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Abstract 
Accurate classification of sleep stages is crucial in sleep medicine and neuroscience research, 
providing valuable insights for diagnoses and understanding of brain states. The current gold 
standard for this task is polysomnography (PSG), an expensive and cumbersome process 
involving numerous electrodes, often performed in an unfamiliar clinic and professionally 
annotated. Although commercial devices like smartwatches track sleep, their performance 
compares poorly with PSG. To address this, we present a neural network that achieves gold-
standard levels of agreement using a single lead of electrocardiogram (ECG) data (five-stage 
Cohen’s kappa = 0.725 on subjects 5 to 90 years old). Our method offers an inexpensive, 
automated, and convenient alternative. Cardiosomnography, or a sleep study conducted with 
electrocardiography only, could take expert-level sleep studies outside the confines of clinics and 
laboratories and into realistic settings. This would render higher-quality studies accessible to a 
broader community, enabling improved sleep research and sleep-related healthcare 
interventions. 

Introduction 
The classification of sleep stages aids in the understanding of brain states and unconscious 
processes1. Stages, as formalized in 1968 by Rechtschaffen and Kales (R&K)2, and later revised 
in 2007 by the American Academy of Sleep Medicine (AASM)3, are divided into Wake, rapid eye 
movement (REM), and Non-REM (NREM) stages 1 through 3 (N1, N2, N3). These stages occur 
in a cyclic pattern with specific EEG signatures and correlate with physiological and neurological 
processes, such as waste clearing and particular types of memory consolidation4,5. Currently, 
clinically relevant sleep staging, or sleep stage scoring, requires polysomnography (PSG). During 
PSG, a patient or subject typically spends one or more nights in a clinic during which they wear 
electrodes that collect at least a dozen channels of data, including brain activity 
(electroencephalography, EEG), eye movement (electrooculography, EOG), muscle tension 
(electromyography, EMG), ECG, and respiration. Afterward, an experienced paid human scorer 
annotates the night to assess the stages and other pertinent notations. Because it can be 
expensive—taking approximately two hours to annotate a single night of sleep—automated 
methods are increasingly used6,7. 
With the proliferation of commercial health-related sensors, spurred on by the public’s interest in 
self-tracking, commercial sleep trackers have exploded in popularity8. Moreover, the increasing 
understanding of the importance of sleep has fueled the healthcare community’s interest in sleep 
monitoring for precision medicine9. The cost of PSG (human labor and equipment) and sheer 
cumbersomeness for the sleeper (wearing electrodes, while non-invasive, is intrusive and 
inconvenient, leading to unrepresentative data) make it a non-starter for widespread adoption in 
the laboratory and beyond the laboratory setting. 
Therefore, to fill this void, methods that measure other aspects of bodily function, such as ECG, 
respiration, heart rate variability, etc., have sprung up in recent years. Two advantages some of 
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these methods have—specifically ones that use ECG—over EEG is that they require fewer 
electrodes (three versus dozens), and ECG is a much stronger signal than EEG. Whereas the 
performance of these commercial devices is promising, there is significant room for improvement; 
they often ignore harder-to-classify stages, exclude subjects based on age or health, and agree 
poorly with human-scored PSG—the “gold standard”. The ideal “sweet spot” outcome is a cheap, 
patient-friendly method that agrees with classical PSG; this would open the door to more 
research and clinical applications. 
Broadly speaking, two issues have hampered efforts to score sleep stages automatically at an 
expert level without the full complement of biophysical inputs that PSG requires. First, 
researchers originally defined sleep stages by their manifestations in EEG, EOG, and EMG. The 
assumption that these inputs are, by definition, necessary has impeded the search for equally 
informative surrogates. Moreover, until recently, the second obstacle was the lack of enormous 
datasets for training generalizable classifiers. Today, tens of thousands of recordings of expert 
human-scored PSG are freely available, which makes it possible to overcome both issues. We 
investigated ECG specifically because it is a much more robust signal than EEG and because 
many PSG datasets collect it, albeit often as an afterthought. Specifically, we set out to 
determine if it is possible to score sleep stages as well as human-scored PSG using only a 
single lead of ECG data. 
Here we demonstrate that by using a neural network trained on a large sleep dataset, it is 
possible to achieve gold-standard levels of agreement with PSG using only ECG data. We 
developed a neural network that uses a single lead of ECG data as the only biophysical input to 
score sleep stages, i.e., using none of the main inputs in classical PSG (e.g., EEG, EOG, and 
EMG). To improve the generalizability of the resulting model, we trained on a dataset of several 
thousand recordings from subjects 5 to 90 years old to approximate the U.S. census. 
Furthermore, we developed a new loss function to align the training objective with the standard 
performance metric for comparing sleep scoring, namely Cohen’s kappa. Finally, we show that 
our method is a significant improvement over current commercial devices for sleep staging. 

Results 
We present our model and results in four sections. First, we introduce the source datasets, 
processing pipeline, and deep neural network. Next, we compare our network’s performance 
against expert human-scored PSG and other EEG-less models (i.e., sleep staging models that 
exclude EEG as an input) and show results from analyses of the testing set. Then we analyze the 
impact on the network’s performance of various modifications. Finally, we demonstrate the real-
time performance of such a network. The approach and results below support the claim that ECG 
is suitable for the highest-quality sleep studies and introduces a network that could make 
cardiosomnography-based sleep studies widely available. 

Scoring sleep with ECG 
We demonstrate the broad applicability of our network (Fig. 1a) by scoring sleep stages from 
recordings taken from five different studies (Fig. 1b)—chosen for their substantial age range (5-
90yr. = decades 1-10). We processed each recording from the original studies to calculate 
various quality measures (e.g., signal source, missing data, artifacts, etc.) about the provided 
data and to harmonize the data (e.g., standardize the sampling rate and normalize the 
amplitudes). We discarded recordings that did not meet the quality metrics defined in Methods. 
Our pipeline then randomly selected four thousand recordings (3,000 testing, 500 validation, and 
500 testing) such that (given the limitations in the datasets), the distribution of subjects matched 
the 2022 U.S. census estimates across decades as well as the mean age (Fig. 1f). Additionally, 
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we mirrored the overall distribution of age, sex, and recording source, across the three sets (i.e., 
training, validation, and testing). As desired by selecting a broad range of subjects, the recordings 
contained a wide distribution in stage ratios (i.e., the percent of the night spent in a specific 
stage), including a substantial number of recordings that had no epochs containing N1, N3, or 
both (Fig. 1c). Additionally, there is substantial variability in recording lengths, from 5.5 to 14.3 
hours (Fig. 1d). When stratifying the recordings by decade, there are noticeable age-dependent 
shifts in the stage ratios (Fig. 1e). Both the likelihood of time-dependent changes in stage ratios 
(e.g., N3 is predominantly seen early in the night, while REM is predominantly seen at the end) 
and the age-dependent shifts (e.g., N3 decreases with age) were expected10,11. 
The network (Fig. 1a) takes as input a complete recording of normalized ECG data, the subject’s 
sex and current age, as well as the wall time (i.e., clock time) and the relative position of each 
recording epoch (described in detail in Methods). The network then computes 25 features for 
each 30-second epoch, fuses those features across time, and finally outputs the probability of 
each of the five sleep stages for each epoch simultaneously. The network classifies the epoch as 
the stage with the highest probability. 

