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Abstract 
 
COVID-19 epidemic dynamics are driven by a complex interplay of factors including population 
behaviour, government interventions, new variants, vaccination campaigns and immunity from prior 
infections. We aimed to quantify the epidemic drivers of SARS-CoV-2 dynamics in the Dominican 
Republic, an upper-middle income country of 10.8 million people, and assess the impact of the 
vaccination campaign implemented in February 2021 in saving lives and averting hospitalisations. 
 
We used an age-structured, multi-variant transmission dynamic model to characterise epidemic drivers in 
the Dominican Republic and explore counterfactual scenarios around vaccination coverage and 
population mobility. We fit the model to reported deaths, hospital bed occupancy, ICU bed occupancy 
and seroprevalence data until December 2021 and simulated epidemic trajectories under different 
counterfactual vaccination scenarios. 
 
We estimate that vaccination averted 5040 hospital admissions (95% CrI: 4750 - 5350), 1500 ICU 
admissions (95% CrI: 1420 - 1590) and 544 deaths (95% CrI: 488 - 606) in the first 6 months of the 
campaign. We also found that early vaccination with Sinovac-CoronaVac was preferable to delayed 
vaccination using a product with higher efficacy. We investigated the trade-off between changes in 
vaccination coverage and population mobility to understand how much relaxation of social distancing 
measures vaccination was able to ‘buy’ in the later stages of a pandemic. We found that if no vaccination 
had occurred, an additional decrease of 10-20% in population mobility would have been required to 
maintain the same death and hospitalisation outcomes. We found SARS-CoV-2 transmission dynamics in 
the Dominican Republic were driven by substantial accumulation of immunity during the first two years 
of the pandemic but that, despite this, vaccination was essential in enabling a return to pre-pandemic 
mobility levels without incurring considerable additional morbidity and mortality.  
 
Introduction 
 
During 2020-22, many countries experienced a significant burden of COVID-19 and imposed non-
pharmaceutical interventions (NPIs) aiming to control SARS-CoV-2 transmission. Despite this, countries 
experienced markedly different epidemic dynamics, mediated by a complex interplay of factors including 
population behaviour, government interventions, the introduction of new variants, the roll-out of 
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vaccination campaigns and prior levels of transmission. Serological surveys have proven crucial to 
understand global and national landscapes of population immunity, as well as indicating the extent of 
prior exposure to SARS-CoV-2 (1). Some countries pursued an elimination strategy throughout the pre-
Omicron era, with stringent public health interventions resulting in low levels of seroprevalence towards 
the end of 2021. For example, in Hong Kong, serosurveillance studies found <1% of sera tested was 
positive for anti-N SARS-CoV-2 IgG prior to March 2021 (2). Other countries, such as the UK and many 
EU countries, saw epidemic waves linked to the strengthening and relaxing of public health interventions, 
alongside the emergence of more transmissible variants. In England, approximately 20% of the 
population were estimated to have been infected with SARS-CoV-2 by July 2021 (3). In contrast, SARS-
CoV-2 transmission was largely unmitigated in some settings such as in Manaus, Brazil, where 76% of 
the population are thought to have been infected by October 2020 (4).   
 
Latin America and the Caribbean was a global hotspot for SARS-CoV-2 transmission during 2020-21, 
prior to the emergence of the Omicron variant, which caused large epidemics globally (5,6).  The 
Dominican Republic is an upper-middle income country with a population of 10.8 million, which shares 
the island of Hispañola in the Caribbean with Haiti. They reported their first case of COVID-19 on the 1st 
of March 2020, which was followed by the imposition of strict public health measures. These began to be 
relaxed in July 2021 and were mostly lifted with the reopening of schools and relaxation of curfew 
measures in October 2021. In the first two years of the pandemic, the Dominican Republic experienced 
four waves of transmission: the first peaked in August 2020, with cases increasing again in November 
2020 before a second peak in January 2021. A third wave of transmission took place over the summer of 
2021, following the introduction of more transmissible variants, including Mu, with cases rising sharply 
to peak in July 2021. Following the introduction of the Delta variant, a fourth wave took place in October 
and November 2021. A nationally representative serological survey involving 6683 individuals from 3832 
households took place between June and September 2021 (7). Results from the serological survey 
estimated that 76.6% (95% CI 70.1 – 82.5) of the population had been previously infected by the study 
midpoint. This vastly exceeded earlier estimates constructed from coarse reported data for the Dominican 
Republic, and the wider region of Latin America and the Caribbean (8). 
 
