048	0.067	0.006	0.017	0.31
10:71974194:T:C	CHST3	0.071	0.122	0.006	0.017	0.005
10:122475088:A:C	HTRA1	-0.046	-0.051	0.007	0.021	0.84
11:13270734:G:C	ARNTL	0.037	0.038	0.007	0.018	0.98
11:15673785:T:C	SOX6	-0.055	-0.082	0.007	0.018	0.16
11:69208032:T:A	MYEOV	-0.094	-0.089		0.035	0.89
11:111459420:C:T	SIK2	-0.082	-0.090	0.013	0.032	0.82
12:23807795:C:T	SOX5	0.085	0.134	0.008	0.022	0.041
12:57825898:G:A	GLI1 KMT54	-0.038	-0.092	0.006	0.017	0.004
12:123226288:A:C	KMT5A	0.042	0.033	0.007	0.020	0.65
13:59904471:A:T	DIAPH3	0.037	0.036	0.007	0.019	0.99
14:37002513:C:T 14:94378610:C:T	PAX9 SERPINA1	-0.052 -0.153	-0.089	0.007	0.020	0.07
			-0.239			0.27
15:67072653:G:A 17:52164544:G:A	SMAD3 CA10	-0.056 0.389	-0.057 0.073	0.006	0.017 0.339	0.99
18:23557478:A:G	NPC1	-0.035	-0.028	0.008	0.339	0.36
18:25557478:A:G	SETBP1	-0.053	-0.028	0.000	0.018	0.73
18:53189047:C:T	DCC	0.054	0.055	0.007	0.021	0.39
19:14533044:C:T	TECR	-0.034	-0.058	0.007	0.017	0.31
19:45876389:C:T	FOXA3	0.046	0.080	0.007	0.018	0.31
19:54471384:G:A	LENG8	0.040	0.080	0.008	0.024	0.73
21:33662166:G:A	SLC5A3	0.037	0.030	0.006	0.018	0.73
23:24653216:G:A	PCYT1B	-0.028	-0.005	0.007	0.018	0.07
23:79455466:C:T	ITM2A	0.028	0.079	0.005	0.014	0.13
4.7.777.777.77700.0.1	1111142/1	0.031		-		
23:82687578:T:A	Empty	-0.080	-0.089	0.015	0.042	0.85

Table S5 Genome-wide significant ($p < 5x10^{-8}$) lead variants were associated with LDH related surgical operation. There are 7347 operated LDH cases and 270 964 controls in the analysis, consisting of data from FinnGen.

CHR:POS	Candidate	rsid	EA	OA	OR 95% CI	EAF	pval	pval	Ref.
1:102875067	COL11A1	rs1318756	С	Т	1.10 (1.07-1.13)	0.53	2.41e-08	2.00e-15	Novel
2:70465425	TGFA	rs3732247	Т	С	0.88 (0.85-0.92)	0.34	2.69e-11	1.35e-11	Novel
7:19508326	TWIST1	rs6944632	G	Α	0.91 (0.88-0.94)	0.61	2.05e-09	1.74e-07	Novel
7:45988978	IGFBP3	rs1723939	Т	С	1.13 (1.10-1.16)	0.49	1.15e-13	2.07e-15	4,6
8:129707472	GSDMC	rs7816131	Т	Α	0.85 (0.81-0.89)	0.18	9.61e-13	3.52e-32	4,6
10:71977366	CHST3	rs4148926	С	G	1.13 (1.10-1.17)	0.55	1.57e-12	1.73e-20	4,6
12:23823019	SOX5	rs11834104	Т	G	1.14 (1.10-1.18)	0.16	5.82-09	8.81e-25	Novel
17:71514369	SOX9	rs7225015	С	Α	0.89 (0.86-0.93)	0.31	8.67e-10	2.19e-05	Novel

CHR: POS, chromosome and position (genome build hg38); Candidate gene, a gene at a new locus whose biological function is likely to explain the LDH related surgical operation association; rsid; SNP markers identification number; EA, effect allele; OA, other allele; OR 95% CI, odds ratio and it's 95% confidence interval; EAF, effect allele frequency; pval, p-value, pval meta, variants p-value in LDH meta-analysis; REF, reference article in which a LDH related surgical operation association was observed +/- 1 Mb in the vicinity of the lead variant.

Table S6 Cumulative patient morbidity and cumulative surgeries observed for every LDH associated variant. The analysis was done by extracting the genotypes corresponding to the variants associated with LDH in FinnGen's Sandbox environment and combining them with the health register data. Cumulative morbidities are specified with same ICD-codes as in Table S1. The prevalence of LDH cases was 12.2% and prevalence of surgical patients was 2.6%.

was 2.6%.								
Candidate gene	rsid	CHR:POS	EA	OA	Cumulative Morbidity EA	Cumulative Morbidity OA	Cumulative Surgeries EA	Cumulative Surgeries OA
ALPL	rs150211890	1:21559185	G	Т	0.147	0.121	0.028	0.024
COL11A1	rs3056624	1:102882172	G	GTATT	0.126	0.118	0.026	0.024
NGF	rs4644491	1:115310363	Α	G	0.119	0.122	0.024	0.026
COLGALT2	rs3010043	1:183973041	G	A	0.118	0.125	0.024	0.026
PTPRC	rs28599571	1:198768851	Т	G	0.124	0.120	0.026	0.024
TGFB2	rs779040	1:218924545	С	G	0.118	0.122	0.024	0.026
HHIPL2	rs35455442	1:222541797	Α	C	0.116	0.122	0.023	0.026
GFPT1	rs12997836	2:69304791	С	Т	0.126	0.120	0.026	0.024
TGFA	rs3849386	2:70496764	Т	C	0.114	0.122	0.021	0.026
GPR1	rs78826721	2:206137590	G	A	0.107	0.121	0.020	0.026
HYAL2	rs41308273	3:50380254	Α	Т	0.111	0.121	0.023	0.026
PDZRN3	rs11914834	3:73200973	Т	C	0.116	0.122	0.023	0.026
ADCY5	rs1965290	3:123568959	С	Т	0.122	0.119	0.026	0.024
NCK1	rs13321721	3:136490708	G	A	0.125	0.121	0.026	0.024
SHOX2	rs5853827	3:158478549	ATCC	A	0.116	0.121	0.025	0.024
FGFR3	rs35313041	4:1694376	Т	С	0.125	0.119	0.026	0.024
IBSP	rs10019020	4:87779677	Α	G	0.126	0.120	0.026	0.024
HDAC3	rs5871786	5:141735121	G	GT	0.117	0.122	0.023	0.026
FGF18	rs4302608	5:171413500	G	A	0.118	0.122	0.024	0.026
TRIM38	rs9393692	6:26276422	G	A	0.120	0.121	0.024	0.026
HLA	rs1611653	6:29873925	С	G	0.124	0.120	0.025	0.024
HLA	rs2844608	6:31279637	Т	C	0.116	0.122	0.023	0.026
HLA	rs9273873	6:32661873	С	Т	0.131	0.121	0.026	0.024
ILRUN	rs2744939	6:34580429	A	Т	0.132	0.120	0.029	0.024
CDC5L	rs6929734	6:44478351	Т	G	0.122	0.120	0.026	0.024
TBX18	rs2224214	6:84938145	Т	C	0.127	0.122	0.026	0.024
TWIST1	rs34895285	7:19442778	Т	TA	0.116	0.122	0.022	0.026
IGFBP3	rs788747	7:45987132	G	Т	0.126	0.120	0.028	0.023
ELN	rs10227463	7:73714641	Т	C	0.116	0.122	0.023	0.026
ZC3HC1	rs11556924	7:130023656	T	C	0.126	0.120	0.026	0.024
STMP1	rs2551776	7:135418700	Т	C	0.120	0.122	0.024	0.026
VEST1	rs2164198	8:68665207	G	Α	0.126	0.121	0.023	0.026
GSDMC	rs7814941	8:129706613	G	A	0.101	0.122	0.017	0.024
TUSC1	rs7019841	9:25398495	G	A	0.118	0.122	0.024	0.026
PHF2	rs58723578	9:93911476	T	C	0.147	0.121	0.029	0.024
LPAR1	rs10980637	9:110930238	T	C	0.133	0.120	0.026	0.024
DNM1	rs9644952	9:128236873	A	C	0.127	0.121	0.027	0.024
AKR1C1	rs536435747	10:4989436	AC	A	0.113	0.121	0.019	0.026
MKX CHST3	rs2808290 rs4284332	10:27611953 10:71974194	T C	C T	0.123 0.127	0.120 0.118	0.025	0.024 0.024
HTRA1	rs2672590	10:122475088	C	A	0.127	0.121	0.027	0.024
ARNTL	rs12295734	11:13270734	C	G	0.123	0.121	0.024	0.020
SOX6	rs9787942	11:15673785	C	T	0.116	0.125	0.023	0.024
MYEOV	rs144549742	11:69208032	A	T	0.095	0.123	0.025	0.020
SIK2	rs77651758	11:111459420	T	C	0.095	0.121	0.016	0.024
SIK2 SOX5	rs11831278	12:23807795	T	C	0.134	0.121	0.020	0.024
GLI1	rs871871	12:57825898	A	G	0.118	0.120	0.023	0.024
KMT5A	rs1626703	12:123226288	C	A	0.122	0.119	0.025	0.020
DIAPH3	rs340208	13:59904471	T	A	0.122	0.119	0.025	0.024
PAX9	rs11848465	14:37002513	T	C	0.117	0.121	0.025	0.024
SERPINA1	rs28929474	14:94378610	T	C	0.067	0.121	0.023	0.020
SMAD3	rs4776880	15:67072653	A	G	0.116	0.122	0.024	0.026
CA10	rs59704663	17:52164544	A	G	-	0.121	-	0.024
NPC1	rs1788760	18:23557478	G	A	0.119	0.122	0.024	0.026
SETBP1	rs8088824	18:44571296	T	C	0.119	0.124	0.024	0.026
DCC	rs17487130	18:53189047	T	C	0.127	0.120	0.026	0.024
TECR	rs11671111	19:14533044	Т	С	0.117	0.121	0.023	0.026
FOXA3	rs10409222	19:45876389	T	C	0.128	0.121	0.026	0.024
LENG8	rs2287822	19:54471384	A	G	0.128	0.120	0.027	0.024
SLC5A3	rs3827180	21:33662166	A	G	0.127	0.120	0.025	0.024
PCYT1B	rs5944665	23:24653216	A	G	-	-	-	-
ITM2A	rs191015078	23:79455466	T	C	-	-	-	-
Empty	rs111872003	23:82687578	A	T	-	-	-	-

Table S7 Genetic correlations for all 438 phenotypes. Genetic correlations were calculated using LDSC-software⁸⁶. All traits were extracted from the GWAS database provided by the MRC Integrative Epidemiology Unit (IEU). RG, genetic correlation coefficient value; pFDR, false discovery rate-corrected p-value.

Trait Concentration of small VLDL particles	RG 0.1533	se 0.0595	р 0.010	pFDR 0.017
Knee pain for 3+ months	0.4914	0.0831	3.38e-09	1.00e-0
Time spent driving	0.2175	0.0336	1.00e-10	3.48e-10
Smoking status: Current	0.3477	0.0283	1.21e-34	1.77e-3
Cholesterol in small VLDL	0.0852	0.036	0.018	0.029
Vascular/heart problems diagnosed by doctor: Stroke	0.3332	0.0742	7.08e-06	1.67e-0
Vitamin and mineral supplements: Multivitamins +/- minerals	0.0673	0.0325	0.039	0.056
Arm fat mass (right)	0.2853	0.0185	8.24e-54	3.63e-52
Forced expiratory volume in 1-second (FEV1)	-0.0303	0.0231	0.190	0.237
Mouth/teeth dental problems: Toothache	0.211	0.0575	2,00e-04	0.0004
Ratio of docosahexaenoic acid to total fatty acids	-0.2177	0.0301	4.79e-13	1.87e-1
Phospholipids to total lipids ratio in small HDL	0.044	0.0375	0.240	0.296
Vitamin and mineral supplements: None of the above	-0.0975	0.0316	0.002	0.004
HDL cholesterol	-0.196	0.0269	3.27e-13	1.34e-1
Potassium in urine	0.0519	0.0277	0.061	0.086
Total lipids in very large VLDL	0.1825	0.0292	4.28e-10	1.38e-0
Pulse wave peak to peak time	-0.2639	0.0432	9.88e-10	3.09e-0
Amyotrophic lateral sclerosis	0.0347	0.0595	0.561	0.604
LDL cholesterol	-0.0631	0.0385	0.102	0.137
Types of transport used (excluding work): Cycle	-0.2673	0.0309	5.09e-18	2.80e-1
Caudate volume	-0.0089	0.0537	0.868	0.882
Type 2 diabetes	0.2798	0.0272	7.37e-25	6.37e-2
Exposure to tobacco smoke at home	0.2887	0.0393	2.02e-13	8.40e-1
Age at menopause (last menstrual period)	-0.1986	0.0273	3.51e-13	1.42e-1
Intelligence	-0.2842	0.0225	1.82e-36	2.86e-3
Alcohol intake versus 10 years previously	0.2551	0.0303	3.98e-17	2.12e-1
Triglycerides in HDL	0.1666	0.0359	3.56e-06	8.44e-0
Frequency of depressed mood in last 2 weeks	0.4376	0.0306	2.87e-46	7.04e-4
Total cholesterol	0.0404	0.0351	0.250	0.304
Putamen volume	0.0217	0.0536	0.686	0.717
Phospholipids in small HDL	0.1038	0.0324	0.001	0.002
Ratio of polyunsaturated fatty acids to monounsaturated fatty acids	-0.2552	0.0292	2.23e-18	1.24e-1
Mouth/teeth dental problems: Dentures	0.2876	0.0257	3.63e-29	3.72e-2
Glycoprotein acetyls	0.2151	0.032	1.80e-11	6.56e-1
Neuroticism score	0.2814	0.0274	1.01e-24	8.56e-2
ICD10: H25 Senile cataract	0.1413	0.0939	0.132	0.173
Phospholipids in medium VLDL	0.1862	0.0647	0.004	0.007
Ever had stillbirth, spontaneous miscarriage or termination	0.2722	0.0465	4.77e-09	1.37e-0
Concentration of very large HDL particles	-0.231	0.0305	3.53e-14	1.57e-1
Illness, injury, bereavement, stress in last 2 years: Serious illness, injury or	0.0995	0.0454	0.028	0.043
assault of a close relative				
Medication for pain relief, constipation, heartburn: Paracetamol	0.4428	0.0261	1.03e-64	6.48e-6
Hearing difficulty/problems with background noise	0.1528	0.0249	8.80e-10	2.78e-0
Mineral and other dietary supplements: Glucosamine	0.1585	0.0347	5.01e-06	1.18e-0
Triglycerides to total lipids ratio in very small VLDL	0.2221	0.0357	5.25e-10	1.68e-0
Nervous feelings	0.0636	0.0276	0.021	0.033
Concentration of IDL particles	0.0974	0.087	0.263	0.317
Ever unenthusiastic/disinterested for a whole week	0.3233	0.0402	8.46e-16	4.19e-1
ICD10: M24 Other specific joint derangements	0.2972	0.1113	0.008	0.013
Bring up phlegm/sputum/mucus on most days	0.2986	0.0634	2.46e-06	5.94e-0
Fractured bone site(s): Ankle	0.2058	0.0658	0.002	0.003
Arm fat percentage (right)	0.2371	0.0196	1.26e-33	1.73e-3
Alcohol intake frequency.	0.252	0.0217	4.51e-31	5.10e-3
Femoral neck bone mineral density	0.0675	0.0414	0.103	0.138
Coronary artery disease	0.3524	0.0275	1.22e-37	2.08e-3
Uric acid	0.0297	0.0285	0.297	0.349
Fotal cholesterol in HDL	-0.1639	0.0787	0.037	0.055
Finnitus: No, never	-0.2225	0.0428	1.96e-07	5.15e-0
Friglycerides in very small VLDL	0.15	0.0645	0.020	0.032
Fotal lipids in medium HDL	-0.0803	0.0318	0.012	0.019
Serum total cholesterol	0.0381	0.0841	0.650	0.688
ICD10: N81 Female genital prolapse	0.2338	0.0674	5,00e-04	0.001
Exposure to tobacco smoke outside home	0.2756	0.0309	5.41e-19	3.18e-1
Qualifications: CSEs or equivalent	0.3432	0.038	1.57e-19	9.61e-1
			0.172	0.218
	0.0502	0.0367	0.172	0.210
Concentration of very small VLDL particles Age at menarche	0.0502	0.0367	1.26e-05	2.85e-0