 
Figure 1 | Network architecture and input 
(a) The network consists of three groups of layers. It scores all epochs (N) in a recording simultaneously, with 
ellipses representing duplication of network structure across the recording. The four other inputs (not shown) are 
age, sex, wall time, and relative epoch position within the recording. Most arrows are hidden for clarity, and ECG and 
epoch stage scores are for illustrative purposes only. (b) The 4,000 recordings came from five studies, with the 
distribution of the subject’s age in decades shown. (c) There is a wide distribution of stage ratios as a percentage of 
sleep period time (SPT, i.e., the period between and including the first and last epoch of sleep). Wake after sleep 
onset (WASO) is any wake (arousals) during SPT. (d) As expected from previous studies, recordings show time-
dependent changes in the relative proportion of the various sleep stages. E.g., N3 is more likely to occur at the 
beginning, and REM is more likely to occur near the end. e) The data also show expected age-dependent changes in 
sleep. In particular, the ratio of time spent in stage N3 declines with age, whereas arousals (WASO) increase. (f) We 
aimed to select subjects (blue lines) to match the U.S. census statistics (gray lines) by age (solid lines) and sex 
(dashed lines). The lack of subjects in decades 3-5 is a limitation of the available datasets (decade 1=age 0-9yr.), 
with subjects added to other decades to achieve the same mean age as the census data. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2023. ; https://doi.org/10.1101/2023.10.13.23297018doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.13.23297018
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Comparison with expert human-scored PSG and EEG-less models 

 
Figure 2 | Performance comparisons against human-scored PSG and EEG-less models 
(a) Five-stage Cohen’s kappa (k) for our model based on single-lead ECG (blue) and human-scored PSG (gray). 
Overlapping notches indicate that the network performs on par with expert human-scored PSG. Model kappas were 
based on the hold-out testing set of n=500 recordings from distinct subjects, and human kappas were calculated on 
an n=72 dataset scored with R&K12. (b) Our model (blue dot and horizontal line) performs significantly better than 
other EEG-less models (black dots with numbers), regardless of stage granularity—even while using fewer inputs (* 
percentile bootstrap p < 0.0002). The bootstrapped 95% CIs were smaller than the dot diameters (shown as shading, 
see table for values). The other dots represent the kappa values of the recent best (k≥0.5) EEG-less algorithms and 
are listed in Extended Data Table 2, with models sorted by year. The sources are: 1) Radha17 2) Wulterkens18 3) 
Fonseca19 4) Sridhar20 5) Sun13, 6) Beattie21, 7) Yoon22, 8) Domingues23, 9) Willemen24, 10) Sady25. Note that our 
algorithm uses ECG as the only input, while many other models also use respiration, actigraphy, or both. A “time-only 
floor” shows the performance of the current model structure when only using two time variables (wall clock time and 
relative epoch position), i.e., no ECG or demographic data. All kappa values are shown in Extended Data Table 1. (c) 
Additional stage-specific results for comparison against human-scored PSG on the same data and methodology as 
panel a. Whiskers are at P10 and P90. Notch and bootstrap calculations are in Methods. 

To assess the claim that the model achieved expert-level human performance, we need to 
compare its performance against how well human scorers agree with each other. Specifically, we 
compared the model’s performance with published summary statistics from the large SIESTA 
dataset, for which we have inter-rater reliability12,11. It is reasonable to posit that where the 
model’s median performance overlaps or exceeds the human inter-rater reliability, it performs at 
or above expert human level, respectively. Using this criterion, the model (n = 500, testing set on 
ECG) performs on par with expert human scorers (n = 72, SIESTA PSG) overall (Fig. 2a), and for 
stages Wake and N3 (Fig. 2c). The boxplot notches represent the 95% CIs for the medians (see 
Methods). 

Additionally, we compared our algorithm against other recent best (k ≥ 0.5) EEG-less algorithms 
and devices—including the state-of-the-art (Fig. 2b). Because most published algorithms use 
more coarse stage granularity, we also trained and evaluated the final model for four-stage 
(Wake/“Light”/ “Deep”/REM) and three-stage (Wake/NREM/REM) scoring by combining the 
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appropriate stages (see Methods). The algorithm performs significantly better (p < 0.0002) than 
published EEG-less algorithms that have reported kappa values for five-stage scoring (k=0.726 
versus 0.58513—evaluated on all epochs). Furthermore, the algorithm performs better regardless 
of the granularity of stages (e.g., five, four, or three-stage scoring) or the number of additional 
inputs used (e.g., actigraphy, respiration, HRV, etc.; Extended Data Table 2). 
We also evaluated the model on additional recordings to test if there were unique attributes about 
the recordings selected or if study-specific learning had occurred—which would hamper 
generalizability. The first collection consists of recordings from the original five studies that met 
the quality criteria (see Methods) but which we had not randomly selected to be part of the 4,000 
recordings (Extended Data Figure 2a). It bears stressing that we did not add these recordings to 
our 500-recording testing set because this would skew the age and sex distributions from the 
target census distribution. These results show no significant difference between those recordings 
that were selected or unselected. The second collection comes from a study, MROS, which we 
did not use for the training, validation, or testing sets. Their performance was equivalent to the 
age-matched males (decades ≥ 7) in the testing set (Extended Data Figure 2b). This result 
indicates that if the model had learned any study-specific features, they were unnecessary for 
adequate performance. 

 
Figure 3 | Normalized contingency table and t-SNE of all epochs 
(a) The row-normalized contingency table of all n=567,141 epochs shows the high degree of agreement between 
human- and model-scored stages. When disagreement exists, the scorer usually labels the stage as the one that 
typically precedes or follows it during the night; e.g., N1 is scored as Wake or N2, N3 is scored as N2, and REM is 
scored as N2. The lowest agreement occurs with N1, consistent with human scorers of PSG data. Overall agreement 
is 80.0%. (b) t-SNE plot taken from the 25 outputs of the penultimate layer of the network. Dots represent the epochs 
where the model agrees with the human-scored stage. Due to the sparsity of the disagreements, a kernel density 
estimate is used to show where the disagreements occur (black = highest disagreement density). The greatest 
disagreement density occurs when scoring N1 epochs. Disagreement typically exists along each of the cluster 
borders except Wake-N3. 

Another way to assess how well the network agrees with human-scored stages is to compute the 
contingency table. The row-normalized contingency table (similar to a confusion matrix) showed 
excellent agreement, with an overall agreement of 80.0% with human-provided scores (Fig. 3a). 
The one exception was with N1, which is often scored as one of the stages that naturally precede 
or follow it in time, namely Wake and N2—matching what has been reported elsewhere with 
human scorers of PSG data12. Furthermore, we found the expected pattern for all stages; when 
there was disagreement, it was scored as the stage that typically preceded or followed it. 
We confirmed these findings by investigating the network’s feature space, specifically by creating 
a t-SNE plot (Fig. 3b) of the 25 features for each epoch that came from the penultimate layer of 
the network (i.e., before the final classification occurred). The t-SNE calculations reduce the 
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feature space to two dimensions and place similar epochs in the 25-D space closer together in 
the 2-D space. We plotted the epochs where the human and model agree as dots, colored by 
stage. Compared with the agreements, the disagreements are less frequent (in n = 453,866 
epochs, the model agreed with humans, while in n = 113,275 epochs, it did not). Therefore, we 
used a kernel density estimate to show the density of the disagreements. Similar to the 
normalized contingency table (Fig. 3a), the greatest disagreement occurs when scoring N1 
epochs, especially near the boundary between N1 and N2. The disagreements also occur along 
boundaries between adjacent stages in a typical recording. 

 

Figure 4 | Stage transitions 
(a) Transition rates for all five sleep stages for the n=500 testing set for our ECG-based model (various colors) and 
the human-scored PSG (gray) as an additional measure of human-model agreement. There is no difference in the 
median transition rates for All, Wake, and N1, significantly fewer transitions for the model for stages N2 and N3, and 
significantly more transitions for stage REM. (b) The transition matrix of the model’s classifications for all n=567,141 
epochs. (c) The transition matrix of the human’s classifications (same n). The Pearson’s r of the two matrices (panels 
b and c) is 0.998, with percentile bootstrapped 95% CI [0.997, 0.999]. Overall, the next epoch is likely the same 
stage as the current one. Consistent with the literature, the probability that N1 will transition into a different stage 
(namely N2 or Wake) is higher than for other stages. Whiskers at P10 and P90. 