The government of the Dominican Republic launched a national COVID-19 vaccination programme on 
16th February 2021 initially focusing on health-care professionals and then following a three-phase age-
based approach. Booster vaccination for highly vulnerable individuals began in July 2021, with the 
Dominican Republic being the first country in the Americas to approve vaccination with a third dose. 
Approximately 90% of vaccine doses administered were Sinovac-CoronaVac (an inactivated viral 
vaccine), with Oxford/AstraZeneca vaccine (ChAdOx1-S, an adenovirus vector vaccine) and 
Pfizer/BioNTech (BNT162b2, mRNA vaccine) also administered (7). By the current study’s endpoint 
(15th December 2021), 62% of the population had received at least one dose of a COVID-19 vaccine and 
50% had received two doses.  
 
Mathematical models have been used throughout the pandemic to provide decision-support to policy 
makers through estimation of key epidemiological parameters, forecasts of future incidence, projections 
of epidemic trajectories under different scenarios, and quantification of the impact of non-pharmaceutical 
interventions. However, despite regular and in-depth modelling decision-support for high-income 
countries, there has been a lack of equivalent modelling analysis to understand transmission and control in 
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low- and middle-income countries (9–15). To address this gap, we used an age-structured transmission 
dynamic model to quantify the drivers of epidemic dynamics in the Dominican Republic during the first 
two years of the pandemic, and to assess the impact of the vaccination campaign on COVID-19 
hospitalisations and deaths.  
 
Methods 
 
Data 
 

 
 
Figure 1:  Map of the study setting and time-series of COVID-19 cases. Figure showing a map of the Caribbean 
with the location of the Dominican Republic shown in a box (A), a map of the Dominican Republic showing clusters 
sampled in the 2021 serosurvey (B), and daily COVID-19 cases in the Dominican Republic (bars) and the 7-day 
moving average (line) from March 2020 – January 2022 (C). The shaded grey area indicates the timing of the 
serological survey.  
 
For this analysis we incorporated multiple data streams. Aggregated daily reported deaths were collected 
from the Dominican Republic’s COVID-19 Dashboard. Aggregated daily hospital and ICU bed 
occupancy were scraped from daily COVID-19 bulletins published by the Ministerio de Salud Pública y 
Asistencia Social, available from 19th September 2021 onward (17). We also used serological data from a 
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nationally representative SARS-CoV-2 seroprevalence survey undertaken between June - October 2021. 
Further details of survey methodology and findings are available elsewhere (7). 
 
We used data on the daily number of second vaccine doses distributed in the population (18). To obtain 
estimates of age-stratified vaccination rates, we assumed that daily doses were evenly distributed between 
eligible age groups as per the government’s vaccination program (Supplementary Table S.9). If an 
eligible age group became fully vaccinated during the vaccination allocation, remaining vaccine doses 
were distributed between the remaining eligible age groups or, if all were fully vaccinated, between adults 
> 20, mimicking the vaccination of younger health care workers or those with chronic health conditions. 
Estimated vaccination coverage by age group over time is shown in Figure 2. 
 

 
 
Figure 2: Google mobility data, SARS-CoV-2 sequence data, and estimated vaccination coverage by age  Panel A 
shows Google mobility data showing the proportional change in population mobility in different locations relative 
to a pre-pandemic baseline, panel B shows the frequency of SARS-CoV-2 sequences from the Dominican Republic 
on GISAID by variant and panel C shows estimated vaccination coverage by age assuming vaccine doses were 
evenly distributed between eligible age groups.  
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Transmission dynamic model

 
Figure 3: Model schematic showing a two-variant SEIR model structure with a vaccination compartment (V).  
 