Time spent watching television (TV)	0.3004	0.0221	3.34e-42	6.69e-41
Used an inhaler for chest within last hour	0.1389	0.0759	0.067	0.093
ICD10: Z80 Family history of malignant neoplasm	-0.0155	0.151	0.918	0.927
Depressive symptoms	0.4246	0.0399	1.95e-26	1.72e-25
Current tobacco smoking	0.3303	0.026	5.87e-37	9.59e-36
Medication for cholesterol, blood pressure, diabetes, or take exogenous	0.1103	0.0747	0.140	0.182
hormones: Insulin Childhood intelligence	-0.2505	0.0591	2.24e-05	4.97e-05
Phospholipids in very small VLDL	0.1015	0.0391	0.193	0.240
VLDL cholesterol	0.1013	0.0779	0.195	0.240
College completion	-0.421	0.0351	3.38e-33	4.26e-32
Phospholipids to total lipids ratio in large HDL	0.2666	0.0303	1.30e-18	7.53e-18
Concentration of chylomicrons and extremely large VLDL particles	0.1937	0.0308	3.02e-10	9.97e-10
Total lipids in small VLDL	0.1292	0.0294	1.08e-05	2.50e-05
ICD10: N20 Calculus of kidney and ureter	0.1657	0.0616	0.007	0.012
Cerebral aneurysm	0.175	0.0611	0.004	0.007
Lung cancer	0.0073	0.1042	0.944	0.946
ICD10: D25 Leiomyoma of uterus	0.1256	0.0546	0.021	0.034
Type of tobacco previously smoked: Cigars or pipes	-0.0848	0.0939	0.367	0.420
Number of children fathered	0.331	0.0342	3.78e-22	2.73e-21
ICD10: I20 Angina pectoris	0.4789	0.0739	9.14e-11	3.20e-10
Average weekly intake of other alcoholic drinks	0.4461	0.4033	0.269	0.321
Major depressive disorder (ICD-10 coded)	0.4871	0.0487	1.66e-23	1.33e-22
Total lipids in small HDL Diagnoses - main ICD10: I10 Essential (primary) hypertension	0.102	0.0318	0.001 0.026	0.002
Triglycerides to total lipids ratio in small VLDL	0.2647	0.119	0.026 1.21e-05	0.040 2.77e-05
I rigiveerides to total lipids ratio in small VLDL ICD10: M67 Other disorders of synovium and tendon	0.1891	0.0432	0.011	0.018
Neuroticism	0.4785	0.1888	9.15e-22	6.40e-21
Concentration of small HDL particles	0.2085	0.1074	0.045	0.400-21
Total phospholipids in lipoprotein particles	-0.0381	0.0293	0.194	0.240
Medication for pain relief, constipation, heartburn: Aspirin	0.3256	0.0326	1.63e-23	1.33e-22
Cholesterol in very small VLDL	-0.0563	0.0364	0.122	0.161
Back pain for 3+ months	0.593	0.0537	2.56e-28	2.51e-27
ICD10: R14 Flatulence and related conditions	0.1918	0.1	0.055	0.0781
Mineral and other dietary supplements: Iron	0.0112	0.0708	0.875	0.887
Phospholipids to total lipids ratio in small LDL	-0.1303	0.0416	0.002	0.003
Cholesteryl esters to total lipids ratio in chylomicrons and extremely large	-0.0812	0.0435	0.062	0.087
VLDL Forced vital capacity (FVC), Best measure	-0.0263	0.0234	0.260	0.315
Cholesterol in large HDL	-0.229	0.0254	1.34e-17	7.29e-17
Reason for glasses/contact lenses: Other eye condition	0.0854	0.1408	0.544	0.594
Fractured bone site(s): Arm	0.0839	0.0964	0.384	0.436
Impedance of arm (left)	-0.2512	0.0187	5.43e-41	1.04e-39
Neo-conscientiousness	0.1257	0.091	0.167	0.213
Triglycerides in medium HDL	0.1776	0.0364	1.09e-06	2.71e-06
Extreme waist-to-hip ratio	0.2462	0.069	4,00e-04	0.001
Remnant cholesterol (non-HDL, non-LDL -cholesterol)	-0.0112	0.0358	0.755	0.783
Duration of vigorous activity	0.2167	0.0358	1.40e-09	4.36e-09
Why reduced smoking: None of the above	0.101	0.1868	0.589	0.633
Types of physical activity in last 4 weeks: None of the above	0.3574	0.0316	1.05e-29	1.10e-28
Free cholesterol	0.0277	0.1009	0.78	0.810
Qualifications: O levels/GCSEs or equivalent	-0.3493 0.1177	0.029	2.58e-33	3.45e-32 0.0004
Concentration of VLDL particles Mineral and other dietary supplements: Selenium	-0.0319	0.0312 0.0641	2,00e-04 0.618	0.0004
Total lipids in IDL	0.0884	0.0868	0.309	0.362
ICD10: D12 Benign neoplasm of colon, rectum, anus and anal canal	0.1557	0.0808	0.002	0.004
Albumin	-0.0416	0.0307	0.637	0.678
Degree of unsaturation	-0.234	0.0316	1.26e-13	5.28e-13
	0.0621	0.0853	0.467	0.518
Total cholesterol in IDL		0.0588	0.250	0.304
	0.0677		0.009	0.016
Eczema	0.0677	0.0553	0.007	0.0001
Eczema HOMA-B Free cholesterol in large LDL	0.1435 -0.1561	0.0391	6.65e-05	-
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL	0.1435 -0.1561 0.2455	0.0391 0.0316	6.65e-05 8.39e-15	3.89e-14
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left)	0.1435 -0.1561 0.2455 0.2766	0.0391 0.0316 0.0179	6.65e-05 8.39e-15 1.02e-53	3.89e-14 4.08e-52
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left) ICD10: I30 Acute pericarditis	0.1435 -0.1561 0.2455 0.2766 0.1413	0.0391 0.0316 0.0179 0.1068	6.65e-05 8.39e-15 1.02e-53 0.186	3.89e-14 4.08e-52 0.234
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left) ICD10: I30 Acute pericarditis Cholesteryl esters in HDL	0.1435 -0.1561 0.2455 0.2766 0.1413 -0.1997	0.0391 0.0316 0.0179 0.1068 0.0268	6.65e-05 8.39e-15 1.02e-53 0.186 9.94e-14	3.89e-14 4.08e-52 0.234 4.21e-13
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left) ICD10: I30 Acute pericarditis Cholesteryl esters in HDL Cholesterol to total lipids ratio in medium HDL	0.1435 -0.1561 0.2455 0.2766 0.1413 -0.1997 -0.235	0.0391 0.0316 0.0179 0.1068 0.0268 0.029	6.65e-05 8.39e-15 1.02e-53 0.186 9.94e-14 5.98e-16	3.89e-14 4.08e-52 0.234 4.21e-13 3.00e-15
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left) ICD10: I30 Acute pericarditis Cholesteryl esters in HDL Cholesterol to total lipids ratio in medium HDL Average diameter for LDL particles	0.1435 -0.1561 0.2455 0.2766 0.1413 -0.1997 -0.235 -0.1567	0.0391 0.0316 0.0179 0.1068 0.0268 0.029 0.0391	6.65e-05 8.39e-15 1.02e-53 0.186 9.94e-14 5.98e-16 6.20e-05	3.89e-14 4.08e-52 0.234 4.21e-13 3.00e-15 0.0001
HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left) ICD10: I30 Acute pericarditis Cholesteryl esters in HDL Cholesterol to total lipids ratio in medium HDL Average diameter for LDL particles Fractured bone site(s): Leg	0.1435 -0.1561 0.2455 0.2766 0.1413 -0.1997 -0.235 -0.1567 0.2695	0.0391 0.0316 0.0179 0.1068 0.0268 0.029 0.0391 0.131	6.65e-05 8.39e-15 1.02e-53 0.186 9.94e-14 5.98e-16 6.20e-05 0.040	3.89e-14 4.08e-52 0.234 4.21e-13 3.00e-15 0.0001 0.058
Eczema HOMA-B Free cholesterol in large LDL Triglycerides to total lipids ratio in IDL Arm fat-free mass (left) ICD10: I30 Acute pericarditis Cholesteryl esters in HDL Cholesterol to total lipids ratio in medium HDL Average diameter for LDL particles	0.1435 -0.1561 0.2455 0.2766 0.1413 -0.1997 -0.235 -0.1567	0.0391 0.0316 0.0179 0.1068 0.0268 0.029 0.0391	6.65e-05 8.39e-15 1.02e-53 0.186 9.94e-14 5.98e-16 6.20e-05	3.89e-14 4.08e-52 0.234 4.21e-13 3.00e-15 0.0001