In addition to assessing the overall performance of the network (i.e., Cohen’s kappa) to compare 
the model with human performance, we also examined sleep stage transitions. The overall, 
Wake, and N1 median transition rates are equivalent for the model and human (Fig. 4a). The 
overall transition rate also aligns with results reported by others14. Although the boxplots for the 
various stages largely overlap, N3 transitions show the greatest difference. Furthermore, the 
transition matrices for the model and human scores (Fig. 4b,c) are nearly identical, with a 
bootstrapped Pearson’s r of 0.998. 
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Figure 5 | Performance on the testing set 
(a) When stratified by age (decade 1=age 0-9yr.), the overall kappa is only slightly affected by age, while N1 and N3 
are the most affected, suggesting the broad applicability of the model. (b) Stratified by the recording’s stage ratio, 
namely the proportion of recorded time spent in a given stage, all stages perform significantly less well when their 
stage ratio is minuscule—or nearly everything. In these situations, model results should be interpreted with caution. 
(c) When stratified by time (30-min windows across all recordings), although there is some variation in kappas, the 
stage-specific kappas fall in a narrow range—matching the overall performance boxplots (Fig. 2a,c). However, the 
lower model performance is because of a lack of diverse observations in those periods (e.g., REM is rare at the 
beginning of the night, whereas N3 becomes less frequent after eight hours Fig. 1c). (d) Stratified by dataset, stage-
specific kappas vary little, except N3—which is significantly lower for MESA and WSC (which consist primarily of 
older subjects, Fig. 1b). (e) Stratified by the amount of pre-sleep wake, kappa is significantly lower for recordings with 
less than 30 minutes of pre-sleep wake; prospective users of the model should plan accordingly. Most recordings 
(n=314) contain less than 90 minutes. (f) Stratified by sex, kappas show no differences, suggesting equal applicability 
of the model to both sexes. Shaded areas represent the 95% CI. Whiskers at P10 and P90. 

Next, we assessed the network’s performance on both the original testing set and specific 
modifications to it to help better understand the results in Fig. 2 (e.g., to determine why any 
differences exist) and to determine under what conditions the network is best suited and when 
and why it might perform worse than expected. 
The initial series of results were on the original testing set. First, the network’s performance is 
largely unaffected by age (Fig. 5a) except for N3, which decreases beginning in the fifth decade. 
This result is expected and reported elsewhere11, likely because with age, sleep becomes shorter 
and more fragmented15. Consistent with this, we further found that performance deteriorated as a 
function of sleep stage ratio. Specifically, when there were very few or too many (i.e., nearly all) 
epochs of a given stage, the model performed less well (Fig. 5b). Similar to the finding on stage 
ratios, the amount of pre-sleep wake (i.e., time awake between when the recording started and 
the subject fell asleep) was important (Fig. 5e, the distribution of pre-sleep wake is shown in 
Extended Data Figure 1c), as performance deteriorated when there were fewer than 30 minutes 
of pre-sleep wake. 
On the other hand, although the likelihood of a particular stage varies across the night, it has little 
effect on performance (Fig. 5c), except on the classification of N3 and REM right at the start of 
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the night and N3 after about 9 hours. Around the same time, the network begins to score most of 
the human-scored N3 epochs as N2 (Extended Data Figure 1b). Performance did depend on 
which study it came from (Fig. 5d), as illustrated by significantly worse N3 performance for 
recordings from MESA and WSC (which also contained most of the older subjects). Finally, the 
sex of the subject did not affect the performance (Fig. 5f, Extended Data Figure 1d). 

Robustness to missing data, noise, and other perturbations 

 
Figure 6 | Performance with noise or modifications to the testing set 
(a) When trimming recordings from the start, there is a gradual downward trend in kappa for all stages except N1, 
indicating the importance of the early periods. (b) Likewise, performance decreases with relative noise power (noise 
power divided by signal power) for four different noise sources (electrode movement, baseline wander, Gaussian, 
and movement artifact). Shown are a “no-noise ceiling” (zero noise added, black solid line) and a “time-only floor” 
(see Fig. 2b, black dashed line, which continues into panel c). The model exhibits remarkable robustness for all noise 
sources tested except movement artifact, as the performance exceeds the floor, even at 100% relative noise. (c) 
When the epoch order of each recording is reversed or shuffled, the performance is significantly worse, indicating 
that the model strongly relies on temporal order. (d) When trimming the recordings from the end, the performance is 
less affected than when trimmed from the start (panel a), indicating it will perform well even if the recording stopped 
prematurely. (e) Performance as a function of the fraction of all epochs silenced (replaced with zeros) quickly trends 
downward, as the model uses context for both intact and silenced epochs, suggesting that the model will suffer if 
electrodes are disconnected for extended periods. (f) There is no change in performance when the subject’s sex is 
flipped, suggesting some insensitivity to sex. In contrast, performance is significantly lower when a random age is 
assigned. Shaded areas represent the 95% CI. Whiskers at P10 and P90. 

Next, we investigated the limits of the network and its suitability by modifying the testing set and 
examining how it affected performance. Because we cannot generate synthetic ECG data 
corresponding to a particular sleep stage, we worked with additions to or deletions of existing 
data. We stress that we performed all these experiments on the final model and never trained the 
network on these manipulations (e.g., we did not add noise during training to make the model 
more robust). 
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First, we examined the effect of trimming the recordings, either from the beginning (Fig. 6a) or 
from the end (Fig. 6d). When trimming from the beginning, the performance for all stages except 
N1 immediately trends downward, albeit to varying extents. When trimming from the end, 
however, the performance was nearly unaffected until after we removed many hours of data. The 
result underscores the greater importance of the initial period of the recording for classifying sleep 
stages (echoing pre-sleep wake effects, Fig. 5c). To assess the network’s ability to handle noise 
(e.g., environmental), we separately added four different sources of noise: white Gaussian noise, 
and three from the MIT-BIH noise stress test16 namely, baseline wander, electrode movement, 
and movement artifact. For each of these noise types, we added the noise in increasing amounts, 
up to 100% of the signal’s power (i.e., SNR = 0 dB). 
Furthermore, we scaled the noise relative to each epoch's signal power to compensate for 
variations across the recording. These experiments (Fig. 6b) demonstrate that substantial noise 
levels are required to affect the performance substantially. The exception is movement artifact 
noise, which causes a steeper roll-off. Moreover, with increasing movement artifact noise, the 
network increasingly scores epochs as Wake (Extended Data Figure 1a). Next, because we 
designed the network to use context, it is helpful to evaluate what happens when the context is 
drastically modified by reversing or shuffling the epoch order (Fig. 6c). Reversing the epoch order 
significantly affects the performance negatively, and even more so when epoch order is shuffled. 
We also evaluated how losing entire epochs, possibly due to loose leads, affects the model’s 
performance. For scale, an average of four minutes per recording (and a maximum of 3.6 hr.) of 
the ECG data used in this study was lost to loose leads (Methods). To simulate this, we silenced 
(i.e., set the signal to a value of 0) individual epochs selected randomly from the recording 
(Fig. 6e) and analyzed the kappas of the intact and silenced epochs separately. Model 
performance decreases for both, indicating that the network uses the ECG input from surrounding 
epochs in determining the sleep stage for a given epoch (Fig. 6c)—and yet is robust enough to 
lose up to 35% and still exceed the “time-only” floor. Finally, we evaluated the usefulness of the 
two demographic inputs by either flipping the sex for all subjects or assigning an age with uniform 
probability from 5 to 90 years old (Fig. 6f). We see there is a significant effect for modifying age 
but not sex. 
Lastly, we silenced portions of the input for each epoch to determine what portions of an 
individual epoch the network uses in constructing its features. The results show that the network 
is more affected by losing the data from the epoch’s center (dotted line) than from its ends 
(dashed line), and the network can lose about 5% from each end (10% total) before the 
performance begins to degrade (Extended Data Figure 1e). 