We used covidM, an age-stratified, deterministic, compartmental model originally developed to model the 
effects of NPIs on SARS-CoV-2 transmission in the UK, and described fully elsewhere (19,24,25). In 
brief, covidM is structured into 5-year age groups, with individuals moving from a susceptible state (S) to 
an exposed state (E) and then either to a pre-clinical and clinical infected state (Ip followed by Ic) or a sub-
clinical infected state (Is) and finally to a recovered state (R). The model explicitly considers two variants 
of SARS-CoV-2; wild-type and B.1.617.2 (Delta), while the introduction of other variants in the 
Dominican Republic in the intervening period (which include Mu, Gamma and Alpha) is captured 
through a gradual increase in transmissibility in the first half of 2021, following a logistic function. We fit 
the model to daily reported deaths, daily hospital and ICU bed occupancy and a cross-sectional 
seroprevalence estimate from June - October 2021. We fit the model using data until 15th December 
2021, when cases began to increase due to the Omicron variant, and only simulate epidemic trajectories 
until this point. 
 
Hospitalisation, ICU admission and death are modelled as observation processes according to age-specific 
infection-severe ratios, infection-critical ratios and infection-fatality ratios based on estimates from the 
literature. These are adjusted on the log odds scale by several fitted parameters and delays from infection 
to hospitalisation, ICU admission and death are estimated during the model fitting process. We assume 
that the observed number of deaths, hospital bed occupancy and ICU bed occupancy are distributed 
according to a negative binomial distribution, with the overdispersion parameter estimated during the 
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model fitting process. We used a skew-normal likelihood for seroprevalence with the same mean and 95% 
confidence interval as reported for the data evaluated for the period of the serosurvey.  
 
We consider a central waning assumption corresponding to 15% loss of post-infection protection after 1 
year, and conduct sensitivity analysis around different waning assumptions (Supplementary Tables S.6 
and S.7). Full details on model equations, fixed and fitted model parameters can be found in 
Supplementary Tables S1-3. 
 
Vaccination parameters 
 
We also incorporated information on SARS-CoV-2 vaccination in the Dominican Republic, using data 
collated by Our World in Data (10). Fully vaccinated individuals moved to a vaccinated model 
compartment (V) from which, subject to vaccine waning parameters, they can move to the exposed state 
(E) or directly to a sub-clinical infection (Is). We assume vaccinated individuals have a lower probability 
of clinical or sub-clinical infection but that, once infected, they have the same infectiousness as non-
vaccinated individuals. We model vaccine efficacy against infection (𝑣𝑒𝑖), which determines the 
probability that a vaccinated individual enters the Exposed compartment, and vaccine efficacy against 
disease given infection (𝑣𝑒𝑑|𝑖), which determines the probability that a vaccinated individual develops 
sub-clinical or asymptomatic disease directly (see Figure 3).  
 
As 90% of the primary course of vaccinations given in the Dominican Republic were CoronaVac 
(Sinovac COVID-19 vaccine) we used vaccination efficacy parameters based on the literature available 
for this vaccine product. We model differing vaccine efficacy by strain but assume the same vaccine 
efficacy across age groups. Note that we do not directly model vaccine efficacy against hospitalisation or 
death. 
 
Mobility 
 
To estimate changes in population behaviour during the pandemic we used population mobility captured 
by Google’s COVID-19 Community Mobility Reports as a proxy. We mapped changes in mobility to 
changes in contact rates using the relationship between mobility and contact survey data found in the UK 
(19,41). The representativeness of Google mobility data is dependent on the proportion of the population 
with smartphones using Google products. As this differs substantially between the UK and the Dominican 
Republic, we infer a weighting between UK-adjusted contact rates and pre-pandemic baseline contact 
rates in the Dominican Republic, fitting a separate weighting parameter for each year of the simulation 
period (35). We found the UK-adjusted value was given more weight in the first year of the pandemic 
than the second, suggesting that the relationship between measured population mobility and contact rates 
changed during the pandemic. We considered four categories of contacts: home, work, school and other. 
School contact rates were set to zero during school closures and school holiday periods.  
 
Model fitting 
 
We performed Bayesian inference using Markov chain Monte Carlo to estimate model parameters. We 
used the Differential Evolution Markov Chain Monte Carlo (DE-MCMC) algorithm which combines a 
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genetic algorithm (Differential Evolution) with MCMC (26). Here, multiple Markov chains are run in 
parallel and learn from one another to determine the scale and orientation of the proposal distribution, 
which allows for more efficient exploration of a complex parameter space than traditional Metropolis-
Hastings algorithms, particularly when considering correlated parameters. Model convergence was 
assessed using trace plots of MCMC chains and the Rhat statistic (27). 
 