Creatinine (enzymatic) in urine	0.188	0.0242	8.85e-15	4.07e-14
Phospholipids in large HDL	-0.2048	0.0274	8.01e-14	3.46e-13
Distance between home and job workplace Total lipids in very small VLDL	0.0751	0.0588	0.202 0.108	0.250
Schizophrenia	-0.0257	0.0343	0.108	0.144
Vitamin and mineral supplements: Vitamin C	0.0946	0.0234	0.033	0.049
Cholesteryl esters to total lipids ratio in large HDL	-0.2611	0.0291	3.13e-19	1.87e-18
Frequency of stair climbing in last 4 weeks	-0.1768	0.0281	3.03e-10	9.97e-10
Body fat percentage	0.2643	0.0205	3.44e-38	6.08e-37
Trunk fat-free mass	0.2183	0.0182	4.54e-33	5.56e-32
Pallidum volume	0.0427	0.0682	0.532	0.583
3-hydroxybutyrate	-0.3182	0.1401 0.029	0.023	0.0362
Townsend deprivation index at recruitment Diagnoses - main ICD10: H40 Glaucoma	0.1887 0.0333	0.029	7.63e-11 0.697	2.7e-10 0.726
Cholesteryl esters in large LDL	-0.0819	0.0833	0.037	0.045
Birth weight	-0.04	0.0224	0.030	0.102
Concentration of small LDL particles	0.0191	0.0373	0.608	0.652
Description of average fatty acid chain length, not actual carbon number	-0.3657	0.0922	7.26e-05	0.0002
Cigarettes smoked per day	0.2673	0.0287	1.15e-20	7.50e-20
Total lipids in very small VLDL	0.1195	0.0721	0.097	0.131
Number of full brothers	0.2143	0.041	1.73e-07	4.59e-07
Age started oral contraceptive pill	-0.4247	0.0388	7.70e-28	7.38e-27
Infant head circumference	-0.0769	0.0586	0.189	0.237
Trunk fat percentage Cigarettes per Day	0.2403	0.0203	3.39e-32 1.28e-20	3.93e-31 8.19e-20
Total cholesterol in large LDL	0.2673	0.0287	1.28e-20 0.553	8.19e-20 0.599
Vascular/heart problems diagnosed by doctor: Heart attack	0.3308	0.0799	1.83e-17	9.82e-17
Mean time to correctly identify matches	-0.0933	0.0223	2.85e-05	6.28e-05
Pain type(s) experienced in last month: Neck or shoulder pain	0.5836	0.0279	3.90e-97	8.59e-95
Qualifications: College or University degree	-0.4122	0.0204	1.90e-90	2.10e-88
Pain type(s) experienced in last month: Facial pain	0.4303	0.0688	3.90e-10	1.27e-09
Ischemic stroke	0.1525	0.0386	7.86e-05	0.0002
Fractured bone site(s): Spine	0.1102	0.1684	0.513	0.566
Phospholipids to total lipids ratio in chylomicrons and extremely large VLDL	0.1985	0.0464	1.92e-05	4.33e-05
Total lipids in large HDL	-0.1731	0.0673	0.010	0.002 4.64e-10
Free cholesterol in HDL Cholesteryl esters to total lipids ratio in medium HDL	-0.1787	0.0278	1.36e-10 9.50e-14	4.04e-10 4.07e-13
Transport type for commuting to job workplace: Cycle	-0.3292	0.0297	2.69e-23	2.08e-22
Other polyunsaturated fatty acids than 18:2	-0.0161	0.0676	0.812	0.83
Medication for cholesterol, blood pressure, diabetes, or take exogenous	-0.3183	0.0316	8.20e-24	6.82e-23
hormones: None of the above				
Hypermetropia	0.0903	0.0568	0.112	0.148
Triglycerides to total lipids ratio in small HDL	0.2086	0.0286	2.90e-13	1.195e-
T	0.1893	0.1290	0.142	12 0.184
Lung adenocarcinoma Total lipids in medium VLDL	0.1893	0.1289 0.0327	0.142	0.184
ICD10: I84 Haemorrhoids	0.2656	0.0527	1.25e-05	2.845e-
	0.2000	0.0000	1.250 05	05
Triglycerides in large VLDL	0.2253	0.0623	3,00e-04	0.0006
Cholesterol in very large VLDL	0.1624	0.0295	3.63e-08	9.99e-08
ICD10: K62 Other diseases of anus and rectum	0.4799	0.095	4.37e-07	1.12e-06
Total cholesterol in medium LDL	0.0483	0.0769	0.530	0.582
Cholesteryl esters to total lipids ratio in large LDL	-0.0734	0.0418	0.079	0.109
Concentration of very large VLDL particles Phospholipids in VLDL	0.1841	0.029	2.18e-10	7.40e-10
Phospholipids in VLDL Falls in the last year	0.1425	0.0298	1.74e-06 4.68e-49	4.28e-06 1.38e-47
Creatinine	0.4066	0.0278	0.675	0.708
ICD10: M17 Gonarthrosis [arthrosis of knee]	0.3664	0.0572	3.73e-11	1.34e-10
Transport type for commuting to job workplace: Car/motor vehicle	0.4238	0.0331	2.58e-21	1.78e-20
Phospholipids in large HDL	-0.1595	0.0686	0.020	0.032
Leg fat mass (right)	0.3255	0.0191	6.60e-65	4.85e-63
Diastolic blood pressure	0.0182	0.0192	0.343	0.398
Cholesteryl esters to total lipids ratio in small VLDL	-0.1084	0.0503	0.031	0.047
Free cholesterol in medium LDL	-0.0999	0.0414	0.016	0.025
Why reduced smoking: Illness or ill health	0.4215	0.1912	0.028	0.042
Headaches for 3+ months	0.1647	0.0444 0.0484	2,00e-04 0.044	0.0004
Alcohol drinker status: Never Total fatty acids	0.0977	0.0484	0.044 4,00e-04	0.063
Cholesteryl esters in large VLDL	0.1124	0.0310	1.13e-05	2.59e-05
	0.0322		0.346	0.400
Happiness	0.0.522	0.0341	0.540	0.400

Number of treatments/medications taken	0.5169	0.024	5.15e- 103	2.27e- 100
Total lipids in small VLDL	0.1449	0.0611	0.018	0.029
ICD10: R35 Polyuria	0.28	0.1117	0.012	0.020
Miserableness	0.3272	0.0275	1.15e-32	1.37e-31
Average diameter for HDL particles	-0.2183	0.028	6.32e-15	3.00e-14
Length of working week for main job	0.1907	0.0399	1.77e-06	4.33e-06
Target heart rate achieved	-0.1415	0.0661	0.032	0.048
Concentration of medium LDL particles	0.0873	0.0804	0.277	0.328
Anorexia Nervosa ICD10: K35 Acute appendicitis	-0.0923	0.0495	0.062	0.087
Job involves mainly walking or standing	0.3033	0.0248	2.15e-34	3.07e-33
Vitamin and mineral supplements: Vitamin A	0.1519	0.0240	0.036	0.053
Sleeplessness / insomnia	0.3537	0.023	1.88e-53	6.93e-52
ICD10: K44 Diaphragmatic hernia	0.2471	0.07	4,00e-04	0.001
Citrate	-0.2618	0.0817	0.001	0.002
Glutamine	-0.0563	0.0275	0.040	0.058
Tense / highly strung	0.2372	0.0293	5.33e-16	2.70e-15
ICD10: N40 Hyperplasia of prostate	0.1276	0.0587	0.030	0.045
Cholesteryl esters in very large HDL	-0.2401	0.03	1.15e-15	5.57e-15
Wheeze or whistling in the chest in last year	0.3898	0.0276	3.72e-45	7.81e-44
Free cholesterol in very small VLDL	0.027	0.0359	0.453	0.507
Alcohol usually taken with meals	-0.2563	0.0261	1.06e-22	8.06e-22
Triglycerides in small VLDL	0.1636	0.0303	6.36e-08	1.73e-07
ICD10: S52 Fracture of forearm	-0.053	0.0597	0.375	0.427
Ever stopped smoking for 6+ months Handedness (chirality/laterality): Use both right and left hands equally	0.3508	0.0745	2.47e-06 0.001	5.94e-06 0.002
Cataract	0.287	0.0818	0.670	0.002
ICD10: J33 Nasal polyp	0.028	0.0723	0.070	0.315
Daytime dozing / sleeping (narcolepsy)	0.104	0.0924	1.97e-05	4.34e-05
Adopted as a child	0.3046	0.0625	1.08e-06	2.70e-06
Ibuprofen (e.g. Nurofen)	0.3702	0.0325	4.17e-30	4.48e-29
ICD10: K40 Inguinal hernia	0.0183	0.0437	0.676	0.708
Doctor diagnosed hayfever or allergic rhinitis	0.1023	0.0338	0.003	0.004
Omega-6 fatty acids	0.0842	0.1083	0.437	0.493
Number of depression episodes	0.0902	0.0739	0.222	0.274
Waist-to-hip ratio	0.2173	0.0299	3.73e-13	1.49e-12
Leg fat-free mass (right)	0.2175	0.0177	9.05e-35	1.38e-33
Omega-3 fatty acids	-0.0272	0.0277	0.325	0.379
Illness, injury, bereavement, stress in last 2 years: Death of a close relative	0.3867	0.0543	1.07e-12	4.09e-12
Illness, injury, bereavement, stress in last 2 years: Marital separation/divorce	0.2884	0.0843	6,00e-04	0.001
HbA1c	0.0666	0.0396	0.093 0.235	0.126
Chronic kidney disease Hand grip strength (right)	-0.0148	0.07	0.233	0.290
Vitamin and mineral supplements: Folic acid or Folate (Vit B9)	0.0813	0.0217	0.368	0.330
Cholesterol lowering medication	0.3597	0.0382	5.23e-21	3.55e-20
Free cholesterol to total lipids ratio in small LDL	-0.2124	0.0362	4.28e-09	1.26e-08
Mean diameter for VLDL particles	0.1708	0.0602	0.005	0.008
Handedness (chirality/laterality): Left-handed	-0.1362	0.0513	0.008	0.014
Free cholesterol to total lipids ratio in medium HDL	-0.219	0.029	4.53e-14	2.00e-13
Reason for reducing amount of alcohol drunk: Illness or ill health	0.5039	0.108	3.06e-06	7.338e- 06
ICD10: J84.1 Other interstitial pulmonary diseases with fibrosis	-0.2923	0.1612	0.070	0.097
Total cholesterol in very large HDL	-0.2394	0.1379	0.083	0.113
Primary biliary cirrhosis	0.0066	0.084	0.937	0.941
Smoking behaviors : Smoking cessation	-0.1275	0.0497	0.010	0.017
Phospholipids to total lipids ratio in very large HDL	-0.1958	0.0324	1.44e-09	4.43e-09
Number of older siblings	0.2647	0.0719	2,00e-04	0.0004
ICD10: I48 Atrial fibrillation and flutter	0.118	0.0441	0.007	0.013
Pain type(s) experienced in last month: Knee pain	0.4649	0.0304	6.10e-53	2.07e-51
Oral contraceptive pill or minipill Apolipoprotein A-I	-0.0202 -0.0981	0.0888	0.821 0.266	0.840 0.319
Total cholesterol in medium HDL	-0.0981	0.0881	0.200	0.823
Total lipids in medium LDL	0.0241	0.0947	0.799	0.823
Mean platelet volume	-0.0185	0.0387	0.351	0.404
Concentration of large HDL particles	-0.1643	0.0202	0.360	0.414
ICD10: R10 Abdominal and pelvic pain	0.5573	0.0672	1.76e-28	1.77e-27
Emphysema/chronic bronchitis	0.3978	0.0303	2.10e-18	1.19e-17
Impedance of whole body	-0.2005	0.0433	1.81e-26	1.63e-25
	0.1593	0.0188	1.810-20 1.49e-08	4.18e-08
Blood pressure medication				
Blood pressure medication Sodium in urine	0.2126	0.0233	7.98e-20	4.96e-19

Phosphatidylcholines	-0.0525	0.028	0.061	0.086
Alanine	0.113	0.0642	0.079	0.108
Acetoacetate	-0.1376	0.0893	0.123	0.162
Ever had prostate specific antigen (PSA) test	0.0649	0.0405	0.109	0.145
Time from waking to first cigarette	-0.2771	0.0559	7.32e-07	1.86e-06
Cholesteryl esters in small HDL	0.0452	0.0323	0.162	0.207
Concentration of very large HDL particles	-0.191	0.0853	0.025	0.039
Ratio of triglycerides to phosphoglycerides	0.2012	0.0278	4.37e-13	1.725e- 12
Concentration of very large VLDL particles	0.2131	0.0605	4,00e-04	0.0008
Total lipids in very large HDL	-0.2292	0.0305	5.96e-14	2.60e-13
Forced expiratory volume in 1-second (FEV1), predicted	0.0889	0.0247	3,00e-04	0.0006
circulating leptin levels	0.1201	0.0541	0.026	0.041
Mean diameter for HDL particles	-0.1843	0.0658	0.005	0.009
Concentration of very small VLDL particles	0.1241	0.0717	0.084	0.114
ICD10: F43 Reaction to severe stress and adjustment disorders	-0.0352	0.1809	0.846	0.863
Total fatty acids	0.1692	0.1033	0.102	0.137
Morning/evening person (chronotype)	-0.0531	0.0202	0.009	0.014
Triglycerides in very large HDL Apolipoprotein B	0.0526	0.0709	0.458 0.140	0.510
Number of operations, self-reported	0.1094	0.0741	2.11e-95	3.10e-93
Total lipids in very large VLDL	0.3392	0.027	6,00e-04	0.001
Frequency of unenthusiasm / disinterest in last 2 weeks	0.1908	0.0337	3.33e-52	1.05e-50
Frequency of unentifusiasin 7 disinterest in fast 2 weeks Fracture resulting from simple fall	0.43	0.0283	0.852	0.867
Operation code: bilateral oophorectomy	0.3928	0.0509	1.21e-14	5.50e-14
Total lipids in VLDL	0.1529	0.0294	1.92e-07	5.07e-07
apolipoprotein B	0.0312	0.0238	0.189	0.237
ICD10: N32 Other disorders of bladder	0.1215	0.0764	0.112	0.148
Acetoacetate	0.0696	0.048	0.148	0.190
Average weekly champagne plus white wine intake	-0.2512	0.0356	1.77e-12	6.66e-12
Number of cigarettes currently smoked daily (current cigarette smokers)	0.2239	0.055	4.65e-05	0.0001
Mouth/teeth dental problems: Mouth ulcers	0.1181	0.0325	3,00e-04	0.0006
Weight change compared with 1 year ago	0.2642	0.0437	1.53e-09	4.66e-09
Total lipids in large VLDL	0.1654	0.0297	2.54e-08	7.06e-08
ICD10: O75 Other complications of labour and delivery not elsewhere classified	-0.0669	0.0894	0.454	0.507
ICD10: R11 Nausea and vomiting	0.5524	0.2068	0.008	0.0129
ICD10: M54 Dorsalgia	0.8303	0.0576	4.75e-47	1.23e-45 0.002
Total lipids in large VLDL Blood clot in the leg (DVT)	0.1911 0.3503	0.0573	9,00e-04 5.31e-10	1.68e-09
Triglycerides in VLDL	0.3303	0.0304	8.25e-09	2.35e-08
Cholesteryl esters in small LDL	0.0379	0.0374	0.230 0)	0.362
Cholesterol to total lipids ratio in very large HDL	0.0882	0.0428	0.039	0.057
Maximum workload during fitness test	-0.2889	0.0543	1.06e-07	2.86e-07
Phospholipids to total lipids ratio in large LDL	0.0093	0.0391	0.812	0.833
Total lipids in lipoprotein particles	0.0156	0.0322	0.628	0.670
Guilty feelings	0.1544	0.0284	5.69e-08	1.56e-07
Free cholesterol to total lipids ratio in chylomicrons and extremely large VLDL	-0.0965	0.0385	0.012	0.020
Mineral and other dietary supplements: Zinc	0.0615	0.0459	0.180	0.227
Average number of methylene groups in a fatty acid chain	0.0817	0.106	0.440	0.495
Free cholesterol in chylomicrons and extremely large VLDL	0.1941	0.0323	1.90e-09	5.72e-09
ICD10: H26.9 Cataract, unspecified	0.0424	0.0512	0.408 1.73e-23	0.461 1.36e-22
Had major operations Cholesterol esters in large VLDL	0.4984 0.057	0.0499 0.0793	1.73e-23 0.472	0.523
Cholesterol esters in medium HDL	0.0037	0.0793	0.472	0.523
Smoking status: Never	-0.2845	0.0994	2.73e-33	3.54e-32
Phospholipids in medium HDL	0.0493	0.0237	0.551	0.598
Work/job satisfaction	-0.0209	0.0459	0.649	0.688
Former alcohol drinker	0.3015	0.056	7.32e-08	1.98e-07
Triglycerides in medium VLDL	0.1485	0.0304	1.04e-06	2.62e-06
Fractured/broken bones in last 5 years	0.1601	0.0375	1.95e-05	4.34e-05
ICD10: Z09 Follow-up examination after treatment for conditions other than	0.2227	0.0967	0.021	0.034
malignant neoplasms				
Cholesteryl esters in medium VLDL	-0.1228	0.0391	0.002	0.003
Pain type(s) experienced in last month: Headache	0.2681	0.0288	1.16e-20	7.50e-20
Concentration of HDL particles	-0.093	0.0291	0.001	0.003
Mineral and other dietary supplements: Calcium	-0.063	0.0451	0.162	0.207
Cholesterol esters in large HDL Whole body fat mass	-0.1897	0.0673	0.005 8.46e-56	0.008
Whole body fat mass Noisy workplace	0.2957 0.3987	0.0188	8.46e-56 1.79e-26	4.15e-54 1.63e-25
	-0.0319	0.0374	0.157	0.202
Forced vital canacity (FVC)			- V.L.//	1 1.414
Forced vital capacity (FVC) Wears glasses or contact lenses	0.0352	0.0459	0.443	0.497

