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Abstract

Objective. One of the major limitations of most black-box machine learning models is the lack of

explainability. In healthcare, explainability is important. Furthermore, most healthcare professionals

do not have technical knowledge of machine learning. Consequently, it is necessary to translate the

predictions of the machine learning model into an explainable narrative.

Our research focuses on the healthcare domain. The goal of this study is to generate complex expla-

nations from a black-box machine learning model applied to heaalthcare.

Results. Class-contrastive techniques can be used to generate explanations. In this method, class-

contrastive counterfactual reasoning is applied to a machine learning model on tabular data (in health-

care). The model predictions are explained by observing the changes in prediction by altering the inputs.

This is visualized using heatmaps (class-contrastive heatmaps). This approach displays prediction results

as visualizations (heatmaps).

Our contribution is to extend class-contrastive analysis of black-box machine learning models to

numeric features. Our work also allows machine learning scientists to visually inspect class-contrastive

heatmaps and generate complex explanations for models. The resulting explanations (visual and text)

are easier for non-technical people to follow.

We show how machine learning scientists can extract complex explanations from machine learning

models which can be interpreted by nontechnical audiences. Our work may be broadly applicable in

domains where explainability is important.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.06.23296591doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.10.06.23296591
http://creativecommons.org/licenses/by/4.0/


2

Keywords

Explainable AI, complex explanations, class-contrastive analysis.

Introduction

Throughout history, humans have faced challenges in effectively preventing and diagnosing diseases.

Artificial Intelligence (AI) and machine learning may help in accurate diagnosis of diseases. However, the

explainability of black-box machine learning models remains challenging.

This paper focuses on the explainability of a black-box machine learning model applied to medical

data. We build on recent work in class-contrastive analyis [1].

Machine learning models in healthcare face many questions of explainability. In the absence of ex-

plainability, the prediction generated by the machine learning model may not be useful.

This work uses class-contrastive analysis to analyze a healthcare dataset. We extend a previous

approach [1] to account for numeric features. Our approach explains the model predictions using class-

contastive heatmaps. This shows intuitively how each feature affects the outcome.

In addition, we show how machine learning scientists can use these class-contrastive heatmaps to

generate complex explanations. These can assist non-technical practitioners (like clinicians and patients)

in understanding machine learning models and their results.

Main text

Class-contrastive analysis

Compared to a targeted outcome of interest, a class-contrastive explanation explains what caused a model

to produce the current output rather than the desired output. An example class-contrastive explanation

is: “ The patient is predicted to have diabetes because she is elderly. If age was lower, then the prediction

would be different.”

In our work, we use class-contrastive analysis to determine which characteristics lead to the diagnosis

of diabetes. Heatmaps were created to illustrate the impact of each factor on the risk of diabetes. Using

these heatmaps, we were able to generate complex explanations. A previous study has applied class-
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contrastive reasoning to categorical features and explained machine learning models to predict mortality

in patients [1]. Our approach extends work in that study to numeric features.

Data

This work uses the PIMA dataset from the National Institute of Diabetes and Digestive and Kidney

Diseases [2]. It has data on the medical diagnosis of diabetes in women. The dataset is composed of

eight medical predictors and one outcome variable (diabetes diagnosis). The features are number of

previous pregnancies, blood glucose level, blood pressure (BP), skin thickness (ST), insulin, body mass

index (BMI), diabetes pedigree function (DPF) [diabetes likelihood based on patient characteristics] and

age [2].

Implementation details of artificial neural network

We used artificial neural networks to predict the probability of diabetes. The input features are eight

characteristics relevant to diabetes, and the predicted output is the probability of diabetes. We used the

sequential network from the tensorflow and keras packages [3] [4].

Our model has three layers. In the first layer, there are 12 neurons with rectified linear unit (ReLu)

as their activation function. The second layer consists of eight neurons activated by ReLu. There is

one neuron in the last layer whose activation function is the sigmoid function. Adam is used as the

optimization algorithm.

The ReLu activation function outputs itself if the input is positive; otherwise, it outputs zero. The

function is shown below:

f(x) = max(0, x) (1)

Our model uses the ReLu activation function in the first two layers in an effort to eliminate the

problem of vanishing gradients and improve learning.

The problem of predicting diabetes diagnosis is a binary classification task. In the last layer of the

model, we used a sigmoid activation function and a binary cross-entropy loss function. The sigmoid

function is capable of mapping values to a range between 0 and 1, which corresponds to the range of

probability. The function is shown below:
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σ(x) =
1

1 + e−x

(2)

The difference between predicted probabilities and actual class labels is measured using a binary

cross-entropy loss function. The function is represented as follows:

LBCE(y, ŷ) = − (y log(ŷ) + (1 − y) log(1− ŷ)) (3)

where y is the true label (0 or 1) and ŷ is the predicted probability of the positive class.

We performed a 50%-25%-25% training-test-validation split of the data. We performed 10-fold cross-

validation with regularization to penalize for model complexity.