Counterfactual analysis 
 
We conducted counterfactual scenario analysis using the fitted model to simulate epidemic trajectories 
under different scenarios. We considered five key scenarios with changes applied from the beginning of 
the vaccination campaign (15th February 2021) until the end of the analysis period.  
 
Table 1: Counterfactual scenarios 
 

Scenario Description 

1. No vaccination No vaccine doses distributed 

2. Vaccination using a vaccine with a 
Pfizer/BioNTech efficacy profile 
 

Original vaccine dose distribution but with overall vaccine efficacy against 
infection of 0.85 for WT and 0.8 for Delta, and overall vaccine efficacy against 
disease of 0.9 for WT and 0.81 for Delta. 

3. Delayed vaccination using a vaccine with a 
Pfizer/BioNTech efficacy profile 

Vaccine efficacy parameters as in 3. With a delay in vaccine dose distribution of 2 
months (vaccination from 15th April 2021). 

4. Vaccination using a vaccine with an 
Oxford/AstraZeneca efficacy profile 

Original vaccine dose distribution but with overall vaccine efficacy against 
infection of 0.75 for WT and 0.63 for Delta, and overall vaccine efficacy against 
disease of 0.8 for WT and 0.65 for Delta. 

5. Delayed vaccination using a vaccine with an 
Oxford/AstraZeneca efficacy profile 

 

Vaccine efficacy parameters as in 6. With a delay in vaccine dose distribution of 2 
months (vaccination from 15th April 2021). 

 
For Scenarios 3 and 5 a vaccination programme using a Pfizer/BioNTech or Oxford/AstraZeneca efficacy 
profile with a delay of two months is considered. Here vaccination would begin 15th April 2021, aligning 
with initial deliveries of Oxford/AstraZeneca vaccine doses through COVAX (42).  
 
For each scenario we ran 500 simulations, drawing parameters from the posterior distribution of each 
fitted parameter, and calculated the difference in hospital admissions, ICU admissions and deaths from 
the original model fit to estimate the impact of the scenario considered. 
 
We also conducted a counterfactual analysis to examine the trade-off between differing levels of 
vaccination coverage and changes in population mobility on deaths, hospital admissions and ICU 
admissions during the time period between 16th February - 16th August 2021 . We considered 11 
vaccination coverage scenarios with coverage by 16th August 2021 ranging from 0 to 100% in 10% 
increments, and 9 population mobility scenarios changing ‘Work’ and ‘Other’ mobility by an extra -40% 
to +40% compared with the Google mobility data during the simulation period. Vaccination allocation for 
each scenario was performed in a similar way as described above, where daily vaccinations are multiplied 
by a factor equal to !"#$%&'$	!"#$%&'"()

!"#$%&'$	&+'$&%
. Vaccination doses are then distributed between eligible age groups 
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and (once these are fully vaccinated) between age groups > 20 and then finally between age groups < 20. 
We then used the fitted model to simulate epidemic trajectories for 99 scenarios, considering all 
combinations of vaccination coverage and population mobility change, and estimated the impact of the 
scenario considered as above.  
 
Results 
 
COVID-19 transmission dynamics between 2020-2022 
 
Our modelling analysis suggests that, after an initial decline in transmission following a sharp reduction 
in social interactions, COVID-19 dynamics were driven by substantial accumulation of immunity 
throughout 2020-2022 (Figure 4), as well as the spread of novel variants such as Mu in mid-2021 and 
Delta in late 2021. By jointly fitting to reported deaths, hospital bed occupancy, ICU bed occupancy and 
seroprevalence data, the model reproduced the overall observed epidemic dynamics. Estimated deaths did 
not track closely with observed deaths during the first wave from March - September 2020, and deaths 
and hospitalisations were slightly underestimated during the second wave in January 2021.  
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Figure 4: Comparison of model fit to observed data in the Dominican Republic from February 2020 to December 
2021. Panels show comparison between modelled and observed hospital bed occupancy (A), ICU bed occupancy 
(B), reported deaths (C) and proportion of the population previously infected (D).  Black lines show observed data, 
with horizontal dashed lines in panels (A) and (B) indicating the point at which hospitalisation data became 
available. For panel (B) the black cross shows the duration of the serosurvey (horizontal line) and the 95% 
confidence interval around the central estimate (vertical line). Modelled hospital bed occupancy, ICU bed 
occupancy, deaths, and proportion previously infected, are shown in orange, red, purple and green respectively, 
with associated 50% and 95% credible intervals in surrounding ribbons. Note that uncertainty in the observation 
process is included in modelled outputs for surveillance data streams (A, B and C) but not for the proportion 
previously infected (D). 
 