Concentration of large HDL particles	-0.2251	0.0269	6.61e-17	3.47e-16
ICD10: J34 Other disorders of nose and nasal sinuses	0.7953	0.2469	0.001	0.002
ICD10: M25 Other joint disorders, not elsewhere classified	0.8166	0.1295	2.87e-10	9.60e-10
Cholesterol esters in medium VLDL Leucine	0.129 0.1341	0.0583	0.027	0.041 0.164
Ever taken oral contraceptive pill	0.0912	0.0873	0.123	0.056
Ever used hormone-replacement therapy (HRT)	0.3886	0.0337	7.84e-31	8.65e-30
Eye problems/disorders: Injury or trauma resulting in loss of vision	0.2413	0.1145	0.035	0.052
Ever depressed for a whole week	0.2286	0.0354	1.01e-10	3.49e-10
Offspring birth weight	0.0456	0.0389	0.241	0.296
Sensitivity / hurt feelings	0.2142	0.0273	3.86e-15	1.852e- 14
ICD10: S76 Injury of muscle and tendon at hip and thigh level	0.1343	0.1324	0.310	0.362
Pulse rate, automated reading	0.0992	0.0204	1.11e-06	2.76e-06
Cholesterol to total lipids ratio in IDL	-0.2285	0.032	9.85e-13	3.81e-12
Ratio of linoleic acid to total fatty acids	-0.2759	0.0306	1.81e-19	1.09e-18
Phospholipids in medium LDL	0.0898	0.0798	0.260	0.315
Phospholipids in IDL Myopia	0.0975	0.0898	0.278 1.50e-18	0.328 8.59e-18
Squamous cell lung cancer	0.2079	0.0313	0.021	0.033
Free cholesterol in large VLDL	0.1706	0.0291	4.42e-09	1.28e-08
Lactate	0.0879	0.0447	0.049	0.070
Phospholipids in medium VLDL	0.0741	0.0355	0.037	0.055
Ever had hysterectomy (womb removed)	0.427	0.052	2.07e-16	1.07e-15
Cholesterol to total lipids ratio in very large VLDL	-0.2007	0.0356	1.72e-08	4.81e-08
Alcohol drinker status: Current Ferritin	-0.3199 -0.0357	0.0417	1.70e-14 0.654	7.66e-14 0.690
Glucose	0.1328	0.0793	0.034	0.090
Blood clot in the lung	0.2998	0.0677	9.36e-06	2.17e-05
Childhood asthma (age<16)	0.3331	0.0863	1,00e-04	0.0002
Triglycerides in large HDL	0.02	0.0341	0.557	0.602
ICD10: E04 Other non-toxic goitre	0.1449	0.0743	0.051	0.073
Frequency of tiredness / lethargy in last 2 weeks Phospholipids in medium HDL	0.4347	0.0234	6.74e-77 0.155	5.95e-75 0.200
Trunk fat mass	0.2766	0.0327	6.29e-48	1.73e-46
Types of physical activity in last 4 weeks: Other exercises	-0.2679	0.0246	1.55e-27	1.45e-26
Total lipids in HDL	-0.1518	0.0289	1.45e-07	3.88e-07
Cholesteryl esters to total lipids ratio in IDL	-0.2228	0.0343	8.30e-11	2.93e-10
ICD10: I25 Chronic ischaemic heart disease	0.3727	0.0383	2.53e-22	1.86e-21
Ratio of bisallylic groups to total fatty acids	-0.2104 -0.248	0.0654	0.001	0.002
Impedance of arm (right) Concentration of large VLDL particles	0.1986	0.0188	6.38e-40 9,00e-04	1.17e-38 0.002
Phospholipids to total lipids ratio in very large VLDL	0.04	0.0425	0.347	0.400
Ever smoked	0.1663	0.0241	5.51e-12	2.04e-11
ICD10: K20 Oesophagitis	0.3954	0.0952	3.30e-05	7.26e-05
Length of menstrual cycle	-0.154	0.043	3,00e-04	
Triglycerides in small HDL	0.2052	0.0306	2.02e-11	7.30e-11
Polyunsaturated fatty acids Snoring	-0.0122 -0.1586	0.0284	0.667 1.41e-12	0.702 5.37e-12
Loud music exposure frequency	0.1588	0.0224	8.76e-05	0.0002
Duration of moderate activity	0.2584	0.0332	7.17e-15	3.37e-14
Weight	0.2938	0.0181	5.84e-59	3.22e-57
Phospholipids in very large VLDL	0.1815	0.0291	4.27e-10	1.38e-09
Number of days/week of vigorous physical activity 10+ minutes	0.0083	0.0279	0.767	0.794
Pain type(s) experienced in last month: Stomach or abdominal pain Hinnecempus volume	0.427	0.0438	1.79e-22 0.389	1.34e-21 0.441
Hippocampus volume multiple sclerosis	0.0729	0.0682	0.389	0.441
Total cholesterol minus HDL-C	-0.0407	0.0327	0.020	0.319
Total lipids in small HDL	0.1772	0.0952	0.063	0.087
Non-accidental death in close genetic family	0.0666	0.0635	0.295	0.347
Heel bone mineral density (BMD) T-score, automated	0.0792	0.02	7.53e-05	0.0002
Diastolic blood pressure, automated reading	0.099	0.0208	2.05e-06	5.00e-06
Triglycerides in small LDL ICD10: M06.99 Rheumatoid arthritis, unspecified	0.1675	0.0289	6.91e-09	1.98e-08 0.0002
Number of pregnancy terminations	0.2886	0.0746	1,00e-04 0.176	0.0002
Phospholipids to total lipids ratio in small VLDL	-0.2152	0.0471	8.72e-09	2.47e-08
Basal metabolic rate	0.2523	0.0177	4.60e-46	1.07e-44
Total lipids in large HDL	-0.2168	0.027	1.02e-15	4.98e-15
3-Hydroxybutyrate	-0.0042	0.0459	0.927	0.934
Triglycerides in chylomicrons and extremely large VLDL	0.1858	0.0317	4.43e-09	1.28e-08
Mono-unsaturated fatty acids	0.2212	0.0967	0.022	0.0346

Time spent using computer	-0.1203	0.0237	3.84e-07	9.91e-07
Free cholesterol to total lipids ratio in large LDL	-0.2207	0.0304	4.02e-13	1.60e-12
Free cholesterol in medium HDL	-0.1279	0.0288	9.10e-06	2.12e-05
Ratio of saturated fatty acids to total fatty acids	0.1867	0.0377	7.12e-07	1.81e-06
Subjective well being	-0.1382	0.0416	9,00e-04	0.002
Mouth/teeth dental problems: None of the above	-0.275	0.0293	6.80e-21	4.54e-20
Average weekly fortified wine intake	-0.2594	0.0506	2.89e-07	7.50e-07
Free cholesterol in very large HDL	-0.2222	0.035	2.22e-10	7.49e-10
Qualifications: NVQ or HND or HNC or equivalent	0.3186	0.0388	2.17e-16	1.11e-15
Forced expiratory volume in 1-second (FEV1), Best measure	-0.0261	0.0237	0.270	0.322
Triglycerides in large LDL	0.1767	0.0297	2.85e-09	8.54e-09
Cholesteryl esters to total lipids ratio in medium VLDL	-0.2134	0.0353	1.45e-09	4.43e-09
Difference in height between adolescence and adulthood	0.0092	0.0597	0.877	0.887
Leucine	0.1617	0.0393	3.82e-05	8.34e-05
Valine	0.1482	0.0363	4.51e-05	9.74e-05
Phospholipids in very large VLDL	0.2033	0.0614	9,00e-04	0.002
Concentration of medium HDL particles	-0.1105	0.031	4,00e-04	0.0008
Tinnitus: Yes, but not now, but have in the past	0.2102	0.0678	0.002	0.003
Chest pain or discomfort walking normally	0.5054	0.0523	3.98e-22	2.83e-21
Job involves heavy manual or physical work	0.355	0.025	8.41e-46	1.85e-44
Phosphoglycerides	-0.0175	0.0284	0.536	0.587
Diagnoses - main ICD10: K30 Dyspepsia	0.6359	0.1371	3.52e-06	8.40e-06
Cholesterol in large LDL	-0.104	0.0371	0.005	0.001

Table S8 Potentially causal exposures for LDH. Analysis was performed by using TwoSampleMR-database and the phenotype IDs used in the analysis were extracted from the MRC-IEU database. For the analysis, we extracted genetic instruments from FinnGen based GWAS results, to avoid possible bias from overlapping samples. Because MRC-IEU's GWAS data is mainly based on data from UKBB. The results are based on the Inverse variance weighted-model and were statistically significant (P < 0.05). As a sensitivity analysis we also performed analysis by using MR Egger. Nsnp, number of SNPs; OR, odds ratio, pFDR, false discovery rate-corrected p-value; pHET, p-value for heterogeneity; pPLE, p-value for pleiotropy

Direction	Trait	Method	nsnp	Causal estimate scale	Causal estimate	pFDR	рНЕТ	Egger intercept	pPLE
Trait-> LDH	Overweight id:ieu-a-93 Overweight id:ieu-a-93	IVW MR Egger	13 13	OR OR	1.15 (1.05–1.25) 1.14 (0.86–1.52)	1.72e-03 0.45	0.035 0.023	0.0003	0.9777
Trait-> LDH	Lumbar spine bone mineral density id:ieu-a-982 Lumbar spine bone mineral density id:ieu-a-982	IVW MR Egger	21 21	OR OR	1.15 (1.08–1.23) 1.24 (0.98–1.57)	2.29e-05 0.23	0.243 0.216	-0.0054	0.5326
Trait-> LDH	Higher level of education id:ukb-b-16489 Higher level of education id:ukb-b-16489	IVW MR Egger	227 227	OR OR	0.34 (0.28–0.42) 0.28 (0.12–0.64)	4.35e-23 0.01	4.58e-11 3.80e-11	0.0015	0.6122

Table S9 Outcomes that LDH is potentially causal. Analysis was performed by using TwoSampleMR-database and the phenotype IDs used in the analysis were extracted from the MRC-IEU database. For the analysis, we extracted genetic instruments from FinnGen based GWAS results, to avoid possible bias from overlapping samples. Because MRC-IEU's GWAS data is mainly based on data from UKBB. The results are based on the Inverse variance weighted-model and were statistically significant (P < 0.05). As a sensitivity analysis we also performed analysis by using MR Egger. Nsnp, number of SNPs; pFDR, false discovery rate-corrected p-value; pHET, p-value for heterogeneity; pPLE, p-value for pleiotropy

Direction	Trait	Method	nsnp	Causal estimate scale	Causal estimate	pFDR	рНЕТ	Egger intercept	pPLE
LDH-> Trait	Frequency of tiredness in last 2 weeks id:ukb-b-929 Frequency of tiredness in last 2 weeks id:ukb-b-929	IVW MR Egger	31 31	Beta Beta	0.02 (0.00–0.05) 0.07 (-0.05–0.19)	4.61e-02 0.40	8.22e-08 8.34e-08	-0.0026	0.4579
LDH-> Trait	Back pain id:ukb-b-983 Back pain id:ukb-b-983	IVW MR Egger	31 31	Beta Beta	0.05 (0.04–0.06) 0.08 (0.01–0.15)	6.20e-13 0.09	2.91e-11 5.39e-11	-0.019	0.3432

Table S10 List of risk factors that were used in bi-directional Mendelian randomization. We used the Two-Sample MR R library to conduct a bi-directional Mendelian randomization to examine the causal relationships between LDH and its associated risk factors. Risk factors were extracted from the GWAS database provided by the MRC Integrative Epidemiology Unit (IEU) (<u>https://gwas.mrcieu.ac.uk/</u>)

GWAS-ID	Year	Trait	Consortium	Sample size	Number of SNP's
ukb-d-20544_11	2018	Mental health problems ever diagnosed by a professional: Depression	NA	117 782	13 571 547
ukb-a-525	2017	ICD10: F31 Bipolar affective disorder	Neale Lab	337 199	10 894 596
ukb-b-16489	2018	Qualifications: College or University degree	MRC-IEU	458 079	9 851 867
ukb-b-9547	2018	Medication or take exogenous hormones: Oral contraceptive pill or minipill	MRC-IEU	249 710	9 851 867
ukb-b-3656	2018	Number of treatments/medications taken	MRC-IEU	462 933	9 851 867
ukb-b-9838	2018	Pain type(s) experienced in last month: Back pain	MRC-IEU	461 857	9 851 867
ukb-b-929	2018	Frequency of tiredness/lethargy in last 2 weeks	MRC-IEU	449 019	9 851 867
ieu-a-982	2015	Lumbar spine bone mineral density	GEFOS	28 498	10 582 867
ukb-b-14177	2018	Vascular/heart problems diagnosed by doctor: High blood pressure	MRC-IEU	461 880	9 851 867
Ieu-a-93	2013	Overweight	GIANT	158 855	2 435 045
ukb-b-2002	2018	Job involves heavy manual or physical work	MRC_IEU	263 615	9 851 867

Table S11 A list of FinnGen authors and their affiliations.