Real-time operation 
Note that all the results presented above scored the entire night of sleep simultaneously, which 
means information from past and future epochs contributed to classifying the sleep stage. Similar 
to the computations performed when we silenced random epochs (Fig. 6e), computations of the 
normalized relative importance (Methods) of epochs showed that the network is using contextual 
information before and after to score that epoch (Fig. 7b). Of note are the “blips” at powers of two 
that reflect the underlying structure of the network (Fig. 1b). We wondered how well a (slightly 
modified) network could score sleep in real time. Therefore, we altered the structure of the 
network such that it could only use information from the current and past epochs (Fig. 7a). From 
examining the real-time network, we found that although the performance is slightly lower, there 
is no statistical difference overall between the real-time network and either the base network or 
human-scored PSG (Fig. 7c). 
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Figure 7 | Real-time network and epoch importance 
(a) The “Temporal Fusion” section of the network (Fig. 1a) was modified to make the network score in real-time (i.e., 
causally). Note how no arrows point anti-causally. Most arrows are hidden for clarity. (b) Using integrated gradients 
(Methods) to determine the relative importance of the epochs used to score at epoch 540 (4.5 hours from the start) 
shows that the baseline network (Fig. 1a) makes use of past and future epochs, with noticeable “blips” at powers of 
two distance from current. The median importance of n=500 recordings is shown, and shaded areas represent the 
95% CI. (c) The overall performance of the real-time (causal) is trending lower (but not significantly) than that of the 
original (non-causal) network and also than human-scored PSG (the notches overlap). This result is a desirable 
property for potential real-time applications for our approach. Whiskers at P10 and P90. 

Discussion 
To the best of our knowledge, our study represents the first successful implementation of five-
stage sleep staging comparable to expert-scored PSG without the aid of EEG (or the host of 
other sensors used by PSG). Similar EEG-less studies have shown correlations between sleep 
stages defined by PSG and data obtained from other non-EEG sensors. The advantages of 
replacing human scorers with automated algorithms are significantly reduced labor costs and 
increased inter-rater reliability. In addition to these benefits, utilizing ECG instead of PSG 
introduces further advantages, such as a more user-friendly setup, a more robust signal, and 
broader accessibility to the scientific community as well as citizen scientists. Prior to our work, the 
suboptimal performance of EEG-less methods in five-stage classification had suggested that 
EEG would always be necessary for achieving clinically relevant sleep staging. However, our 
findings demonstrate that ECG-based automated sleep staging can achieve comparable 
performance to PSG-based human sleep staging, thereby challenging the notion that EEG is 
indispensable. 

On par with human-scored PSG 
Regarding the performance of our model, it is noteworthy that it achieves expert-human level 
agreement overall (Fig. 2a) and for Wake and N3 (Fig. 2c). Moreover, the consistency between 
the network’s classifications and the human-scored stages is evident when analyzing the row-
normalized contingency table (Fig. 3a), stage transition rates (Fig. 4a), and stage transition matrix 
(Fig. 4b,c). These findings strongly support the argument that our network scores sleep stages 
similarly and on par with human-scored PSG. Like human scorers, the network also incorporates 
contextual information (Fig. 6c,e). Finally, in a slightly modified form, it can perform real-time 
scoring (Fig. 7c)—also at a level equivalent to offline human-scored PSG. 
However, we observed that the median performance of the model for REM sleep, while very high 
(k = 0.825 on all recordings), was nonetheless statistically worse than human-scored PSG (Fig. 
2c) since the 95% CIs do not overlap the human-scored intervals. One possible explanation for 
this discrepancy is the absence of inputs from eye movement (i.e., EOG) and muscle activity (i.e., 
EMG), as even PSG, relying solely on EEG, struggles to classify REM sleep reliably. 
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Although the model's performance in classifying N3 is equivalent to human-scored PSG, further 
discussion is warranted. Stratifying the results by their source dataset reveals that the network 
performs significantly worse on the MESA and WSC datasets (Fig. 5d), primarily due to 
decreased kappas for Wake and N3. The drop in N3 kappa could be partially attributed to the 
worse N3 performance with age (Fig. 5a), observed for human-scored PSG as well11. 
Additionally, the fact that MESA was studying atherosclerosis—which by definition negatively 
impacts cardiac physiology—and that both studies included older subjects with lower-than-
expected N3 amounts for their age range10 may have contributed to worse-than-expected N3 
kappa. Furthermore, the performance across time (Fig. 5c) demonstrates that, for most stages, 
the model's performance is relatively insensitive to time during the recording (except at the 
ends)—except perhaps N3 and REM. Notably, the network begins predominantly scoring epochs 
classified as N3 by human scorers as N2 after approximately 9 hours (Extended Data Figure 1b), 
indicating a potential qualitative difference in N3 sleep occurring at the end versus earlier in the 
night. 
Our model significantly outperforms other EEG-less models, irrespective of five-, four-, or three-
stage scoring (Fig. 2b). While the current literature on EEG-less methods (including recent 
commercial sleep-tracking devices) is more extensive than what is referenced here, papers were 
excluded for one or more of the following: i) their results did not list kappa or did not include 
sufficient data to calculate it; ii) they only considered two-stage (Wake/Sleep) scoring, which has 
limited clinical or research utility; or iii) their evaluation set was non-independent of their training 
set (see Supplemental Discussion for details). 
Finally, our model demonstrates robustness to added noise and data corruption, which is 
advantageous in variable and harsher environments outside the clinic. Specifically, the model 
was able to perform very well to common and harsh noise sources—even with relative noise 
powers exceeding 50% (Fig. 6b). Moreover, the results indicate that the model performs best 
when the subject has the relatively non-intrusive ECG strap attached at least 30 minutes before 
falling asleep (Fig. 5e). However, the performance is not contingent upon knowing when sleep 
began and ended. 

Autonomic nervous system 
ECG serves as a valuable non-invasive tool for observing the activation of the autonomic nervous 
system. The branches of which, namely the sympathetic and the parasympathetic systems, are 
known to have characteristic effects on heartbeats and heartbeat rates. Although the interactions 
between the autonomic and central nervous systems are bidirectional, traditionally, it has been 
assumed that autonomic activity usually follows central activity and that autonomic is subordinate 
to the central system. However, extensive research has shown that autonomic activity sometimes 
precedes central activity, such as in decision-making and attention26. Additionally, novel statistical 
measures like transfer entropy have revealed that during sleep, more information flows from the 
autonomic to the central nervous system than in the reverse direction. Furthermore, specific 
activations of the autonomic nervous system during sleep reliably lead to distinct activity in the 
central nervous system, both in terms of cortical location and frequency content of EEG27. The 
fact that our ECG-based neural network performs comparably to PSG in determining sleep 
stages aligns with findings of a healthy interaction between the autonomic and central nervous 
systems and the idea that sleep is important for the brain and body. 

Limitations 
There were numerous differences in equipment and aims between the studies we used. These 
differences were partially due to the lower importance of ECG during PSG and included electrode 
placement, sampling rates, and quantization. In addition to harmonizing these differences where 
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possible (which brings about its own issues), we had to discard a sizable percentage of 
recordings because of poor data quality (Methods). Finally, because we resampled all data to 256 
Hz for our model, we could not determine the effect of the sampling rate on performance. 
Because it is still unknown what exactly characterizes the ECG of a given sleep stage, it is not yet 
possible to generate data synthetically. This limited our ability to explore the robustness of the 
network to only adding noise or modifying the recordings (e.g., silencing epochs), as opposed to 
synthesizing atypical heartbeats or rhythms. Relatedly, along with the lack of ground truth labels, 
we could not explore purposeful misclassifications by modifying an epoch to “look” more like 
another stage—except for movement artifact noise (Fig. 6b), which had the effect of eventually 
making all epochs look like wake (Extended Data Figure 1a). 
As mentioned, the data we used came from studies that scored their data using either R&K or 
AASM. Moreover, although there are slight differences in the criteria for the similarly named 
stages, it was necessary to harmonize them. The refinements in the scoring criteria lead to some 
differences—even when scorers use both methodologies for the same recording28. While the total 
sleep time (i.e., Wake vs. sleep) and REM scoring will be nearly identical, others have found that 
for the non-REM stages (i.e., N1/N2/N3), the distributions will slightly change—a decrease in N2 
(~5%), which is distributed nearly-equally to N1 and N3. Because we used a single class label for 
each similarly named stage, the network likely had to make compromises where the two 
methodologies would disagree. 
Finally, and most foundationally, this work is based on R&K and AASM scoring rules and the 
orthodoxy that sleep can be cleanly segmented into discrete stages that are, at least, self-
consistent. However, many alternative methods used to score sleep and critiques of these rules 
exist29, as well as data that supports a more heterogenous—both across and within a stage— 
understanding of sleep stages30. 