Reconstructing the underlying epidemic dynamics, we found that changes in the effective reproduction 
number, Rt, reflected changes in contact rates derived from Google mobility data during 2020, but were 
less strongly associated with contact rates during 2021 (Figure 5). We estimated that 33.3% (95% CrI: 
33.3-33.4) of the population had been infected by the end of 2020 (Figure 5), ranging from around 45% in 
those aged 20-39 to around 20% in those aged under 19 and above 70 (Figure S.3). This accumulation of 
population immunity contributed to a decline in transmission, with Rt remaining around 1 despite gradual 
increases in contact rates from May 2020. By the end of 2021, we estimated that 83.0% (95% CrI: 82.7 - 
83.2%) of the population had been infected, ranging from above 90% in those aged 20-39 to around 55% 
in those over 70 (Figure S.3). Again, high levels of post-infection immunity resulted in reduced levels of 
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transmission despite contact rates approaching pre-pandemic baseline levels, except during the emergence 
of more transmissible variants in May and September 2021. 
 

 
Figure 5: Immune status, contact rates and reproduction number estimates from January 2020 to December 2021. 
Panel A shows the modelled distribution of immune states in the Dominican Republic over time showing the 
proportion of the population that are: currently infected (brown), susceptible (beige), protected post-infection (blue) 
and protected post-vaccination (dark blue). Note that the vaccinated area (dark blue) does not include individuals 
that were vaccinated post-infection and so does not correspond with observed vaccination coverage. Panel B shows 
inferred contact rates in home, work, school and other settings relative to a pre-pandemic baseline. Panel C shows 
estimated R0 and Rt.The vertical lines on Panel C show the time at which Mu sequences start to increase, according 
to GISAID, the global data science initiative (16).   
 
Impact of vaccination campaign 
 
To estimate the impact of vaccination, we used our calibrated model to simulate counterfactual epidemic 
trajectories under different scenarios. First, we considered a ‘no vaccination scenario’, estimating deaths, 
hospital and ICU admissions in the absence of any vaccination during 2021 (Figure 6). By comparing 
these counterfactual outcomes to the original model estimates we were able to estimate the burden averted 
by the vaccination campaign in the 6 and 10 months following its launch in February 2021 (Table 2). It 
should be noted that this analysis assumes all other factors remain constant and, in particular, we assume 
the same changes in contact rates and variant transmissibility as in the original model fitting displayed in 
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Figure 4. This is a simplifying assumption, as in reality it is possible countries would respond to rising 
COVID-19 cases with impositions of further restrictions or would see accompanying changes in 
population behaviour. 
 
We estimated that the vaccination campaign averted 5040 hospital admissions (95% CrI: 4750 - 5350), 
1500 ICU admissions (95% CrI: 1420 - 1590) and 544 deaths (95% CrI: 488 - 606) in the 6 months 
following its launch. This is equivalent to averting 20.3% (95% CrI: 15.9 - 24.3) of hospital admissions, 
24.9% (95% CrI: 20.8 - 28.7) of ICU admissions and 27.2% (95% CrI: 19.5 - 34.1) of reported deaths 
considering the median values expected under a ‘no vaccination' scenario. Notably, under a ‘no 
vaccination scenario’, we estimated ICU capacity would have been exceeded and hospital bed capacity 
almost reached, given population behaviour and variant introductions observed in 2021 (17).  
 

 
 
Figure 6: Impact of vaccination campaign. Figure showing modelled deaths (A), hospital admissions (B) and ICU 
admissions (C) from the original model fit (blue) and from a ‘no vaccination’ counterfactual (red). Lines show the 
median value from 500 simulations.  To facilitate comparison between scenarios, modelled deaths do not include 
uncertainty generated through the observation process and are therefore higher than those shown in the model fit in 
Figure 4. 
 