Full Name	Affiliation	Role 1	Role 2
Aarno Palotie	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard; Massachusetts General Hospital	Steering Committee	Steering Committee
Mark Daly	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of	Steering Committee	Steering Committee
	MIT and Harvard; Massachusetts General Hospital		
Bridget Riley-Gills	Abbvie, Chicago, IL, United States	Steering Committee	Pharmaceutical companies
Howard Jacob	Abbvie, Chicago, IL, United States	Steering Committee	Pharmaceutical companies
Dirk Paul	Astra Zeneca, Cambridge, United Kingdom	Steering Committee	Pharmaceutical companies
Slavé Petrovski	Astra Zeneca, Cambridge, United Kingdom	Steering Committee	Pharmaceutical companies
Heiko Runz	Biogen, Cambridge, MA, United States	Steering Committee	Pharmaceutical companies
Sally John	Biogen, Cambridge, MA, United States	Steering Committee	Pharmaceutical companies
George Okafo	Boehringer Ingelheim, Ingelheim am Rhein, Germany	Steering Committee	Pharmaceutical companies
Nathan Lawless	Boehringer Ingelheim, Ingelheim am Rhein, Germany	Steering Committee	Pharmaceutical companies
Heli Salminen- Mankonen	Boehringer Ingelheim, Ingelheim am Rhein, Germany	Steering Committee	Pharmaceutical companies
Robert Plenge	Bristol Myers Squibb, New York, NY, United States	Steering Committee	Pharmaceutical companies
Joseph Maranville	Bristol Myers Squibb, New York, NY, United States	Steering Committee	Pharmaceutical companies
Mark McCarthy	Genentech, San Francisco, CA, United States	Steering Committee	Pharmaceutical companies
Margaret G. Ehm	GlaxoSmithKline, Collegeville, PA, United States	Steering Committee	Pharmaceutical companies
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Steering Committee	Pharmaceutical companies
Simonne Longerich	Merck, Kenilworth, NJ, United States	Steering Committee	Pharmaceutical companies
Anders Mälarstig	Pfizer, New York, NY, United States	Steering Committee	Pharmaceutical companies
Katherine Klinger	Translational Sciences, Sanofi R&D, Framingham, MA, USA	Steering Committee	Pharmaceutical companies
Clement Chatelain	Translational Sciences, Sanofi R&D, Framingham, MA, USA	Steering Committee	Pharmaceutical companies
Matthias Gossel	Translational Sciences, Sanofi R&D, Framingham, MA, USA	Steering Committee	Pharmaceutical companies
Karol Estrada	Maze Therapeutics, San Francisco, CA, United States	Steering Committee	Pharmaceutical companies
Robert Graham	Maze Therapeutics, San Francisco, CA, United States	Steering Committee	Pharmaceutical companies
Robert Yang	Janssen Biotech, Beerse, Belgium	Steering Committee	Pharmaceutical companies
Chris O´Donnell	Novartis Institutes for BioMedical Research, Cambridge, MA, United States	Steering Committee	Pharmaceutical companies
Tomi P. Mäkelä	HiLIFE, University of Helsinki, Finland, Finland	Steering Committee	University of Helsinki &
Jaakko Kaprio	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Steering Committee	Biobanks University of Helsinki & Biobanks
Petri Virolainen	Auria Biobank / University of Turku / Hospital District of Southwest Finland, Turku, Finland	Steering Committee	University of Helsinki & Biobanks
Antti Hakanen	Auria Biobank / University of Turku / Hospital District of Southwest Finland, Turku, Finland	Steering Committee	University of Helsinki & Biobanks
Terhi Kilpi	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	Steering Committee	University of Helsinki & Biobanks
Markus Perola	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	Steering Committee	University of Helsinki & Biobanks

Jukka Partanen	Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland	Steering Committee	University of Helsinki & Biobanks
Anne Pitkäranta	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	Steering Committee	University of Helsinki & Biobanks
Taneli Raivio	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	Steering Committee	University of Helsinki & Biobanks
Jani Tikkanen	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	Steering Committee	University of Helsinki & Biobanks
Raisa Serpi	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	Steering Committee	University of Helsinki & Biobanks
Tarja Laitinen	Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland	Steering Committee	University of Helsinki & Biobanks
Veli-Matti Kosma	Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland	Steering Committee	University of Helsinki & Biobanks
Jari Laukkanen	Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland	Steering Committee	University of Helsinki & Biobanks
Marco Hautalahti	FINBB - Finnish biobank cooperative	Steering Committee	University of Helsinki & Biobanks
Outi Tuovila	Business Finland, Helsinki, Finland	Steering Committee	Other Experts/ Non-Voting Members
Raimo Pakkanen	Business Finland, Helsinki, Finland	Steering Committee	Other Experts/ Non-Voting Members
Jeffrey Waring	Abbvie, Chicago, IL, United States	Scientific Committee	Pharmaceutical companies
Bridget Riley-Gillis	Abbvie, Chicago, IL, United States	Scientific Committee	Pharmaceutical companies
Fedik Rahimov	Abbvie, Chicago, IL, United States	Scientific Committee	Pharmaceutical companies
loanna Tachmazidou	Astra Zeneca, Cambridge, United Kingdom	Scientific Committee	Pharmaceutical companies
Chia-Yen Chen	Biogen, Cambridge, MA, United States	Scientific Committee	Pharmaceutical companies
Heiko Runz	Biogen, Cambridge, MA, United States	Scientific Committee	Pharmaceutical companies
Zhihao Ding	Boehringer Ingelheim, Ingelheim am Rhein, Germany	Scientific Committee	Pharmaceutical companies
Marc Jung	Boehringer Ingelheim, Ingelheim am Rhein, Germany	Scientific Committee	Pharmaceutical companies
Shameek Biswas	Bristol Myers Squibb, New York, NY, United States	Scientific Committee	Pharmaceutical companies
Rion Pendergrass	Genentech, San Francisco, CA, United States	Scientific Committee	Pharmaceutical companies
Margaret G. Ehm	GlaxoSmithKline, Collegeville, PA, United States	Scientific Committee	Pharmaceutical companies
David Pulford	GlaxoSmithKline, Stevenage, United Kingdom	Scientific Committee	Pharmaceutical companies
Neha Raghavan	Merck, Kenilworth, NJ, United States	Scientific Committee	Pharmaceutical companies
Adriana Huertas- Vazquez	Merck, Kenilworth, NJ, United States	Scientific Committee	Pharmaceutical companies
Jae-Hoon Sul	Merck, Kenilworth, NJ, United States	Scientific Committee	Pharmaceutical companies
Anders Mälarstig	Pfizer, New York, NY, United States	Scientific Committee	Pharmaceutical companies
Xinli Hu	Pfizer, New York, NY, United States	Scientific Committee	Pharmaceutical companies
Åsa Hedman	Pfizer, New York, NY, United States	Scientific Committee	Pharmaceutical companies
		Committee	
Katherine Klinger	Translational Sciences, Sanofi R&D, Framingham, MA, USA	Scientific Committee	Pharmaceutical companies

Manuel Rivas	Maze Therapeutics, San Francisco, CA, United States	Scientific Committee	Pharmaceutical companies
Dawn Waterworth	Janssen Research & Development, LLC, Spring House, PA, United States	Scientific Committee	Pharmaceutical companies
Nicole Renaud	Novartis Institutes for BioMedical Research, Cambridge, MA, United States	Scientific Committee	Pharmaceutical companies
Ma´en Obeidat	Novartis Institutes for BioMedical Research, Cambridge, MA, United States	Scientific Committee	Pharmaceutical companies
Samuli Ripatti	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Scientific Committee	University of Helsinki & Biobanks
Johanna Schleutker	Auria Biobank / Univ. of Turku / Hospital District of Southwest Finland, Turku, Finland	Scientific Committee	University of Helsinki & Biobanks
Markus Perola	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	Scientific Committee	University of Helsinki & Biobanks
Mikko Arvas	Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland	Scientific Committee	University of Helsinki & Biobanks
Olli Carpén	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	Scientific Committee	University of Helsinki & Biobanks
Reetta Hinttala	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	Scientific Committee	University of Helsinki & Biobanks
Johannes Kettunen	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	Scientific Committee	University of Helsinki & Biobanks
Arto Mannermaa	Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland	Scientific Committee	University of Helsinki & Biobanks
Katriina Aalto-Setälä	Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland	Scientific Committee	University of Helsinki & Biobanks
Mika Kähönen	Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland	Scientific Committee	University of Helsinki & Biobanks
Jari Laukkanen	Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland	Scientific Committee	University of Helsinki & Biobanks
Johanna Mäkelä	FINBB - Finnish biobank cooperative	Scientific Committee	University of Helsinki & Biobanks
Reetta Kälviäinen	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Neurology Group
Valtteri Julkunen	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Neurology Grou
Hilkka Soininen	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Neurology Group
Anne Remes	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Neurology Grou
Mikko Hiltunen	University of Eastern Finland, Kuopio, Finland	Clinical Groups	Neurology Group
Jukka Peltola	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Neurology Group
Minna Raivio	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Neurology Group
Pentti Tienari	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Neurology Group
Juha Rinne	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Neurology Group
Roosa Kallionpää	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Neurology Group
Juulia Partanen	Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland	Clinical Groups	Neurology Group
Ali Abbasi	Abbvie, Chicago, IL, United States	Clinical Groups	Neurology Grou
Adam Ziemann	Abbvie, Chicago, IL, United States	Clinical Groups	Neurology Group
Nizar Smaoui	Abbvie, Chicago, IL, United States	Clinical Groups	Neurology Group
Anne Lehtonen	Abbvie, Chicago, IL, United States	Clinical Groups	Neurology Group

Susan Eaton	Biogen, Cambridge, MA, United States	Clinical Groups	Neurology Group
Heiko Runz	Biogen, Cambridge, MA, United States	Clinical Groups	Neurology Group
Sanni Lahdenperä	Biogen, Cambridge, MA, United States	Clinical Groups	Neurology Group
Shameek Biswas	Bristol Myers Squibb, New York, NY, United States	Clinical Groups	Neurology Group
Natalie Bowers	Genentech, San Francisco, CA, United States	Clinical Groups	Neurology Group
Edmond Teng	Genentech, San Francisco, CA, United States	Clinical Groups	Neurology Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Neurology Group
Fanli Xu	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Neurology Group
David Pulford	GlaxoSmithKline, Stevenage, United Kingdom	Clinical Groups	Neurology Group
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Clinical Groups	Neurology Group
Laura Addis	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Neurology Group
John Eicher	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Neurology Group
Qingqin S Li	Janssen Research & Development, LLC, Titusville, NJ 08560, United States	Clinical Groups	Neurology Group
Karen He	Janssen Research & Development, LLC, Spring House, PA, United States	Clinical Groups	Neurology Group
Ekaterina Khramtsova	Janssen Research & Development, LLC, Spring House, PA, United States	Clinical Groups	Neurology Group
Neha Raghavan	Merck, Kenilworth, NJ, United States	Clinical Groups	Neurology Group
Martti Färkkilä	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Gastroenterology Group
Jukka Koskela	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Gastroenterology Group
Sampsa Pikkarainen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Gastroenterology Group
Airi Jussila	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Gastroenterology Group
Katri Kaukinen	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Gastroenterology Group
Timo Blomster	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Gastroenterology Group
Mikko Kiviniemi	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Gastroenterology Group
Markku Voutilainen	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Gastroenterology Group
Mark Daly	Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard; Massachusetts General Hospital	Clinical Groups	Gastroenterology Group
Ali Abbasi	Abbvie, Chicago, IL, United States	Clinical Groups	Gastroenterology Group
Jeffrey Waring	Abbvie, Chicago, IL, United States	Clinical Groups	Gastroenterology Group
Nizar Smaoui	Abbvie, Chicago, IL, United States	Clinical Groups	Gastroenterology Group
Fedik Rahimov	Abbvie, Chicago, IL, United States	Clinical Groups	Gastroenterology Group
Anne Lehtonen	Abbvie, Chicago, IL, United States	Clinical Groups	Gastroenterology Group
Tim Lu	Genentech, San Francisco, CA, United States	Clinical Groups	Gastroenterology Group
Natalie Bowers	Genentech, San Francisco, CA, United States	Clinical Groups	Gastroenterology Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Gastroenterology Group
Linda McCarthy	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Gastroenterology Group
Amy Hart	Janssen Research & Development, LLC, Spring House, PA, United States	Clinical Groups	Gastroenterology Group
	Janssen Research & Development, LLC, Spring House,	Clinical	Gastroenterology