Single feature class-contrastive analysis

We first present our class-contrastive analysis on single features.

A single feature in the test set is set to its maximum value and the diabetes diagnosis probability

(predicted by the model on the test set) is recorded. Next, the single feature is set to its minimum value

and the diabetes probability predicted by the model is recorded. The difference in these probabilities

is stored. We repeat this process independently for all features. We then display the difference in

probabilities as a heatmap.

In this class-contrastive heatmap with rows representing patients and columns representing features,

we visualized the difference in diabetes prediction probability. The heatmap showing the class-contrastive

analysis of single features is shown in Fig. 1.

According to the heatmap (Fig. 1), glucose changes are correlated with the diagnosis of diabetes. A

high glucose level is indicative of a high risk of diabetes.

Furthermore, pregnancy, body mass index (BMI), and DPF play an important role in the diagnosis

of diabetes. The risk of diabetes increases with multiple pregnancies, a high BMI, and a high DPF.

Diagnosis of diabetes is not significantly correlated with skin thickness (ST), insulin, or age. We found

that blood pressure is not a reliable indicator of diabetes diagnosis.

Double feature class-contrastive analysis

In this section, we present results from a double-feature class-contrastive analysis.
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Two features in the test set are simultaneously set to their respective maximum values and diabetes

diagnosis probability (predicted by the model on the test set) is recorded. Next, the two features are

set simultaneously at their minimum values, and the predicted probability of diabetes by the model is

recorded. The difference in these probabilities is stored. We repeat this process independently for all

combinations of two features. This will yield
(

8

2

)

= 28 combinations.

We display the difference in probabilities as a heatmap. Patients are represented by rows, and feature

combinations are represented by columns (Fig. 2).

According to the results of the single feature class-contrastive analysis, glucose changes are the most

important factor in the diagnosis of diabetes. Therefore, we would be more interested in the combinations

related to glucose in the result of a double feature class-contrastive analysis.

Column 0 (Pregnancy& Glucose), Column 10 (Glucose & body mass index [BMI]), and Column 11

(Glucose & DPF) showed a strong correlation with diabetes diagnosis in Figure 2. The higher the value

of the two features, the greater the possibility that the patient is diabetic.

Column 7 (Glucose & blood pressure [BP]), Column 8 (Glucose & ST), Column 9 (Glucose & Insulin),

and Column 12 (Glucose & Age) were important indicators for the diagnosis of diabetes. Column 13

(blood pressure [BP] & skin thickness [ST]) and Column 14 (BP & Insulin) showed a low correlation

with diabetes diagnosis. This matched the result in the single-feature class-contrastive analysis, where

we found that blood pressure did not predict the diagnosis of diabetes.

Triple feature class-contrastive analysis

A triple feature class-contrastive analysis involves changing three features simultaneously from their

maximum to minimum values, respectively.

Three features in the test set are simultaneously set to their respective maximum values and diabetes

diagnosis probability (predicted by the model on the test set) is recorded. Next, the three features are

set simultaneously to their minimum values, and the probability of diabetes diagnosis (predicted by the

model in the test set) is recorded. The difference in these probabilities is stored. We repeat this process

independently for all combinations of three features. This will yield
(

8

3

)

= 56 combinations.

We then display the difference in probabilities as a heatmap. Each row represents a patient, and each

column represents the three feature combinations we modified (Fig. 3).

From left to right, the first six columns (indices 0 to 5) present all combinations of pregnancy and
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glucose, such as pregnancy & glucose & blood pressure, pregnancy & glucose & skin thickness, pregnancy

& glucose & insulin, pregnancy & glucose & BMI, pregnancy & glucose & DPF, and pregnancy & glucose

& age. Based on the heatmap, most diabetes probabilities are greater than 0.7, which is indicated by the

red colour.

Compared to the other feature combinations, these combinations have a strong correlation with di-

abetes diagnosis. This also agrees with the results obtained from the double-feature class-contrastive

analysis.

Furthermore, the next two columns (columns 6,7) display mainly blue or white colours, indicating

that changing pregnancy & blood pressure & skin thickness, and pregnancy & blood pressure & insulin

would not affect the diabetes diagnosis probability that much. These results are also consistent with the

double feature class-contrastive analysis.

Clinical implications

Doctors should pay particular attention to changes in glucose levels when limited test results are available.

Furthermore, the previous pregnancy history of female patients, the body mass index [BMI value], and

the value of the diabetes pedigree function [DPF] should also be monitored together. An increase in both

values may result in the onset of diabetes.

In contrast, if the patient has only minor changes in these features or the indicators are within the

normal range, there maybe less risk of diabetes developing.

We will later use these results to create complex explanations (see Subsection Complex explanations)

Complex explanations

Our approach can be used by machine learning scientists to visually inspect the class-contrastive heatmaps

and generate complex explanations such as the following.

Positive case:

- If the patient has high glucose, multiple pregnancies and is elderly

- then they maybe at high risk for diabetes.