Given the challenges and inequities of vaccine availability in real-time, with some products available at 
scale before others, we evaluated the impact of using alternative vaccine products with or without a delay 
in the vaccination programme on deaths, hospital and ICU admissions.  
 
We estimated that while vaccination with a more efficacious product would have reduced hospitalisations, 
ICU admissions and deaths, delaying the vaccination campaign to vaccinate with a more efficacious 
product would have resulted in a higher overall burden in subsequent waves in 2021 (Figure 7). This is 
due both to the speed of vaccination rollout, with 50% of the population receiving a two-dose primary 
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series by the end of 2021, as well as the introduction of variants of concern or interest (particularly the 
Mu variant) in the summer of 2021 (18). 
 

 
Figure 7: Impact of vaccination with alternative vaccine products with and without delay. Figure showing modelled 
deaths (A), hospital admissions (B) and ICU admissions (C) from the original model fit (in blue) and from 
counterfactual scenarios (in red) with: vaccination with a Pfizer/BioNTech efficacy profile; vaccination with a 
Pfizer/BioNTech efficacy profile and a delay in vaccination of 2 months; vaccination with an Oxford/AstraZeneca 
efficacy profile; and vaccination with an Oxford/AstraZeneca efficacy profile with a delay of 2 months. Lines show 
the median value from 500 simulations. To facilitate comparison between scenarios, modelled deaths do not include 
uncertainty generated through the observation process and are therefore higher than those shown in the model fit in 
Figure 4. 
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Scenario Additional 
hospital 

admissions in 
next 6 months 

Additional 
hospital 

admissions in 
next 10 months 

Additional ICU 
admissions in 
next 6 months 

Additional ICU 
admissions in 

next 10 months 

Additional 
deaths in next 6 

months 
 

Additional 
deaths in next 

10 months 
 

No vaccination 5040 (4750 – 
5350) 

5150 (4770 – 
5540) 

1500 (1420 – 
1590)   
 

1530 (1420 – 
1640) 
 

544 (488 – 606) 554 (487 – 627) 

Pfizer efficacy or 
equivalent 

-1830 (-1940 –  
-1730) 

-3410 (-3790 – 
 -3070) 
 

-542 (-573 – 
 -512) 
 

-1020 (-1120 – 
 -921) 

-193 (-215 – 
 -174) 

-340 (-414 – -
273) 

Pfizer efficacy or 
equivalent and 
delay 

2980 (2760 – 
3210) 

124 (-364 – 596) 811 (753 – 870) -65 (-188 – 60) 283 (236 – 332) 
 

17 (-89 – 114) 

AZ efficacy or 
equivalent  

-1040 (-1100 –  
-981) 

-1920 (-2150 – 
 -1700) 
 

-307 (-325 – 
 -290) 

-577 (-642 – 
 -515) 
 

-109 (-122 –  
-98) 

-193 (-240 – 
 -150) 

AZ efficacy or 
equivalent and 
delay 

3220 (3000 – 
3450) 

1090 (654 – 
1520) 

892 (834 – 952) 234 (124 – 348) 313 (267 – 361) 113 (20 – 200) 

 
Table 2: Estimated total hospital admissions, ICU admissions and deaths under different counterfactual vaccination 
scenarios. Median values and 95% CrIs are shown from 500 simulations. Estimates are split into the cumulative 
burden estimated during the 6 months following the beginning of the vaccination campaign (until 16th August 2021, 
aligning with the Mu wave) and the 10 months following the beginning of the vaccination campaign (until 15th 
December 2021, aligning with the Mu and Delta waves).  
 
Trade-off between vaccination and population mobility 
 
Finally, we investigated the trade-off between levels of vaccination coverage and population mobility on 
hospitalisations, ICU admissions and deaths. Here, we explore different counterfactual combinations of 
vaccination coverage and population mobility change to understand how much relaxation of social 
distancing measures vaccination could ‘buy’ in the later stages of a pandemic.  
 