Cardiosomnography 
The effectiveness of ECG in sleep medicine for detecting sleep disorders, such as apnea, has 
been demonstrated by numerous studies27,31,32. Building upon these findings, we propose that 
cardiosomnography—a sleep study conducted with electrocardiography only—can complement 
and supplement PSG in sleep medicine. Compared to PSG, cardiosomnography offers 
advantages in terms of cost-effectiveness and simplicity. 
The adoption of cardiosomnography has the potential to facilitate more accessible sleep 
medicine, thereby enabling further research, interventions, and applications. For instance, it has 
been found that in Alzheimer’s disease, a feedback loop can arise where the progression of the 
disease can lead to increasingly disturbed sleep33. In turn, chronic poor sleep can contribute to 
the accumulation of β-amyloid34. Continuous and cost-effective sleep monitoring and disease 
progression tracking for at-risk individuals could guide treatments and potentially improve 
outcomes. 
Additionally, cardiosomnography could be a valuable tool for interventions. Research has 
indicated that playing pink noise only during N3 increases the amplitude of slow oscillation waves 
and the proportion of N3 during the night4,35. Bringing this intervention out of the clinic with real-
time ECG-based sleep staging could be helpful for those with mild cognitive impairments, who 
typically exhibit reduced amounts of N336. Furthermore, for consumer applications, it has been 
found that entering and quickly exiting N1 can enhance creativity37. With a less cumbersome 
method of monitoring and alerting users during N1, developers could make this intervention 
widely available. 
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In summary, cardiosomnography holds great potential to benefit researchers, physicians, and 
entrepreneurs by more easily providing objective measures of sleep for interventions and sleep 
medicine as a whole. Moreover, it opens up possibilities for as-yet-unknown applications and 
could expand the scope of sleep-related research, interventions, and healthcare. 

Methods 
Datasets 
In order to build a model that is useful for a wide range of human ages and a variety of health 
conditions, we used data from five large datasets from the National Sleep Research Resource38: 
Cleveland Children’s Sleep and Health Study (CCSHS)39, Cleveland Family Study (CFS)40, 
Childhood Adenotonsillectomy Trial (CHAT)41, Multi-Ethnic Study of Atherosclerosis (MESA)42, 
and Wisconsin Sleep Cohort (WSC)43. These datasets consist of PSG recordings scored using 
either R&K (CCSHS, CFS, and WSC) or AASM (CHAT and MESA). 
In addition to the wide range of ages (5 to 90 years), these datasets provided diversity in sex, 
race, ethnicity, and medical conditions. We did not exclude any recordings based on subject 
characteristics (i.e., demographics, health, medications, etc.). 

ECG data 
Even though the recordings included data from many biophysical inputs, we used only ECG lead I 
(the limb lead across the heart) from each recording for our model’s input. Some studies provided 
ECG lead I as a single channel of ECG data (often labeled “ECG” or “EKG”). And for other 
studies, we calculated ECG lead I by subtracting the signal provided by the right (RA, often 
written as “ECG1”) and left (LA, often written as “ECG2”) limb electrodes. 

Pre-processing 
There was a considerable variation in data quality in the ECG recordings because ECG is rarely 
the channel of interest for PSG (e.g., loose leads, poor connections, different sampling rates, and 
environmental noise). We had to process and evaluate all 8,611 recordings provided by the five 
datasets to determine which recordings we could use to train and evaluate the network. To that 
end, all recordings went through an automated pre-processing algorithm described below. It 
bears mention that we took the recordings as-is and did not trim wake periods before they fell 
asleep (mean sleep latency = 1.3±1 hr.—one s.d., see Extended Data Figure 1c) or after they 
woke up. 

1. If the ECG length was not a multiple of 30 seconds, we trimmed it down to the next nearest 
30-sec epoch length. 

2. We silenced sections where leads had come loose. If the ECG lead came from two 
electrodes, we silenced both signals whenever either electrode came loose. 

3. If we used two electrodes, we subtracted one from the other to obtain ECG lead I. 
4. High-pass filter (0.5 Hz) the data to attenuate baseline wander but maintain longer 

features, such as T waves. 
5. Remove 60 Hz line noise with a notch filter. 
6. Remove any additional constant-frequency noises using notch filters. 
7. Resample to a single common frequency (256 Hz). 
8. Normalize using a robust z-score. 
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Detecting heartbeats 
Once we had pre-processed all the data, the next step was to roughly identify most heartbeats in 
each recording. This step involved finding heartbeats in each recording based on archetypical 
heartbeat templates. Then, we generated a recording-specific template for each recording from 
the first pass of detected heartbeats. Finally, we performed a second pass across the recording to 
add or remove heartbeats that matched the recording-specific template. 
Once we had identified the putative heartbeats for each recording, we could calculate the 
recording-specific normalization factor, which brings all recordings to the same scale. To do this, 
we calculated the maximum absolute value for every heartbeat previously identified. Then we 
took the 90% percentile of all maximum values as the maximum threshold. We then doubled that 
threshold to obtain the normalization factor. We then divided the ECG obtained after the pre-
processing by this normalization factor. The result will be that all, or nearly all, heartbeats will fall 
within the range of a value of ±0.5. Finally, to eliminate extreme values (which will make training 
more difficult), anywhere the ECG exceeds ±1, we clipped it to ±1. 

Acceptable recording criteria 
We wanted to ensure that all the data used to train and evaluate the model were of good quality. 
Therefore, we set selection criteria based on the ECG only—we used no criteria based on the 
stage scores (e.g., time spent awake, etc.). 

1. At least 5 hours of data, but no more than 15 hours. 
2. Contain a lead I ECG channel or two electrode channels that we could use to derive it. 
3. A sampling rate of at least 100 Hz. 
4. There were three or fewer constant-frequency noises (including 60 Hz). 
5. At least 85% of the epochs must contain possibly useable data (defined as having more 

than eight unique values). 
6. At least 85% of the epochs must contain at least one template-matching heartbeat. 
7. At least 85% of the epochs must contain median absolute deviation (MAD) values ≥ -3 s.d. 

of the robust z-scored MAD values for all epochs. 
8. The normalization factor must be ≤ 250. 
9. After dividing by the normalization factor, ≤ 5% of the data can be extreme values (those 

outside ±1). 

Recording selection and set building 
At this point, there were 5,718 recordings remaining (of the original 8,611) which met the above 
selection criteria. Unfortunately, it was obvious that there would not be sufficient recordings from 
subjects of the 3rd, 4th, 5th, and 10th decades such that we would be able to match the U.S. age 
and sex distribution as per the current U.S. census estimates. Therefore, we instead over-sample 
subjects from the remaining decades with the following goals: the mean age should match that of 
the U.S. census, and the subjects from the 6-9th decades should be over-sampled by the same 
number. Furthermore, we also desired to match the sex distributions for each decade, as 
provided by the census data. 
As a compromise on training time versus volume of data, we chose to select a total of 4,000 
recordings that we would use for the training, validation, and testing sets. We used random 
sampling to select the 4,000 recordings from the 5,718 available—with the age and sex 
distributions specified above. Because there are more recordings than unique subjects, we put 
additional criteria in the random selection process: the testing set must contain 500 unique 
subjects. Furthermore, although we allowed the validation and training set to contain more than 
one recording from the same subject, we required each set to have a unique set of subjects that 
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were not shared with any other set. Finally, because this random selection process could draw 
from the original datasets unequally, the last step was to shuffle recordings between the sets to 
achieve similar ratios of the source datasets across sets. It bears stressing that we did not add 
the 1,718 recordings that the algorithm had not explicitly selected to our 500-recording testing set 
because this would skew the age and sex distributions from the census distribution. 
The final distribution of the 4,000 recordings included 4,597,343 epochs, or 38,311 hours, of data 
(duration = 9.6±1.4 hr.). See Extended Data Table 3 for the set-specific counts), and Fig. 1 for 
visual representations of the recording distributions. 