Negative case:

- If the patient has high blood pressure, high skin thickness and high insulin level,
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- then they maybe still at low risk of diabetes.

Such complex explanations, in the form of if-then statements, can be easily explained to nontechnical

people (such as patients and clinicians).

Discussion

The class-contrastive analysis of the combination of features suggests that high glucose levels and multi-

ple pregnancies are important factors for the diagnosis of diabetes. The single-feature class-contrastive

analysis suggests that glucose is an important factor for the diagnosis of diabetes. From the double

feature class-contrastive analysis we observe that (Pregnancy & Glucose), (Glucose & BMI), and (Glu-

cose & DPF) are important indicators of diabetes diagnosis. The triple feature class-contrastive analysis

suggests that feature combinations with pregnancy and glucose (such as pregnancy & glucose & blood

pressure, pregnancy & glucose & skin thickness) heavily influence the diabetes diagnosis probability.

The key contribution of our work is to 1) extend the class-contrastive analysis technique to numerical

features, and 2) use large combinations of features to generate class-contrastive explanations for machine

learning models. This can be used by machine learning scientists to generate complex explanations for

machine learning models.

Our complex explanations are similar to stories. Humans use complex stories to communicate with

each other [5]. Storytelling and understanding maybe one of the most important differences between

humans and other primates [6] [7] [8] [9].

Limitations

The PIMA dataset contains only eight features. A combinatorial explosion will occur as we add more

features and conduct a class-contrastive analysis for each and every combination of these features. In

addition, the PIMA dataset only contains tabular data. Datasets with more complex structures, such as

images or text, will require a different approach.

Finally, in this work, machine learning experts generated explanations and narratives based on visual

inspection of heatmaps. Automatically generating narratives as explanations from machine learning

models will be the subject of future work.
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Figure 1. Single feature class contrastive analysis heatmap.
Class-contrastive heatmap shows the effect of changing features on machine learning model predictions
(on the test set). A single feature is set to its maximum value and diabetes diagnosis probability
(predicted by the model on the test set) is recorded. Next, the single feature is set to its minimum value
and the diabetes probability predicted by the model (on the test set) is recorded. We repeat this
process for all other features. We then display the difference in probabilities as a heatmap. Each row
represents a patient and each column represents a feature. Each cell represents the probability
difference. The heatmap shows that glucose highly correlates with diabetes diagnosis. High glucose
means the patient is at high risk of diabetes. Pregnancy, body mass index [BMI], and diabetes pedigree
function [DPF] are also significant factors for diabetes diagnosis. Blood pressure does not seem to
predict diabetes diagnosis.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.06.23296591doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.06.23296591
http://creativecommons.org/licenses/by/4.0/


12

0 2 4 6 8 10 12 14 16 18 20 22 24 26
features

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224

pa
tie

nt
s

0.0

0.2

0.4

0.6

0.8

Figure 2. Double feature class-contrastive analysis heatmap.
Class-contrastive heatmap showing the effect of changing feature combinations on machine learning
models on the test set. Two features were simultaneously set to their respective maximum values and
model predicted diabetes probability (on the test set) is recorded. Next, we set the same two features
simultaneously to their respective minimum values and recorded the change in diabetes probability. We
repeat the process for every combination of two features. We display the difference in probabilities as a
heatmap. Each row represents a patient and each column represents a feature. Each cell represents the
probability difference. Column 0 (Pregnancy& Glucose), Column 10 (Glucose & body mass index
[BMI]), and Column 11 (Glucose & diabetes pedigree function [DPF]) showed a strong correlation with
diabetes diagnosis. The higher the value of the two features, the greater the possibility that the patient
is diabetic. Column 7 (Glucose & blood pressure [BP]), Column 8 (Glucose & skin thickness [ST]),
Column 9 (Glucose & Insulin), and Column 12 (Glucose & Age) were important indicators of diabetes
diagnosis. Column 13 (BP & ST) and Column 14 (BP & Insulin) showed a low correlation to diabetes
diagnosis.
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Figure 3. Triple feature class-contrastive analysis heatmap.
Class-contrastive heatmap showing the effect of changing 3 features simultaneously on model prediction
in the test set. Three features were simultaneously set to their respective maximum values and the
probability of diabetes (predicted by the model on the test set is recorded). Next, we set the same three
features to their respective minimum values and recorded the diabetes probability predicted by the
model. The process is repeated for all combinations of 3 features. We display the difference in
probabilities as a heatmap. Each row represents a patient and each column represents a feature
combination. Each cell represents the probability difference. The first six columns (index 0 to 5) which
represented all the feature combinations with pregnancy and glucose were strongly correlated with
diabetes diagnosis. This matched with the result from the double features class-contrastive analysis.
Column 6 (Pregnancy & blood pressure & skin thickness), and Column 7 (Pregnancy & blood pressure
& insulin) did not affect diabetes diagnosis appreciably.
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