We found that, overall, changes in population mobility resulted in greater variation in disease burden than 
vaccination, where an increase in population mobility resulted in more additional deaths, hospitalisation 
and ICU admissions than a corresponding decrease in vaccination (Figure 8). For instance, our analysis 
suggests an increase of 20% in population mobility would result in around 10,800 extra hospital 
admissions, 2,400 extra ICU admissions and 800 extra deaths, while a reduction of 20% in vaccination 
coverage would result in around 2,000 extra hospital admissions, 600 extra ICU admissions and 200 extra 
deaths (Figure 8). 
 
We also compared combinations of population mobility reduction and vaccination coverage that resulted 
in the same outcomes (looking at lines of equivalence in Figure 8). We found that in the absence of 
vaccination, an additional 10-20% reduction in population mobility would have been required to obtain 
the same hospitalisation and death outcomes seen in this period, quantifying the ‘return-to-normality’ 
associated with the first 6 months of vaccination in this setting. 
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Additionally, if population mobility had remained as measured in this period but perfect vaccination 
coverage had been achieved, an estimated an additional 3,740 hospital admissions (95% CrI: 3,450 – 
4,030), 829 ICU admissions (95% CrI: 767 – 895) and 258 deaths (95% CrI: 224 – 297) would have been 
averted. This additional burden averted (going from the observed coverage of 43% to 100%) is lower than 
the burden averted that we estimated in the earlier ‘no vaccination’ scenario (going from 0% coverage to 
the observed 43% coverage, Table 2). This illustrates the importance of an age-targeted approach in 
reducing morbidity and mortality. Finally, a simulated change in mobility of +30% would have returned 
contacts in February 2021 back to (or slightly above) pre-pandemic baseline levels. This suggests that a 
return to baseline mobility at the beginning of the vaccination campaign would have resulted in an extra 
5,130 hospital admissions (95% CrI: 6,080 – 8,480), 1,670 ICU admissions (95% CrI: 1,320 – 2,030) and 
555 deaths (95% CrI: 283 – 842).  

 

 
 
Figure 8: Modelled total additional hospital admissions, ICU admissions and deaths in the 6 months following the 
vaccination campaign launch (16th February 2021 - 16th August 2021). These contour plots show additional deaths 
(panel A), hospital admissions (panel B) and ICU admissions (panel C) compared to the original model fit under 
different levels of simulated vaccination coverage reached by 16th August 2021 (y-axis) and changes in population 
mobility during the 6 month period (x-axis). The actual vaccination coverage observed on 16th August 2021 is 
shown by a cross (vaccination coverage = 43% and mobility change = 0).  
 
Discussion 
 
We used an age-structured transmission dynamic model to quantify the drivers of SARS-CoV-2 
transmission in the Dominican Republic and investigated the impact of the vaccination campaign and 
other counterfactual vaccination scenarios. We found that despite substantial prior accumulation of post-
infection immunity, the vaccination campaign had an important impact on disease burden in 2021 and 
was essential in enabling a return to pre-pandemic mobility levels without incurring substantial additional 
burden. We estimate the campaign averted 5040 hospital admissions (95% CrI: 4750 - 5350), 1500 ICU 
admissions (95% CrI: 1420 - 1590) and 544 deaths (95% CrI: 488 - 606) in the first 6 months of the 
campaign.  
 
From 2020-2021 the Dominican Republic experienced four distinct waves of SARS-CoV-2 transmission. 
We found that, after the initial emergence of SARS-CoV-2 in March 2020, the first wave was largely 
controlled by the imposition of NPIs and the associated sharp drop in contact rates. The subsequent build 
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up of immunity in the following months maintained an estimated Rt of around 1 until the end of the 2020, 
despite the gradual increase of social contact rates from their trough. This contrasts with other settings 
with well-characterised transmission dynamics, such as the United Kingdom, where SARS-CoV-2 
dynamics were largely driven by the imposition of NPIs before the widespread rollout of vaccination (19). 
The second wave from November - February 2021 was driven by a spike in contacts in December 2021, 
while the third wave during the summer of 2021 is best explained by gradually increasing contact rates 
back to pre-pandemic levels alongside the emergence of more transmissible variants, including the Mu 
variant. Finally, the fourth wave between September and December 2021 was driven by the Delta variant, 
alongside the reopening of schools and the relaxation of NPIs including curfews.  
 