Scores and weights 
The sleep score annotations were provided in various file formats and, as mentioned above, 
using either R&K or AASM scoring criteria. Although slight differences exist in the similarly named 
stages, we harmonized the annotations with the following two adjustments to the annotated 
scores. When a dataset scored with R&K provided separate S3 and S4 stages, we combined 
them into a single stage: slow wave sleep (SWS/N3). Second, if the human scorer had annotated 
an epoch as “unscored”, “movement”, or anything except the five stages of interest, then we 
made the following changes: we changed the score to Wake, and we set the weight of the epoch 
to zero. In total, 1.2% of the epochs fell into this bucket. Setting the weight to zero prevented the 
network from being penalized for not correctly predicting the stage. In addition, because the 
human annotator had not scored these epochs as one of the five stages, we excluded them from 
all results. 
We also adjusted the epoch-specific weights when the data quality of the epoch was poor. If we 
had silenced a portion of an epoch due to loose leads, we set the weight to one minus the 
proportion removed. Therefore, if we had silenced an entire epoch due to a loose lead, it received 
a weight of zero. Finally, if an epoch contained eight or fewer unique values (i.e., distinct voltage 
readings), we considered it devoid of signal and assigned a weight of zero. In all, 0.9% of the 
epochs had no ECG data. In contrast to the unscored epochs above, we still included these in the 
kappa calculations, although they were devoid of data. 

Performance metric: Cohen’s kappa 
To compare the algorithm's performance on scoring sleep stages, we need to use an established 
metric. When classifying sleep stages, there is some subjectivity and therefore no “ground truth” 
label for any given epoch; even identically trained sleep scorers will have some disagreement12,11. 
Therefore, the most appropriate statistic is the inter-rater reliability, or the degree of agreement 
between two observers. We used Cohen’s kappa (k), the most commonly reported inter-rater 
reliability statistic in sleep research. 
Cohen’s kappa measures the agreement between two raters that cannot be attributed to chance 
alone. The statistic uses the probability of observed agreement (po) and the probability of chance 
agreement (pe): k = (𝑝! − 𝑝") (1 − 𝑝")⁄ , where a value of k = 0 means no agreement above 
chance level, while k = 1 means perfect agreement—where both raters match on all labels. The 
minimum value depends on the marginal distributions and is between zero and -1. 
Although it was designed for binary classification, to compute the individual class-specific kappas 
in a multiclass task such as sleep staging, the contingency table is often split into separate class-
versus-others tables for each class44. For instance, to compute kappa for N3, one can use N3 as 
the first class and combine all other classes (Wake+N1+N2+REM) into an aggregate class. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2023. ; https://doi.org/10.1101/2023.10.13.23297018doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.13.23297018
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

It should be noted that if there are two or more classes, and both raters score everything as just 
one of the classes, the naïve formulation will produce an undefined value. However, in this case, 
both raters perfectly agree (i.e., k = 1); therefore, we set kappa to 1. 
Depending on the field, two different methods of computing Cohen’s kappa exist. Therefore, we 
must do the same to compare our results with others. The first method, often used by human-
scored PSG literature, computes kappa for each recording individually and calculates summary 
statistics on those kappa values. The second method, favored by machine learning literature, 
aggregates one contingency table for all the epochs from all recordings and then computes kappa 
on that aggregated contingency table. We found that when the number of epochs and recordings 
are both large—such as in the present study—the median kappa of all recordings is nearly 
identical to the kappa of all epochs. However, for all results, we specify which method we used. 
We have reported numerical values for kappa, as there is no agreed-upon standard for 
quantitative labels. 

A new kappa-correlated loss function 
A differentiable loss (or objective) function is necessary for a neural network to learn, i.e., to 
calculate the gradients used to adjust the weights and biases. Our criterion for the loss function 
was the highest overall kappa with the narrowest possible range of individual stage-specific 
kappas. In other words, every stage-specific kappa be as high as possible, instead of the typical 
outcome where the classifier largely ignores the minority classes. 
For a classification task such as sleep staging, cross-entropy loss (aka log-likelihood) is the 
standard45. However, the first issue we had with cross-entropy is that it assumes that the classes 
are nearly equal in size. When class size imbalances exist, such as with sleep stages, cross-
entropy often disregards the minority classes. The issue is significant for N1, which often 
constitutes less than 5% of the night but is still an essential marker of the wake-sleep transition. 
Various techniques are employed to overcome this issue46, including under- and over-sampling 
the classes. However, a data-level solution was not possible here because our network 
simultaneously scores an entire night of sleep, making it impossible to balance the proportions of 
the classes artificially. Another solution often used is weighting each class's importance. 
Extensive evaluations demonstrated that this was also inadequate; although the accuracy slightly 
increased, it had a negligible effect on the kappa of N1. 
The second related issue with standard classification loss functions is that they assume accuracy 
is the intended performance metric. However, accuracy is only loosely correlated with kappa. 
Although k = 1 when accuracy is 100%, there is no one-to-one mapping below this, and the exact 
value will depend on the relative proportions of the classes. For instance, when accuracy is 50%, 
kappa could be almost any value between -1 and 1. That is to say, for the same accuracy, kappa 
could be wildly different. 
Due to the limitations of existing loss functions, we developed a new function. The new loss 
function is one minus the geometric mean of the scaled class-specific kappas. As expected, our 
loss function (termed the class kappa mean) is (negatively) correlated with the overall kappa, 
which is the weighted arithmetic mean of the class-specific kappas. An advantage to using the 
geometric mean is that it is more invariant to the relative proportion of the classes, i.e., the 
function is less likely to ignore the minority class. Since kappa can technically range from -1 to 1, 
the formula re-scales the kappas to stay within the range [0, 1] to prevent issues that may arise 
with a kappa less than or equal to zero. For the formula (Equation 1), c is the current class, and n 
is the number of classes (for five-stage scoring, n = 5). 
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We calculated the kappas for the loss function using the contingency table generated from the 
output of the softmax layer (described below in Neural network)—which returns an output that 
resembles a confidence value for each class. The training algorithm builds the contingency table 
from the softmax outputs, which enables the back-propagation algorithm (which uses the loss 
function) to guide the network to be more confident in the correct predictions while minimizing the 
likelihood and confidence of incorrect predictions. Results comparing this new loss function 
against others are in Extended Data Table 4. The new loss function was critical for training the 
neural network described below. 