Jason Miller	Merck, Kenilworth, NJ, United States	Clinical Groups	Gastroenterology Group
Kirsi Kalpala	Pfizer, New York, NY, United States	Clinical Groups	Gastroenterology Group
Melissa Miller	Pfizer, New York, NY, United States	Clinical Groups	Gastroenterology Group
Xinli Hu	Pfizer, New York, NY, United States	Clinical Groups	Gastroenterology Group
Kari Eklund	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Rheumatology Group
Antti Palomäki	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Rheumatology Group
Pia Isomäki	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Rheumatology Group
Laura Pirilä	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Rheumatology Group
Oili Kaipiainen- Seppänen	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Rheumatology Group
Johanna Huhtakangas	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Rheumatology Group
Nina Mars	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Rheumatology Group
Ali Abbasi	Abbvie, Chicago, IL, United States	Clinical Groups	Rheumatology Group
Jeffrey Waring	Abbvie, Chicago, IL, United States	Clinical Groups	Rheumatology Group
Fedik Rahimov	Abbvie, Chicago, IL, United States	Clinical Groups	Rheumatology Group
Apinya Lertratanakul	Abbvie, Chicago, IL, United States	Clinical Groups	Rheumatology Group
Nizar Smaoui	Abbvie, Chicago, IL, United States	Clinical Groups	Rheumatology Group
Anne Lehtonen	Abbvie, Chicago, IL, United States	Clinical Groups	Rheumatology Group
Coralie Viollet	AstraZeneca, Cambridge, United Kingdom	Clinical Groups	Rheumatology Group
Marla Hochfeld	Bristol Myers Squibb, New York, NY, United States	Clinical Groups	Rheumatology Group
Natalie Bowers	Genentech, San Francisco, CA, United States	Clinical Groups	Rheumatology Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Rheumatology Group
Jorge Esparza Gordillo	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Rheumatology Group
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Clinical Groups	Rheumatology Group
Dawn Waterworth	Janssen Research & Development, LLC, Spring House, PA, United States	Clinical Groups	Rheumatology Group
Fabiana Farias	Merck, Kenilworth, NJ, United States	Clinical Groups	Rheumatology Group
Kirsi Kalpala	Pfizer, New York, NY, United States	Clinical Groups	Rheumatology Group
Nan Bing	Pfizer, New York, NY, United States	Clinical Groups	Rheumatology Group
Xinli Hu	Pfizer, New York, NY, United States	Clinical Groups	Rheumatology Group
Tarja Laitinen	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Pulmonology Group
Margit Pelkonen	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Pulmonology Group
Paula Kauppi	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Pulmonology Group
Hannu Kankaanranta	University of Gothenburg, Gothenburg, Sweden/ Seinäjoki Central Hospital, Seinäjoki, Finland/ Tampere University, Tampere, Finland	Clinical Groups	Pulmonology Group
Terttu Harju	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Pulmonology Group
Riitta Lahesmaa	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Pulmonology Group
Nizar Smaoui	Abbvie, Chicago, IL, United States	Clinical Groups	Pulmonology Group
Coralie Viollet	AstraZeneca, Cambridge, United Kingdom	Clinical Groups	Pulmonology Group

<u> </u>			.
Susan Eaton	Biogen, Cambridge, MA, United States	Clinical Groups	Pulmonology Group
Hubert Chen	Genentech, San Francisco, CA, United States	Clinical Groups	Pulmonology Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Pulmonology
Natalie Bowers	Genentech, San Francisco, CA, United States	Clinical	Group Pulmonology
Joanna Betts	GlaxoSmithKline, Brentford, United Kingdom	Groups Clinical	Group Pulmonology
		Groups	Group
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Clinical Groups	Pulmonology Group
Rajashree Mishra	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Pulmonology Group
Majd Mouded	Novartis, Basel, Switzerland	Clinical	Pulmonology
Debby Ngo	Novartis, Basel, Switzerland	Groups Clinical	Group Pulmonology
Teemu Niiranen	Finnish Institute for Health and Welfare (THL), Helsinki,	Groups Clinical	Group Cardiometabolic
	Finland	Groups	Diseases Group
Felix Vaura	Finnish Institute for Health and Welfare (THL), Helsinki, Finland	Clinical Groups	Cardiometabolic Diseases Group
Veikko Salomaa	Finnish Institute for Health and Welfare (THL), Helsinki,	Clinical	Cardiometabolic
	Finland	Groups	Diseases Group
Kaj Metsärinne	Hospital District of Southwest Finland, Turku, Finland	Clinical	Cardiometabolic
		Groups	Diseases Group
Jenni Aittokallio	Hospital District of Southwest Finland, Turku, Finland	Clinical	Cardiometabolic
Mika Kähönen	Pirkanmaa Hospital District, Tampere, Finland	Groups Clinical	Diseases Group Cardiometabolic
	T interimate hospital District, Tampere, Timanu	Groups	Diseases Group
Jussi Hernesniemi	Pirkanmaa Hospital District, Tampere, Finland	Clinical	Cardiometabolic
		Groups	Diseases Group
Daniel Gordin	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical	Cardiometabolic
luba Cinicala	Lisenitel District of Lislainki and Liveinees, Lislainki, Finland	Groups	Diseases Group
Juha Sinisalo	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Cardiometabolic Diseases Group
Marja-Riitta	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical	Cardiometabolic
Taskinen		Groups	Diseases Group
Tiinamaija Tuomi	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical	Cardiometabolic
Timo Hiltunen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Groups Clinical	Diseases Group Cardiometabolic
rino rintarien		Groups	Diseases Group
Jari Laukkanen	Central Finland Health Care District, Jyväskylä, Finland	Clinical	Cardiometabolic
		Groups	Diseases Group
Amanda Elliott	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute, Cambridge, MA, USA and Massachusetts General Hospital, Boston, MA, USA	Clinical Groups	Cardiometabolic Diseases Group
Mary Pat Reeve	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Cardiometabolic Diseases Group
Sanni Ruotsalainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	Clinical	Cardiometabolic
	University of Helsinki, Helsinki, Finland	Groups	Diseases Group
Dirk Paul	Astra Zeneca, Cambridge, United Kingdom	Clinical Groups	Cardiometabolic Diseases Group
Natalie Bowers	Genentech, San Francisco, CA, United States	Clinical	Cardiometabolic
Rion Pendergrass	Genentech, San Francisco, CA, United States	Groups Clinical	Diseases Group Cardiometabolic
		Groups	Diseases Group
Audrey Chu	GlaxoSmithKline, Brentford, United Kingdom	Clinical	Cardiometabolic
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Groups Clinical	Diseases Group Cardiometabolic
Dormot Doilly	Janagan Baggarah & Davidanment 11.0. Destars MA	Groups	Diseases Group
Dermot Reilly	Janssen Research & Development, LLC, Boston, MA, United States	Clinical Groups	Cardiometabolic Diseases Group
Mike Mendelson	Novartis, Boston, MA, United States	Clinical	Cardiometabolic
		Groups	Diseases Group
Jaakko Parkkinen	Pfizer, New York, NY, United States	Clinical	Cardiometabolic
		Groups	Diseases Group
Melissa Miller	Pfizer, New York, NY, United States	Clinical	Cardiometabolic
Tuomo Meretoja	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Groups Clinical	Diseases Group Oncology Group
naonio meretoja		Groups	Shoology Group

Heikki Joensuu	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Oncology Group
Olli Carpén	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Oncology Group
Johanna Mattson	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Oncology Group
Eveliina Salminen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Oncology Group
Annika Auranen	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Oncology Group
Peeter Karihtala	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Oncology Group
Päivi Auvinen	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Oncology Group
Klaus Elenius	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Oncology Group
Johanna Schleutker	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Oncology Group
Esa Pitkänen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Oncology Group
Nina Mars	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Oncology Group
Mark Daly	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of	Clinical Groups	Oncology Group
Relja Popovic	MIT and Harvard; Massachusetts General Hospital Abbvie, Chicago, IL, United States	Clinical	Oncology Group
Jeffrey Waring	Abbvie, Chicago, IL, United States	Groups Clinical Groups	Oncology Group
Bridget Riley-Gillis	Abbvie, Chicago, IL, United States	Groups Clinical Groups	Oncology Group
Anne Lehtonen	Abbvie, Chicago, IL, United States	Clinical Groups	Oncology Group
Margarete Fabre	AstraZeneca, Cambridge, United Kingdom	Clinical Groups	Oncology Group
Jennifer Schutzman	Genentech, San Francisco, CA, United States	Clinical Groups	Oncology Group
Natalie Bowers	Genentech, San Francisco, CA, United States	Clinical Groups	Oncology Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Oncology Group
Diptee Kulkarni	GlaxoSmithKline, Brentford, United Kingdom	Clinical Groups	Oncology Group
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Clinical Groups	Oncology Group
Alessandro Porello	Janssen Research & Development, LLC, Spring House, PA, United States	Clinical Groups	Oncology Group
Andrey Loboda	Merck, Kenilworth, NJ, United States	Clinical Groups	Oncology Group
Heli Lehtonen	Pfizer, New York, NY, United States	Clinical Groups	Oncology Group
Stefan McDonough	Pfizer, New York, NY, United States	Clinical Groups	Oncology Group
Sauli Vuoti	Janssen-Cilag Oy, Espoo, Finland	Clinical Groups	Oncology Group
Kai Kaarniranta	Northern Savo Hospital District, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland	Clinical Groups	Opthalmology Group
Joni A Turunen	Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland	Clinical Groups	Opthalmology Group
Terhi Ollila	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Opthalmology Group
Hannu Uusitalo	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Opthalmology Group
Juha Karjalainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Opthalmology Group
Esa Pitkänen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Opthalmology Group
Mengzhen Liu	Abbvie, Chicago, IL, United States	Clinical Groups	Opthalmology Group
Heiko Runz	Biogen, Cambridge, MA, United States	Clinical Groups	Opthalmology Group

Stephanie Loomis	Biogen, Cambridge, MA, United States	Clinical Groups	Opthalmology Group
Erich Strauss	Genentech, San Francisco, CA, United States	Clinical	Opthalmology
Natalie Bowers	Genentech, San Francisco, CA, United States	Groups Clinical	Group Opthalmology
Hao Chen	Genentech, San Francisco, CA, United States	Groups Clinical	Group Opthalmology
Rion Pendergrass	Genentech, San Francisco, CA, United States	Groups Clinical	Group Opthalmology
Kaisa Tasanen	Northern Ostrobothnia Hospital District, Oulu, Finland	Groups Clinical	Group Dermatology
	Northern Ostrobothnia Hospital District, Oulu, Finland	Groups	Group
Laura Huilaja	• • •	Clinical Groups	Dermatology Group
Katariina Hannula- Jouppi	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Dermatology Group
Teea Salmi	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Dermatology Group
Sirkku Peltonen	Hospital District of Southwest Finland, Turku, Finland	Clinical	Dermatology
Leena Koulu	Hospital District of Southwest Finland, Turku, Finland	Groups Clinical	Group Dermatology
Nizar Smaoui	Abbvie, Chicago, IL, United States	Groups Clinical	Group Dermatology
		Groups	Group
Fedik Rahimov	Abbvie, Chicago, IL, United States	Clinical Groups	Dermatology Group
Anne Lehtonen	Abbvie, Chicago, IL, United States	Clinical	Dermatology
David Choy	Genentech, San Francisco, CA, United States	Groups Clinical	Group Dermatology
-		Groups	Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Dermatology Group
Dawn Waterworth	Janssen Research & Development, LLC, Spring House, PA, United States	Clinical Groups	Dermatology Group
Kirsi Kalpala	Pfizer, New York, NY, United States	Clinical	Dermatology
Ying Wu	Pfizer, New York, NY, United States	Groups Clinical	Group Dermatology
Pirkko Pussinen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Groups Clinical	Group Odontology
		Groups	Group
Aino Salminen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Odontology Group
Tuula Salo	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Odontology Group
David Rice	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical	Odontology
Pekka Nieminen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Groups Clinical	Group Odontology
		Groups	Group
Ulla Palotie	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Odontology Group
Maria Siponen	Northern Savo Hospital District, Kuopio, Finland	Clinical	Odontology
Liisa Suominen	Northern Savo Hospital District, Kuopio, Finland	Groups Clinical	Group Odontology
	· · ·	Groups	Group
Päivi Mäntylä	Northern Savo Hospital District, Kuopio, Finland	Clinical Groups	Odontology Group
Ulvi Gursoy	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Odontology Group
Vuokko Anttonen	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical	Odontology
Kirsi Sipilä	Research Unit of Oral Health Sciences Faculty of	Groups Clinical	Group Odontology
	Medicine, University of Oulu, Oulu, Finland; Medical Research Center, Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland	Groups	Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Odontology Group
Hannele Laivuori	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	Clinical	Women's Health
	University of Helsinki, Helsinki, Finland	Groups	and Reproduction Group
Venla Kurra	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Women's Health

			Reproduction Group
Laura Kotaniemi- Talonen	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	Women's Health and Reproduction Group
Oskari Heikinheimo	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
llkka Kalliala	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Lauri Aaltonen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Varpu Jokimaa	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	Women's Health and Reproduction Group
Johannes Kettunen	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Marja Vääräsmäki	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Outi Uimari	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Laure Morin- Papunen	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Maarit Niinimäki	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Terhi Piltonen	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Katja Kivinen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Elisabeth Widen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Taru Tukiainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Mary Pat Reeve	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Mark Daly	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard; Massachusetts General Hospital	Clinical Groups	Women's Health and Reproduction Group
Niko Välimäki	University of Helsinki, Helsinki, Finland	Clinical Groups	Women's Health and Reproduction Group
Eija Laakkonen	University of Jyväskylä, Jyväskylä, Finland	Clinical Groups	Women's Health and Reproduction Group

Jaakko Tyrmi	University of Oulu, Oulu, Finland / University of Tampere, Tampere, Finland	Clinical Groups	Women's Health and Reproduction
Heidi Silven	University of Oulu, Oulu, Finland	Clinical Groups	Group Women's Health and Reproduction Group
Eeva Sliz	University of Oulu, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Riikka Arffman	University of Oulu, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Susanna Savukoski	University of Oulu, Oulu, Finland	Clinical Groups	Women's Health and Reproduction Group
Triin Laisk	Estonian biobank, Tartu, Estonia	Clinical Groups	Women's Health and Reproduction Group
Natalia Pujol	Estonian biobank, Tartu, Estonia	Clinical Groups	Women's Health and Reproduction Group
Mengzhen Liu	Abbvie, Chicago, IL, United States	Clinical Groups	Women's Health and Reproduction Group
Bridget Riley-Gillis	Abbvie, Chicago, IL, United States	Clinical Groups	Women's Health and Reproduction Group
Rion Pendergrass	Genentech, San Francisco, CA, United States	Clinical Groups	Women's Health and Reproduction Group
Janet Kumar	GlaxoSmithKline, Collegeville, PA, United States	Clinical Groups	Women's Health and Reproduction Group
Kirsi Auro	GlaxoSmithKline, Espoo, Finland	Clinical Groups	Women's Health and Reproduction Group
liris Hovatta	University of Helsinki, Finland	Clinical	Depression
Chia-Yen Chen	Biogen, Cambridge, MA, United States	Groups Clinical	group Depression
		Groups	group
Erkki Isometsä	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	Depression group
Hanna Ollila	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	Clinical Groups	Depression group
Jaana Suvisaari	Finnish Institute for Health and Welfare (THL), Helsinki,	Clinical	Depression
Thomas Damm Als	Finland Aarhus University, Denmark	Groups Clinical	group Depression
Antti Mäkitie	Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland	Groups Clinical Groups	group ENT (ear, nose and throath) Group
Argyro Bizaki- Vallaskangas	Pirkanmaa Hospital District, Tampere, Finland	Clinical Groups	ENT (ear, nose and throath) Group
Sanna Toppila-Salmi	University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland and Department of Allergy, Helsinki University Hospital and University of Helsinki, Finland	Clinical Groups	ENT (ear, nose and throath) Group
Tytti Willberg	Hospital District of Southwest Finland, Turku, Finland	Clinical Groups	ENT (ear, nose and throath) Group