We estimated that the 43% two-dose coverage achieved by the vaccination campaign by mid-August 
2021 would have offset a 10-20% increase in mobility – a proxy for social interactions – in this period, 
quantifying the ‘return-to-normality’ enabled by the vaccination campaign. Indeed, from July 2021 the 
Dominican Republic began to reopen the economy, culminating in the removal of curfew measures in 
October 2021 with population mobility almost returning to pre-pandemic baseline levels. This contrasts 
with other settings where higher levels of vaccination coverage were required to lift measures, such as the 
United Kingdom, which relaxed many measures in the summer of 2021 with a two-dose vaccine coverage 
of around 60% and population mobility still well below baseline (18,20). Many other countries were 
unable to lift measures before intense Omicron transmission generated substantial population immunity or 
until very high vaccination coverage was achieved (21). The trade-off between vaccination and 
population mobility on disease burden is likely to differ depending on the setting and epidemiological 
context. For instance, countries with lower levels of post-infection immunity would likely see greater 
changes in burden associated with changes in vaccination coverage. This balance will also be affected by 
the emergence of new variants which may be more transmissible or exhibit immune evasive properties. 
 
There are several limitations to this analysis. During the first wave (March - September 2020), the model 
struggled to reproduce the observed pattern in reported deaths. This may reflect limits in testing 
infrastructure and COVID-19 death reporting during this period, as observed in many countries globally 
(22). Hospitalisation and ICU data were only publicly reported from September 2020, and deaths were 
probably under-reported early in the pandemic. While we partially accounted for changes in COVID-19 
death reporting by allowing the infection-fatality ratio to vary over time, there remains substantial 
uncertainty in the modelled size and timing of the first wave.  
 
Our modelling framework only incorporates protection from full primary vaccination with two doses and 
does not incorporate protection from a single dose. This would result in an underestimation of the impact 
of vaccination. However, as estimated protection of a single dose of Coronavac is low (particularly 
against the Delta strain), we do not expect this to have an important impact on our results (23). 
Additionally, we assume fully vaccinated individuals are immediately afforded protection according to 
vaccine efficacy estimates used. We do not consider the impact of booster vaccination, which had begun 
in the Dominican Republic by late 2021 and we do not consider any additional benefit afforded by 
vaccination for individuals with post-infection immunity. Due to limited information on the introduction 
and epidemiological characteristics of variants introduced in early 2021, we parameterised the model for 
wild-type and Delta variants and modelled the effect of Mu and other VOC/VOIs in mid 2021 through a 
fitted sinusoidal increase in transmissibility over this period. We therefore do not capture the effect of 
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immune evasion of Mu (or other variants such as Gamma) on the epidemic dynamics. Assuming 
increased transmissibility of Mu or other variants, rather than immune evasion, would result in an 
underestimation of the impact of the vaccination campaign, as fewer individuals would remain susceptible 
during vaccine roll-out and therefore able to benefit from post-vaccination rather than post-infection 
protection. 
 
Our analysis untangles the complex interactions between population behaviour, the introduction of 
variants and changes in population immunity in the Dominican Republic, enabling us to estimate the 
impact of vaccination and consider other counterfactual scenarios. We quantify the impact of these 
epidemic drivers in a setting with high seroprevalence during vaccination rollout, providing alternative 
insights to much comparable modelling in high-income countries. Our conclusions are therefore likely to 
be relevant to many other countries that were unable to suppress transmission through NPIs prior to 
vaccination roll-out. We also highlight the importance of having multiple data streams available to 
accurately characterise transmission dynamics during an epidemic and particularly the utility of 
serological data in estimating population infection history.  Similarly, the availability of hospital and ICU 
occupancy data is crucial for understanding how the relationship between infection, severe outcomes and 
death modulates during the epidemic due to improved treatment, the introduction of VOC/VOIs, and 
vaccination. Understanding these dynamics in real-time is essential to avoid potential problems such as 
reopening the economy too late when the population has high levels of immunity or delaying the re-
imposition of NPIs when new variants emerge or contact rates increase unexpectedly. Ensuring that 
reliable data streams can be set-up quickly across both high income and low- and middle income 
countries should be a priority for future pandemic planning and preparedness. 
 
Data sharing 
 
All code and data used for this analysis are available at: https://github.com/EmilieFinch/DR-covid19 
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