Neural network 
The neural network takes the input data (i.e., ECG, age, sex, time) and produces sleep stage 
probabilities for all epochs. Conceptually, we divided the network’s layers into three groups (see 
Fig. 1 for a simplified network representation). The first group, the feature extraction layers, 
extracts relevant features from the input data for each epoch. The second group, the temporal 
fusion layers, combines the features temporally across epochs. The third group, the classification 
layers, uses the fused features to predict the probability for each stage of each epoch. 
First, the feature extraction layers take the input to produce a set of features. The inputs include 
the cleaned, but otherwise untransformed, ECG (described above), the subject’s sex (Boolean 
value) and age at the time of recording (normalized to 1 = 100 yr.), epoch’s relative location within 
the recording (-1 = beginning, 1 = end), and wall time (where 0 = midnight and ±1 = ±24 hr.). The 
wall time is included because circadian rhythms influence stage proportions47. The ECG data 
passes through several convolutional and pooling layers to extract 40 features. Then the network 
combines those ECG features with the subject’s age and sex, as well as the time variables. 
Finally, several dense linear layers reduce the output to 25 features for each epoch. 
Next, the temporal fusion layers take the 25 features for each epoch and merge them across 
time. The configuration is based on the temporal convolution network48, with a modification to 
merge information before and after the current epoch. The first layer merges the features from the 
current epoch and epochs before and after it (epoch±1). Then the second layer merges the 
already-merged features from the current epoch and the epochs located two positions before and 
after it (epoch±2). This motif continues upward for 12 layers as epoch±2(layer−1), such that any 
epoch in the top layer could combine information from epoch±34 hr.—significantly longer than 
any recording used. 
Finally, the classification layers take the 25 features from the final temporal fusion layer through 
several layers of dense linear units. The final softmax layer transforms the predictions into an 
output that resembles confidence for each of the five sleep stages. 

Training and evaluation 
Designing a neural network involves a hyperparameter tuning process (e.g., determining the 
optimal number of layers, node types, non-linearities, etc.). During the hyperparameter search, 
we only trained the model on the training set (n = 3,000) and only evaluated it on the validation 
set (n = 500). We used a separate validation set because cross-validation (i.e., partitioning the 
data such that every sample is eventually evaluated) is inappropriate during hyperparameter 
turning—as it leads to information leaking into the model. A more detailed description of the 
history of our hyperparameter search and the problem with cross-validation during 
hyperparameter tuning is in the Supplement Methods. 
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In addition to standard techniques to improve regularization, we used automatic per-recording 
weighting during training, which downweighted recordings with notably lower kappas. We did this 
to prevent the network from misusing parameters to improve classification on just a handful of 
outlier recordings. To improve the network’s robustness to inverted leads (i.e., the ECG leads had 
been attached to the wrong terminals by the technician—a problem that we identified had 
occasionally happened), we had the data loader invert the ECG of every recording 50% of the 
time during training—but not during evaluation. 
The network was trained using a variant of the Adam optimizer with stable weight decay, 
AdamS49. The learning rate automatically decreased whenever the performance plateaued on the 
evaluation set. Additionally, our training algorithm reduced the learning rate by half when 
performance plateaued for 50 epochs on the evaluation set. The initial learning rate was 1x10-3, 
with a minimum of 1x10-6. We trained the model using a batch size of 10 (i.e., the number of 
recordings grouped together) for a maximum of 1,000 training epochs (i.e., iterations over the 
entire dataset). We stopped the hyperparameter search and selected the final model when we 
decided that additional changes were unlikely to significantly improve the results on the validation 
set. 
After we selected the final model, we retrained it on the joint training and validation set (n = 
3,500) and evaluated it on the hold-out testing set (n = 500)—which we had never used before 
that point. 

Statistics 
Where possible, we did not assume a normal distribution for any of the results. Instead, we 
extensively used nonparametric bootstrapping—a method that makes no assumptions about 
normality. For all bootstrapped results, we always used a sample of the same size as the original 
(e.g., n=500 for the testing set) with 10,001 iterations. Moreover, we use the median, a more 
robust measure of central tendency, as the estimator. All 95% CIs are estimated using percentile 
bootstrapping of the median. Finally, whenever line charts show shaded regions, the line is the 
median, and the shaded regions are the 95% CIs. 

Analyses with the five-stage model 
Most of the analyses and results we computed used a single five-stage model that we trained 
once (described above) and then evaluated on the original testing set and any modified versions 
of that set described below. 

Comparison with other expert-scored PSG 
Unfortunately, only a handful of studies have conducted more than a cursory investigation of the 
inter-rater reliability of human PSG scorers. The SIESTA dataset was collected with this 
investigation in mind, and it is the most extensive study to calculate inter-rater reliability10,11,12,50. 
However, we only have access to the summary statistics provided. 
Therefore, to compare the performance, it made the most sense to compare the median kappas 
for each stage of the model on the testing set against results reported on SIESTA. Furthermore, 
where the model’s median performance overlaps—or exceeds—the human inter-rater reliability, 
the model performs at or above expert human level. The comparison study comprises 72 
recordings from 56 healthy controls and 16 subjects with different sleep disorders (mean age: 
57.7±18.7, 34 females)12. 
To determine the 95% CIs of the medians for the SIESTA data, we used the standard formula: 
±1.573𝐼𝑄𝑅 √𝑛⁄ 951. This formula assumes their data is normally distributed—which we were 
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unable to confirm. For the model’s testing set, we used bootstrapping to determine the 95% CIs 
of the median. Finally, we can conclude with 95% confidence that the true population medians 
differ where the CIs of a given pair of medians do not overlap. In other words, we cannot reject 
the hypothesis that there are no differences in the medians where the CIs overlap. 

Comparison with EEG-less models 
To compare our results on the five-stage model with the other EEG-less algorithms, we 
calculated Cohen’s kappa on a bootstrapped aggregate contingency table. If the next-best 
performing model is below the lowest bootstrapped result, we can only conclude that the p-value 
is below two times the inverse of the bootstrap iteration count. 
However, since most models reported in the literature do not evaluate five-stage scoring, we 
aggregated the stages from the five-stage model’s results (e.g., for four-stage scoring, setting 
epochs of either N1 or N2 to “Light” sleep) and performed the same bootstrap operation 
described above to compare the four- and three-stage performance. 

Comparison with the human-provided scores 
To compare the human-score stages with the model-scored stages, we used a row-normalized 
contingency table to show where there is the most substantial agreement and disagreement. To 
look at the clustering of the features that the network builds to score sleep, we used a t-
distributed stochastic neighbor embedding (t-SNE) to reduce the 25 features down to two—which 
is more easily plotted. Doing so allowed us to visualize clusters in the embedding space. 
Furthermore, we can see where these disagreements lie in this 2-D representation by 
transforming the epochs that the human and model disagree on. In addition to the overall 
agreement (i.e., Cohen’s kappa) between the human and model, we also investigated the 
transitions between stages—specifically, the transition rates and probabilities. Moreover, we 
compared the human and model transition matrices by bootstrapping and using Pearson’s r to 
calculate a correlation between them. 

Robustness analyses 
To analyze the robustness of the network, we conducted several experiments (given the limitation 
that we could not generate new data): we trimmed recordings, added noise, modified each 
recording’s epoch order, silenced whole (and portions of) epochs, and change the original 
demographics. We trimmed the recordings by removing epochs from the beginning or end. For 
the noise experiments, we individually added four different sources of noise: white Gaussian 
noise, as well as three noises from the MIT-BIH noise stress test16 (i.e., baseline wander, 
electrode movement, and movement artifact). 
Several of these experiments allow us to investigate how much contextual information matters. 
Silencing (or setting to zero) whole epochs was the first experiment. We randomly selected 
epochs in each recording and silenced their ECG input. Another experiment to investigate the 
contextual information was either flipping the epoch order of each recording or shuffling the order. 
Each epoch would still have the ECG progressing through time in the correct direction, but 
adjacent epochs would now be out of order. Finally, using the method of integrated gradients52, 
we can investigate how important each epoch in a recording is for scoring a given epoch. 
Finally, we evaluated the remaining two inputs: sex and age. By either flipping the sex or 
assigning a random age, we can determine how important those variables are to the performance 
of the network. Related to the integrated gradient analysis of the epochs, silencing portions of all 
epochs allowed us to investigate what portion of the epoch the network was using. Either we 
silenced the epoch from both ends or the center. 
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Analyses with other models 
As mentioned, most of the results presented come from just the single five-stage model described 
above. However, we trained an additional eleven models; we used two models to gain additional 
network insights, and we used nine models to compare and assess the loss function we 
presented. We stress that the single five-stage model above stands alone, and the additional 
models do not form an ensemble. 