Elmo Saarentaus	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	Clinical	ENT (ear, nose
	University of Helsinki, Helsinki, Finland	Groups	and throath) Group
Antti Aarnisalo	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	ENT (ear, nose and throath) Group
Eveliina Salminen	Hospital District of Helsinki and Uusimaa, Helsinki, Finland	Clinical Groups	ENT (ear, nose and throath) Group
Elisa Rahikkala	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	ENT (ear, nose and throath) Group
Johannes Kettunen	Northern Ostrobothnia Hospital District, Oulu, Finland	Clinical Groups	ENT (ear, nose and throath) Group
Kristiina Aittomäki	Department of Medical Genetics, Helsinki University Central Hospital, Helsinki, Finland	Clinical Groups	POI (premature ovarian failure) Group
Fredrik Åberg	Transplantation and Liver Surgery Clinic, Helsinki University Hospital, Helsinki University, Helsinki, Finland	Clinical Groups	LiverScore Group
Mitja Kurki	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute, Cambridge, MA, United States	FinnGen Analysis working group	FinnGen Analysis working group
Samuli Ripatti	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Mark Daly	Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard; Massachusetts General Hospital	FinnGen Analysis working group	FinnGen Analysis working group
Juha Karjalainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Aki Havulinna	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Juha Mehtonen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Priit Palta	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Shabbeer Hassan	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Pietro Della Briotta Parolo	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Wei Zhou	Broad Institute, Cambridge, MA, United States	FinnGen Analysis working group	FinnGen Analysis working group
Mutaamba Maasha	Broad Institute, Cambridge, MA, United States	FinnGen Analysis working group	FinnGen Analysis working group
Shabbeer Hassan	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Susanna Lemmelä	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group

Manuel Rivas	University of Stanford, Stanford, CA, United States	FinnGen Analysis working	FinnGen Analysis working group
Aarno Palotie	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	group FinnGen Analysis working group	FinnGen Analysis working group
Aoxing Liu	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Arto Lehisto	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Andrea Ganna	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Vincent Llorens	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Hannele Laivuori	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Taru Tukiainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Mary Pat Reeve	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Henrike Heyne	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Nina Mars	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Joel Rämö	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Elmo Saarentaus	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Hanna Ollila	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Rodos Rodosthenous	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Satu Strausz	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Tuula Palotie	University of Helsinki and Hospital District of Helsinki and Uusimaa, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Kimmo Palin	University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group

Javier Garcia- Tabuenca	University of Tampere, Tampere, Finland	FinnGen Analysis working	FinnGen Analysis working group
Harri Siirtola	University of Tampere, Tampere, Finland	group FinnGen Analysis working group	FinnGen Analysis working group
Tuomo Kiiskinen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Jiwoo Lee	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute, Cambridge, MA, United States	FinnGen Analysis working group	FinnGen Analysis working group
Kristin Tsuo	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute, Cambridge, MA, United States	FinnGen Analysis working group	FinnGen Analysis working group
Amanda Elliott	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute, Cambridge, MA, USA and Massachusetts General Hospital, Boston, MA, USA	FinnGen Analysis working group	FinnGen Analysis working group
Kati Kristiansson	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Mikko Arvas	Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Kati Hyvärinen	Finnish Red Cross Blood Service, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Jarmo Ritari	Finnish Red Cross Blood Service, Helsinki, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Olli Carpén	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	FinnGen Analysis working group	FinnGen Analysis working group
Johannes Kettunen	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Katri Pylkäs	University of Oulu, Oulu, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Eeva Sliz	University of Oulu, Oulu, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Minna Karjalainen	University of Oulu, Oulu, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Tuomo Mantere	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Eeva Kangasniemi	Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Sami Heikkinen	University of Eastern Finland, Kuopio, Finland	FinnGen Analysis working group	FinnGen Analysis working group

Arto Mannermaa	Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Eija Laakkonen	University of Jyväskylä, Jyväskylä, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Nina Pitkänen	Auria Biobank / University of Turku / Hospital District of Southwest Finland, Turku, Finland	FinnGen Analysis working group	FinnGen Analysis working group
Samuel Lessard	Translational Sciences, Sanofi R&D, Framingham, MA, USA	FinnGen Analysis working group	FinnGen Analysis working group
Clément Chatelain	Translational Sciences, Sanofi R&D, Framingham, MA, USA	FinnGen Analysis working group	FinnGen Analysis working group
Lila Kallio	Auria Biobank / University of Turku / Hospital District of Southwest Finland, Turku, Finland	Biobank directors	Biobank directors
Tiina Wahlfors	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	Biobank directors	Biobank directors
Jukka Partanen	Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland	Biobank directors	Biobank directors
Eero Punkka	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	Biobank directors	Biobank directors
Raisa Serpi	Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland	Biobank directors	Biobank directors
Sanna Siltanen	Finnish Clinical Biobank Tampere / University of Tampere /	Biobank	Biobank
Veli-Matti Kosma	Pirkanmaa Hospital District, Tampere, Finland Biobank of Eastern Finland / University of Eastern Finland	directors Biobank	directors Biobank
Teijo Kuopio	/ Northern Savo Hospital District, Kuopio, Finland Central Finland Biobank / University of Jyväskylä / Central	directors Biobank	directors Biobank
Anu Jalanko	Finland Health Care District, Jyväskylä, Finland Institute for Molecular Medicine Finland (FIMM), HiLIFE,	directors FinnGen	directors Administration
Huei-Yi Shen	University of Helsinki, Helsinki, Finland Institute for Molecular Medicine Finland (FIMM), HiLIFE,	Teams FinnGen Teams	Administration
Risto Kajanne	University of Helsinki, Helsinki, Finland Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Administration
Mervi Aavikko	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Administration
Helen Cooper	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Administration
Denise Öller	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Administration
Rasko Leinonen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK	FinnGen Teams	Administration
Henna Palin	Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland	FinnGen Teams	Administration
Malla-Maria Linna	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	FinnGen Teams	Administration
Mitja Kurki	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute, Cambridge, MA, United States	FinnGen Teams	Analysis
Juha Karjalainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Analysis
Pietro Della Briotta Parolo	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Analysis
Arto Lehisto	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Analysis
Juha Mehtonen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Analysis
Wei Zhou	Broad Institute, Cambridge, MA, United States	FinnGen Teams	Analysis
Masahiro Kanai	Broad Institute, Cambridge, MA, United States	FinnGen Teams	Analysis
Mutaamba Maasha	Broad Institute, Cambridge, MA, United States	FinnGen Teams	Analysis

Zhili Zheng	Broad Institute, Cambridge, MA, United States	FinnGen Teams	Analysis
Hannele Laivuori	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Clinical Endpoint Development
Aki Havulinna	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	FinnGen	Clinical Endpoint
	University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare (THL), Helsinki, Finland	Teams	Development
Susanna Lemmelä	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Clinical Endpoint Development
Tuomo Kiiskinen	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	FinnGen	Clinical Endpoint
L Elica Lahtala	University of Helsinki, Helsinki, Finland Institute for Molecular Medicine Finland (FIMM), HiLIFE,	Teams FinnGen	Development
L. Elisa Lahtela	University of Helsinki, Helsinki, Finland	Teams	Clinical Endpoint Development
Mari Kaunisto	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Communication
Elina Kilpeläinen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	E-Science
Timo P. Sipilä	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	E-Science
Oluwaseun	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	FinnGen	E-Science
Alexander Dada	University of Helsinki, Helsinki, Finland	Teams	
Awaisa Ghazal	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	FinnGen	E-Science
A	University of Helsinki, Helsinki, Finland	Teams	F 0.1
Anastasia Kytölä	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	E-Science
Rigbe Weldatsadik	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	E-Science
Sanni Ruotsalainen	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	E-Science
Kati Donner	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Genotyping
Timo P. Sipilä	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Genotyping
Anu Loukola	Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki	FinnGen Teams	Sample Collection Coordination
Päivi Laiho	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Tuuli Sistonen	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Essi Kaiharju	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Markku Laukkanen	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Elina Järvensivu	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Sini Lähteenmäki	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Lotta Männikkö	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Sample Logistics
Regis Wong	THL Biobank / Finnish Institute for Health and Welfare	FinnGen	Sample Logistics
Auli Toivola	(THL), Helsinki, Finland THL Biobank / Finnish Institute for Health and Welfare	Teams FinnGen	Sample Logistics
	(THL), Helsinki, Finland THL Biobank / Finnish Institute for Health and Welfare	Teams	
Minna Brunfeldt	(THL), Helsinki, Finland	FinnGen Teams	Registry Data Operations
Hannele Mattsson	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Registry Data Operations
Kati Kristiansson	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Registry Data Operations
Susanna Lemmelä	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Registry Data Operations
Sami Koskelainen	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Registry Data Operations
Tero Hiekkalinna	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Registry Data Operations
Teemu Paajanen	THL Biobank / Finnish Institute for Health and Welfare (THL), Helsinki, Finland	FinnGen Teams	Registry Data Operations
Priit Palta	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Sequencing
Kalle Pärn	Institute for Molecular Medicine Finland (FIMM), HiLIFE,	FinnGen	Sequencing
	University of Helsinki, Helsinki, Finland	Teams	Informatics

Mart Kals	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Sequencing Informatics
Shuang Luo	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Sequencing Informatics
Tarja Laitinen	Pirkanmaa Hospital District, Tampere, Finland	FinnGen Teams	Trajectory
Mary Pat Reeve	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Trajectory
Shanmukha Sampath Padmanabhuni	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Trajectory
Marianna Niemi	University of Tampere, Tampere, Finland	FinnGen Teams	Trajectory
Harri Siirtola	University of Tampere, Tampere, Finland	FinnGen Teams	Trajectory
Javier Gracia- Tabuenca	University of Tampere, Tampere, Finland	FinnGen Teams	Trajectory
Mika Helminen	University of Tampere, Tampere, Finland	FinnGen Teams	Trajectory
Tiina Luukkaala	University of Tampere, Tampere, Finland	FinnGen Teams	Trajectory
lida Vähätalo	University of Tampere, Tampere, Finland	FinnGen Teams	Trajectory
Jyrki Tammerluoto	Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland	FinnGen Teams	Data protection officer
Marco Hautalahti	Finnish Biobank Cooperative - FINBB	FinnGen Teams	FINBB - Finnish biobank cooperative
Johanna Mäkelä	Finnish Biobank Cooperative - FINBB	FinnGen Teams	FINBB - Finnish biobank cooperative
Sarah Smith	Finnish Biobank Cooperative - FINBB	FinnGen Teams	FINBB - Finnish biobank cooperative
Tom Southerington	Finnish Biobank Cooperative - FINBB	FinnGen Teams	FINBB - Finnish biobank cooperative
Petri Lehto	Finnish Biobank Cooperative - FINBB	FinnGen Teams	FINBB - Finnish biobank cooperative

Table S12 A list of Estonian Biobank Research Team authors and their affiliations

Full Name	Affiliation
Andres Metspalu	Estonian Genome Centre, Institute of Genomics,
	University of Tartu, Tartu, Estonia
Mari Nelis	Estonian Genome Centre, Institute of Genomics,
	University of Tartu, Tartu, Estonia
Lili Milani	Estonian Genome Centre, Institute of Genomics,
	University of Tartu, Tartu, Estonia
Reedik Mägi	Estonian Genome Centre, Institute of Genomics,
	University of Tartu, Tartu, Estonia
Georgi Hudjashov	Estonian Genome Centre, Institute of Genomics,
	University of Tartu, Tartu, Estonia
Tõnu Esko	Estonian Genome Centre, Institute of Genomics,
	University of Tartu, Tartu, Estonia

References

- 1. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. *PLoS Comput Biol* **11**, e1004219 (2015).
- 2. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nat Commun* **8**, 1826 (2017).
- 3. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. *Am J Hum Genet* **88**, 76–82 (2011).
- 4. Bjornsdottir, G. *et al.* Rare SLC13A1 variants associate with intervertebral disc disorder highlighting role of sulfate in disc pathology. *Nat Commun* **13**, 634 (2022).
- 5. Williams, F. M. K. *et al.* Novel genetic variants associated with lumbar disc degeneration in northern Europeans: a meta-analysis of 4600 subjects. *Ann Rheum Dis* **72**, 1141–8 (2013).
- 6. Bjornsdottir, G. *et al.* Sequence variant at 8q24.21 associates with sciatica caused by lumbar disc herniation. *Nat Commun* **8**, 14265 (2017).
- 7. Song, Y.-Q. *et al.* Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. *J Clin Invest* **123**, 4909–17 (2013).
- 8. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. *Nucleic Acids Res* **44**, D67–D72 (2016).
- 9. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res* **47**, D506–D515 (2019).
- 10. Stanfill, A. G. & Cao, X. Enhancing Research Through the Use of the Genotype-Tissue Expression (GTEx) Database. *Biol Res Nurs* **23**, 533–540 (2021).
- 11. Vimalraj, S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. *Gene* vol. 754 Preprint at https://doi.org/10.1016/j.gene.2020.144855 (2020).
- 12. Zehra, U. *et al.* Mechanisms and clinical implications of intervertebral disc calcification. *Nature Reviews Rheumatology* vol. 18 352–362 Preprint at https://doi.org/10.1038/s41584-022-00783-7 (2022).
- 13. Hristova, G. I. *et al.* Calcification in human intervertebral disc degeneration and scoliosis. *Journal of Orthopaedic Research* **29**, 1888–1895 (2011).
- 14. Freemont, A. J. *et al.* Nerve growth factor expression and innervation of the painful intervertebral disc. *Journal of Pathology* **197**, 286–292 (2002).
- 15. Abe, Y. et al. Proinflammatory Cytokines Stimulate the Expression of Nerve Growth Factor by Human Intervertebral Disc Cells. SPINE vol. 32.
- 16. Papoutsoglou, P. *et al.* The TGFB2-AS1 lncRNA Regulates TGF-β Signaling by Modulating Corepressor Activity. *Cell Rep* **28**, 3182-3198.e11 (2019).
- Chen, S. *et al.* TGF-β signaling in intervertebral disc health and disease. *Osteoarthritis and Cartilage* vol. 27 1109–1117 Preprint at https://doi.org/10.1016/j.joca.2019.05.005 (2019).
- Doyard, M. *et al.* Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells. *Osteoporosis International* 23, 2435–2445 (2012).
- 19. Sun, C., Ma, Q., Yin, J., Zhang, H. & Liu, X. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling. *Exp Mol Med* **53**, 1068–1079 (2021).

- 20. Riester, S. M. *et al.* RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. *J Orthop Res* **36**, 1356–1369 (2018).
- 21. Barnea, G. *et al.* The genetic design of signaling cascades to record receptor activation. *Proceedings of the National Academy of Sciences* **105**, 64–69 (2008).
- 22. Hu, S. *et al.* Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. *Aging* **12**, 11732–11753 (2020).
- 23. Luo, J., Sun, P., Siwko, S., Liu, M. & Xiao, J. The role of GPCRs in bone diseases and dysfunctions. *Bone Res* **7**, 19 (2019).
- Li, J. *et al.* Chemerin located in bone marrow promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β-catenin axis in mice. *J Cell Physiol* 236, 6042–6054 (2021).
- Sivan, S. S., Wachtel, E. & Roughley, P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. *Biochimica et Biophysica Acta General Subjects* vol. 1840 3181–3189 Preprint at https://doi.org/10.1016/j.bbagen.2014.07.013 (2014).
- 26. Wei, Q., Zhang, X., Zhou, C., Ren, Q. & Zhang, Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. *Connective Tissue Research* vol. 60 209–218 Preprint at https://doi.org/10.1080/03008207.2018.1499731 (2019).
- Honda, T., Yamamoto, H., Ishii, A. & Inui, M. PDZRN3 Negatively Regulates BMP-2induced Osteoblast Differentiation through Inhibition of Wnt Signaling. *Mol Biol Cell* 21, 3269–3277 (2010).
- Yuan, W. *et al.* Attenuation of the degenerative effects of endothelin-1 on cartilaginous end plate cells by the endothelin receptor antagonist BQ-123 via the Wnt/β-catenin signaling pathway. *The Spine Journal* **18**, 1669–1677 (2018).
- 29. Wu, Z. L. *et al.* Role of the Wnt pathway in the formation, development, and degeneration of intervertebral discs. *Pathology Research and Practice* vol. 220 Preprint at https://doi.org/10.1016/j.prp.2021.153366 (2021).
- 30. Sinnott-Armstrong, N. *et al.* A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density. *Cell Metab* **33**, 615-628.e13 (2021).
- 31. Wang, L. *et al.* By inhibiting ADCY5, miR-18a-3p promotes osteoporosis and possibly contributes to spinal fracture. *Biochem Biophys Res Commun* **550**, 49–55 (2021).
- 32. Li, X. *et al.* The adaptor protein Nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Racl through an atypical mechanism. *Journal of Biological Chemistry* **277**, 37788–37797 (2002).
- 33. Ye, F. *et al.* Role of SHOX2 in the development of intervertebral disc degeneration. *Journal of Orthopaedic Research* **35**, 1047–1057 (2017).
- 34. Guo, W. *et al.* Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration. *Mol Med Rep* **16**, 8665–8672 (2017).
- 35. Zhang, L. & Cao, W. Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases. *J Mol Med* **100**, 43–51 (2022).
- 36. Barter, M. J. *et al.* HDAC-mediated control of ERK- and PI3K-dependent TGF-βinduced extracellular matrix-regulating genes. *Matrix Biology* **29**, 602–612 (2010).
- 37. Schoepflin, Z. R., Shapiro, I. M. & Risbud, M. V. Class I and IIa HDACs Mediate HIF-1α Stability Through PHD2-Dependent Mechanism, While HDAC6, a Class IIb Member,

Promotes HIF-1α Transcriptional Activity in Nucleus Pulposus Cells of the Intervertebral Disc. *J Bone Miner Res* **31**, 1287–99 (2016).

- Schroeder, T. M., Kahler, R. A., Li, X. & Westendorf, J. J. Histone Deacetylase 3 Interacts with Runx2 to Repress the Osteocalcin Promoter and Regulate Osteoblast Differentiation. *Journal of Biological Chemistry* 279, 41998–42007 (2004).
- Ellman, M. B., An, H. S., Muddasani, P. & Im, H.-J. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. *Gene* 420, 82–9 (2008).
- 40. Lu, S. & Lin, C.-W. Lentivirus-mediated transfer of gene encoding fibroblast growth factor-18 inhibits intervertebral disc degeneration. *Exp Ther Med* **22**, 856 (2021).
- 41. Hu, S., Li, Y., Wang, B. & Peng, K. TRIM38 protects chondrocytes from IL-1β-induced apoptosis and degeneration via negatively modulating nuclear factor (NF)-κB signaling. *Int Immunopharmacol* **99**, (2021).
- 42. Yang, W. *et al.* Interleukin-1β in intervertebral disk degeneration. *Clinica Chimica Acta* **450**, 262–272 (2015).
- 43. Lawson, L. Y. & Harfe, B. D. Developmental mechanisms of intervertebral disc and vertebral column formation. *Wiley Interdiscip Rev Dev Biol* **6**, e283 (2017).
- 44. Cloyd, J. M. & Elliott, D. M. *Elastin Content Correlates With Human Disc Degeneration in the Anulus Fibrosus and Nucleus Pulposus*. *SPINE* vol. 32.
- 45. Bassermann, F. *et al.* NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. *Cell* **122**, 45–57 (2005).
- 46. Català-Senent, J. F. *et al.* A deep transcriptome meta-analysis reveals sex differences in multiple sclerosis. *Neurobiol Dis* **181**, 106113 (2023).
- 47. Mullin, B. H. *et al.* Genetic regulatory mechanisms in human osteoclasts suggest a role for the STMP1 and DCSTAMP genes in Paget's disease of bone. *Sci Rep* **9**, 1052 (2019).
- 48. Zhang, R. *et al.* Tumor Suppressor Candidate 1 Suppresses Cell Growth and Predicts Better Survival in Glioblastoma. *Cell Mol Neurobiol* **37**, 37–42 (2017).
- 49. Zhang, K. *et al.* Hypertrophy and Fibrosis of the Ligamentum Flavum in Lumbar Spinal Stenosis is Associated With Increased Expression of LPA and LPAR1. *Clinical Spine Surgery: A Spine Publication* **30**, E189–E191 (2017).
- 50. Xiao, D., Su, X., Gao, H., Li, X. & Qu, Y. The Roles of Lpar1 in Central Nervous System Disorders and Diseases. *Front Neurosci* **15**, (2021).
- 51. Tonello, R. *et al.* The contribution of endocytosis to sensitization of nociceptors and synaptic transmission in nociceptive circuits. (2023) doi:10.1097/j.pain.0000000002826.
- 52. Chang, W.-M. *et al.* AKR1C1 controls cisplatin-resistance in head and neck squamous cell carcinoma through cross-talk with the STAT1/3 signaling pathway. *Journal of Experimental & Clinical Cancer Research* **38**, 245 (2019).
- 53. Jiang, W. *et al.* Single-cell atlas unveils cellular heterogeneity and novel markers in human neonatal and adult intervertebral discs. *iScience* **25**, 104504 (2022).
- 54. Graham, J. R. *et al.* Serine protease HTRA1 antagonizes transforming growth factor-β signaling by cleaving its receptors and loss of HTRA1 in vivo enhances bone formation. *PLoS One* **8**, (2013).
- 55. Grau, S. *et al.* The Role of Human HtrA1 in Arthritic Disease. *Journal of Biological Chemistry* **281**, 6124–6129 (2006).

- Liang, E., Lu, Y., Shi, Y., Zhou, Q. & Zhi, F. MYEOV increases HES1 expression and promotes pancreatic cancer progression by enhancing SOX9 transactivity. *Oncogene* 39, 6437–6450 (2020).
- 57. An, Y. *et al.* Parathyroid hormone (PTH) promotes ADSC osteogenesis by regulating SIK2 and Wnt4. *Biochem Biophys Res Commun* **516**, 551–557 (2019).
- 58. Tan, Z. *et al.* Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. *PLoS Genet* **14**, e1007346 (2018).
- 59. Li, X. *et al.* Mechanism of SET8 Activates the Nrf2-KEAP1-ARE Signaling Pathway to Promote the Recovery of Motor Function after Spinal Cord Injury. *Mediators Inflamm* **2023**, 1–13 (2023).
- 60. Abbas, T. *et al.* CRL1-FBXO11 Promotes Cdt2 Ubiquitylation and Degradation and Regulates Pr-Set7/Set8-Mediated Cellular Migration. *Mol Cell* **49**, 1147–1158 (2013).
- 61. Vorstman, J. A. S. *et al.* A double hit implicates DIAPH3 as an autism risk gene. *Mol Psychiatry* **16**, 442–451 (2011).
- 62. Kawabata Galbraith, K. & Kengaku, M. Multiple roles of the actin and microtubuleregulating formins in the developing brain. *Neurosci Res* **138**, 59–69 (2019).
- 63. Montoliu-Gaya, L. *et al.* CA10 regulates neurexin heparan sulfate addition via a direct binding in the secretory pathway. *EMBO Rep* **22**, (2021).
- 64. Sterky, F. H. *et al.* Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. *Proceedings of the National Academy of Sciences* **114**, (2017).
- 65. Noborn, F. & Sterky, F. H. Role of neurexin heparan sulfate in the molecular assembly of synapses expanding the neurexin code? *FEBS Journal* vol. 290 252–265 Preprint at https://doi.org/10.1111/febs.16251 (2023).
- 66. Johnston, K. J. A. *et al.* Genome-wide association study of multisite chronic pain in UK biobank. *PLoS Genet* **15**, (2019).
- 67. Lyu, J. *et al.* Astemizole Inhibits mTOR Signaling and Angiogenesis by Blocking Cholesterol Trafficking. *Int J Biol Sci* **14**, 1175–1185 (2018).
- 68. Xu, J., Dang, Y., Ren, Y. R. & Liu, J. O. Cholesterol trafficking is required for mTOR activation in endothelial cells. *Proc Natl Acad Sci U S A* **107**, 4764–9 (2010).
- 69. David, G., Ciurea, A. V, Iencean, S. M. & Mohan, A. Angiogenesis in the degeneration of the lumbar intervertebral disc. *J Med Life* **3**, 154–61 (2010).
- 70. Cardo, L. F., de la Fuente, D. C. & Li, M. Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. *Mol Autism* **14**, 8 (2023).
- Xu, L. *et al.* Investigation of the 53 Markers in a DNA-Based Prognostic Test Revealing New Predisposition Genes for Adolescent Idiopathic Scoliosis. *Spine (Phila Pa 1976)* 40, 1086–1091 (2015).
- 72. Bu, G. *et al.* Increased expression of netrin-1 and its deleted in colorectal cancer receptor in human diseased lumbar intervertebral disc compared with autopsy control. *Spine (Phila Pa 1976)* **37**, 2074–2081 (2012).
- 73. Wakashima, T., Abe, K. & Kihara, A. Dual functions of the trans-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation. *J Biol Chem* **289**, 24736–48 (2014).
- 74. Çalışkan, M. *et al.* Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13. *Hum Mol Genet* **20**, 1285–1289 (2011).

- 75. Chughtai, S. *et al.* A multimodal mass spectrometry imaging approach for the study of musculoskeletal tissues. *Int J Mass Spectrom* **325–327**, 150–160 (2012).
- 76. Zhang, K. *et al.* Interleukin-18 Inhibition Protects Against Intervertebral Disc Degeneration via the Inactivation of Caspase-3/9 Dependent Apoptotic Pathways. *Immunol Invest* **51**, 1895–1907 (2022).
- 77. Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. *FEBS J* **288**, 2784–2835 (2021).
- 78. Radek, M. *et al.* Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. *Magn Reson Imaging* **34**, 376–380 (2016).
- 79. Amelot, A. & Mazel, C. The Intervertebral Disc: Physiology and Pathology of a Brittle Joint. *World Neurosurg* **120**, 265–273 (2018).
- 80. Yang, C. *et al.* Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. *Neuron* **105**, 276-292.e5 (2020).
- Strakova, J., Demizieux, L., Campenot, R. B., Vance, D. E. & Vance, J. E. Involvement of CTP:phosphocholine cytidylyltransferase-β2 in axonal phosphatidylcholine synthesis and branching of neurons. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids* 1811, 617–625 (2011).
- 82. Kohen, R. & Giger, R. J. Greasing the Wheels of Regeneration. *Neuron* **105**, 207–209 (2020).
- 83. Boeuf, S. *et al.* Enhanced ITM2A expression inhibits chondrogenic differentiation of mesenchymal stem cells. *Differentiation* **78**, 108–115 (2009).
- 84. Plas, D. & Merregaert, J. In vitro studies on Itm2a reveal its involvement in early stages of the chondrogenic differentiation pathway. *Biol Cell* **96**, 463–470 (2004).
- Liu, T. *et al.* Chordin-Like 1 Improves Osteogenesis of Bone Marrow Mesenchymal Stem Cells Through Enhancing BMP4-SMAD Pathway. *Front Endocrinol (Lausanne)* 10, (2019).
- 86. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat Genet* **47**, 291–295 (2015).