Determine a time-only floor 
If one were to remove the ECG input entirely, it would be reasonable to suspect that the model 
would perform no better than chance (k = 0). However, the fact that sleep stages occur in cycles 
and have an expected progression across the night indicates that it might be possible to use 
temporal information alone to achieve better-than-chance agreement. We were unaware of 
literature evaluating this idea and decided to determine what kappa is with only the two time 
variables as valid input (i.e., wall time, and relative epoch position). To minimize changes in the 
network structure, instead of removing the unnecessary convolution and pooling layers, we 
replaced the ECG, age, and sex data with random data that was sampled each time a recording 
was loaded. We trained (one) time-only five-stage model. 

Real-time operation 
A scorer typically scores sleep after the night or recording is over. Therefore, the scorer has 
access to the entire night to assist them in classifying each epoch. However, having real-time 
(i.e., causal) scoring would be necessary for some of the interventions and applications we 
believe would benefit from cardiosomnography. To that end, we trained (one) five-stage real-time 
model that we had modified so that for any given epoch, it could not use information from the 
epochs that followed it (i.e., the future). This modification included removing (by replacing it with 
random data) the relative epoch position input, as this would’ve revealed how much time was left 
to the network. 

Compare the new loss function 
Although we developed the new loss function during the hyperparameter search, it would be 
helpful for interested users to know how well other commonly used loss functions could perform 
on the same five-stage model. To that end, we trained the same five-stage model (four) times 
with different loss functions. Furthermore, because of the tradeoffs that all loss functions exhibit, 
we wanted to determine what would happen if the same five-stage model only had to score a 
single stage (e.g., only Wake vs sleep). Therefore, we also trained (five) five-stage models with 
our loss function, but only to optimize one of the five stages. 

Evaluation of additional hold-out recordings 
As mentioned, there were an additional 1,718 recordings from the original five studies that met 
the acceptable recording criteria but which we did not add to the training, validation, or testing 
sets. We did this out of a desire to limit training time and to match the U.S. census distribution. 
However, we did evaluate these recordings separately to determine if there was anything unique 
about the recordings we had randomly selected. 
Furthermore, we evaluated recordings from a dataset we did not use in the training phase, 
namely the MrOS Sleep Study (MROS)53. We analyzed these recordings to determine if the 
model was learning and using any study- or site-specific features from the five primary studies. 
The study provided 3,933 recordings, of which 3,193 met the quality criteria. 
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Extended data 

 
Extended Data Figure 1 | Additional plots 
(a) When adding movement artifact noise (see Fig. 6b), with increasing noise power, the network scores more 
epochs as Wake. (b) Looking only at human-scored N3 epochs, the model predominantly scores them as N3 until 
around 9 hours in and then as N2. The gray line is the normalized likelihood of N3 epochs (i.e., where in the night N3 
was most often being scored by the human, Fig. 1d). (c) A majority (n=314) of recordings contain less than 90 
minutes of pre-sleep wake. (d) When stratifying by sex, results are essentially the same for each stage, with 
noticeable but insignificant sex differences for Wake and N3. (e) When silencing increasing portions of each epoch, 
starting from both ends of each epoch, performance is degraded with increasing silence. Performance is worse when 
silencing from the center than from the ends. Shaded areas represent the 95% CI. Whiskers at P10 and P90. 

 
Extended Data Figure 2 | Unselected recordings and held-out study 
(a) For five of the studies from which recordings were drawn, four were not used in their entirety (see Methods). The 
results of those unselected recordings show no differences from their counterparts in the testing set. CFS (n=105), 
CHAT (n=270), MESA (n=498), WSC (n=845). (b) One study, MROS (n=3,193), was not used during the training 
phase, so we could evaluate it to determine if study-specific learning had occurred (i.e., learning features specific to 
the study apparatus or pipeline). The performance aligns with the aged-matched males that constituted the study’s 
demographics (decades ≥ 7) from the testing set (light blue). Whiskers at P10 and P90. 
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Extended Data Table 1 | Cohen’s kappas on testing set 
 Cohen’s kappa (k) 
Kappa calculation method All Wake N1 N2 N3 REM 
Median kappa of all recordings (n=500) 0.725 0.871 0.326 0.682 0.625 0.825 
Kappa of all epochs (n=567,141) 0.726 0.862 0.373 0.671 0.703 0.805 
Depending on the method used to aggregate the results, there are slight differences in values reported. Both are 
shown here to enable direct comparisons with a wider variety of literature. 

Extended Data Table 2 | Comparison with other EEG-less algorithms 
 Cohen’s kappa (k) of all epochs 

(stage granularity) Fig. 
marker 

  

Model/Device (inputs) 5-stage 4-stage 3-stage Reference Year 
Ours (ECG) 0.726 

[0.715, 0.736] 
0.769 
[0.759, 0.780] 

0.842 
[0.829, 0.848] 

  2023 

(PPG)  0.650  1 Radha17 2021 
(PPG, acti)  0.620 ±0.12 0.680 ±0.11 2 Wulterkens18 2021 
(ECG, acti)  0.600  3 Fonseca19 2020 
(HR)  0.660  4 Sridhar20 2020 
(ECG, resp) 0.585  0.697 5 Sun13 2020 
Fitbit (PPG, acti)  0.520  6 Beattie21 2017 
(HRV)   0.610 7 Yoon22 2017 
(ECG, acti)   0.580 8 Domingues23 2014 
(HRV, acti, resp)  0.560 0.620 9 Willemen24 2014 
(PPG, SpO2, resp) 0.510 ±0.01   10 Sady25 2013 
Our model's median and 95% CIs of each stage granularity are from the bootstrapped sampled. The other models 
perform significantly worse than the current. Models are sorted by year. resp=respiration. acti=actigraphy. five-stage: 
W/N1/N2/N3/REM, four-stage: W/“Light”/“Deep”/REM, three-stage: W/NREM/REM. Most sources did not provide s.d. 
values. 

Extended Data Table 3 | Epoch counts for each set 
 Epoch counts for each stage 

Set Wake N1 N2 N3 REM Unscored Total 
Training 980,338 209,550 1,315,130 457,009 447,811 41,387 3,451,225 
Validation 165,513 34,830 218,264 74,034 71,904 7,223 571,768 
Testing 165,300 34,601 220,642 73,566 73,032 7,209 574,350 
Total 1,311,151 278,981 1,754,036 604,609 592,747 55,819 4,597,343 
For the 4,000 recordings selected, above are the epoch counts of each stage and those that were unscored. 

Extended Data Table 4 | Loss function comparisons 
 Cohen’s kappa (k) of all epochs 
Loss function All Wake N1 N2 N3 REM 
Class kappa mean (ours) 0.726 0.862 0.373 0.671 0.703 0.805 
Cross-entropy 0.734 0.867 0.274 0.682 0.699 0.805 
Cross-entropy (weighted) 0.669 0.845 0.332 0.583 0.677 0.786 
Focal54 0.732 0.862 0.297 0.679 0.703 0.801 
Cohen’s kappa (overall) 0.720 0.854 0.000 0.669 0.697 0.795 
Ratio of ours to best 99% 99% 100% 98% 100% 100% 
Although some loss functions achieve slightly better overall performance, they do so with much lower N1 
performance. The highest performance for each column is highlighted in gray. The weights provided for weighted 
cross-entropy were the inverse of the stage proportions in the n=3,000 training set (i.e., [0.214, 1.000, 0.159, 0.459, 
0.468]). 
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Extended Data Table 5 | Five-stage versus one-stage comparisons 
 Cohen’s kappa (k) of all epochs 
Loss function Wake N1 N2 N3 REM 
Complete 5-stage 0.862 0.373 0.671 0.703 0.805 
Best 1-stage (each) 0.862 0.353 0.671 0.692 0.800 
Ratio to 1-stage 100% 106% 100% 102% 101% 
When the loss function uses all five stages simultaneously (i.e., the geometric mean), it performs equal to or better 
than any stage-specific kappa that might be optimized individually. 
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