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Cancer treatment has made significant advancements in recent decades, leading to improved 

outcomes and quality of life for many patients. Despite the array of available therapies, including 

targeted, hormone, and checkpoint blockade immunotherapy, many patients experience treatment 

failure or eventual resistance. Attempts to predict the efficacy of therapies, particularly immuno-

oncology therapies, have suffered from limited accuracy and difficulties in identifying molecular 

and other determinants of response. Improving treatment prediction alone is insufficient to create 

clinically meaningful research tools; additional prerequisites for this goal involve 

accommodating small data sets, effectively handling sparse features, integrating diverse clinical 

data, addressing missing measurements, ensuring interpretability, and extracting valuable 

biological insights for both clinical context and further research. Multimodal deep-learning 

models offer a promising avenue to surmount these challenges by leveraging their capacity and 

flexibility to learn from expansive and varied clinical and molecular data sets. Similar to their 

application in natural language and other domains, deep-learning models can uncover complex 

relationships within data that are pertinent to survival and treatment response. In this study, we 

introduce an explainable transformer-based deep-learning framework that addresses these 

challenges. This framework yields predictions of survival outcomes, as quantified by 

concordance index, that surpass the performance of state-of-the-art methods such as Cox 

proportional hazards, survival random forest, and tumor mutation burden, across diverse 

independent data sets. We developed the clinical transformer, a deep neural-network survival 

prediction framework that capitalizes on the flexibility of the deep-learning model, including 

training strategies like gradual and transfer learning, to maximize the use of available data to 

enhance survival predictions and generate actionable biological insights. Finally, we illustrate the 

future potential of the clinical transformer’s generative capability in early-stage clinical studies. 
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By perturbing molecular features associated with immune checkpoint inhibition treatment in 

immunotherapy-naive patient profiles, we identified a subset of patients who may benefit from 

immunotherapy. These findings were subsequently validated across three independent 

immunotherapy treatment cohorts. We anticipate that this research will empower the scientific 

community to further harness data for the benefit of patients.  
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The emergence of immunotherapy based on anti–programmed cell death 1 (PD-1) and its ligand 

(PD-L1) has transformed the treatment of cancer over the last decade. However, despite dramatic 

and durable responses, in most patients the disease progresses, and in some it fails to respond 

initially. Anti–PD-1, anti–PD-L1, and other checkpoint blockade approaches do not directly 

target the tumor but instead recruit the patient’s immune system to fight the disease. Due to this 

indirect mechanism of action, the drivers of response to therapy are more complicated than those 

of, for example, a targeted inhibitor of an oncogene and can be affected by the patient’s physical 

condition and immune system fitness, as well as the tumor’s underlying biology. Despite 

advancements in precision medicine, biomarker discovery,1, 2 and machine learning–based 

modeling,3-5 our ability to identify patients who will respond to treatment is still limited, as is as 

our means to understand the mechanism behind resistance.6, 7 At present, only three predictive 

biomarkers have received approval from the U.S. Food and Drug Administration (FDA) for use 

as companion diagnostics for immunotherapy. These biomarkers are the assessment of 

microsatellite instability (MSI), tumor PD-L1 expression by immunohistochemistry, and the 

measurement of tumor mutation burden (TMB).8-10 

In recent years, transformers11 have been extensively used in state-of-the-art applications for 

natural-language modeling. Examples include chatGPT,12, 13 image processing (e.g., Dino,14 

ViT),{Liu, 2023`; online ahead of print #24;Chen, 2022 #2} protein structure prediction (e.g., 

alphaFold),15, 16 and de novo protein sequence generation.17, 18 One of the key features of 

transformers in all these applications is self-attention, a mechanism designed to draw 

dependencies among all features.19 Self-attention is especially important for language processing 

tasks, in which the meaning of a word can change based on its context within a sentence. As an 

analogy, in precision medicine, where one wishes to predict the best treatment for a patient, a 
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biomarker may have limited meaning if it is measured independently of other clinical or 

molecular features. Transformers could be used to weigh the importance of various biomarkers 

in a given patient’s disease in the context of all available clinical and molecular measurements 

and to dynamically adjust their influence on the output, such as response to treatment. Therefore, 

the potential of an attention mechanism to capture the complexities in patients’ characteristics 

and response, as successfully captured in applications such as natural-language processing and 

understanding, could improve our ability to predict patient outcomes.  

Improving the prediction of treatment efficacy or survival by itself, however, is insufficient to 

establish an effective research tool that can offer informative guidance and insights for clinical 

decision-making. Additional requirements must be met to build models that will potentially have 

a translational impact. First, models must be compatible with relatively small data sets, such as 

those in clinical studies (e.g., patient cohorts in phase 1–3 clinical trials typically include 100 or 

fewer to 1000 patients), in contrast to training data in other areas of research where deep learning 

is applied (e.g., imaging, natural-language processing). Second, models must be able to adeptly 

manage sparse features, such as functional mutation events from genomic profiling, that are 

typically infrequent within a patient population. Third, predictive models are required to 

incorporate data from multiple modalities available in clinical studies and real-world data, 

including, for example, features derived from DNA and RNA sequencing from tumor or 

peripheral blood, clinical and temporal measurements, proteomics, methylomics, and more. In 

addition, some measurements could be missing in more than one part of a patient cohort (e.g., 

due to unsuccessful assays or biopsies or limited measurements). In addition to these challenges, 

biological and clinical data are noisy, variable, and inconsistent (e.g., batch effects or data 

generated by different assays or laboratories). Therefore, to maximize the use of artificial 
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intelligence (AI) machinery for clinical practice, it must have the capability to effectively 

integrate high-dimensional and diverse data, combine patient populations, and handle missing 

data. Fourth, although deep-learning models are often seen as “black boxes” (i.e, a computational 

model or algorithm that provides predictions or decisions without offering insight into how those 

predictions were derived), in order to translate models to the clinical domain it is essential to 

transition to interpretable or linear models, or even simple rule-based approaches like decision 

trees. Therefore, explainable AI is necessary to allow researchers to examine whether the deep-

learning prediction model aligns with existing knowledge, increases confidence in survival 

predictions, and relates the results to the relevant clinical context (e.g., to associate better 

survival predictions with features that support a certain type of treatment). Finally, the ability to 

extract biological insights and understand disease biology in the relevant clinical context from 

prediction models is vital for effectively informing further research. This requirement includes 

providing a mechanistic understanding of drug effects, identifying potential molecular targets, 

and elucidating mechanisms of resistance to treatment. 

To address these needs, we created the clinical transformer, a deep neural-network survival 

prediction framework based on transformers. This framework effectively handles relatively small 

data sets by incorporating a transfer learning mechanism. It leverages large data sets (e.g., The 

Cancer Genome Atlas [TCGA] and the Genomics Evidence Neoplasia Information Exchange 

[GENIE]) to build a foundation model that is then fine-tuned on specific smaller data sets (e.g., a 

patient cohort from a clinical study). The clinical transformer exhibited flexibility in handling 

diverse data sets with various feature types and levels of sparsity, as well as the ability to 

combine patient populations. Owing to the attention mechanism in the clinical transformer 

architecture, it was able to capture complex, nonlinear relationships among multiple molecular, 
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clinical, and demographic feature modalities of patients. We trained and tested our model with 

seven pan-cancer data sets comprising more than 140,000 patients from immuno-oncologic (IO), 

targeted, and chemotherapy treatments. Table 1 lists the data sets used in this study in addition to 

the various indications (cancer-specific or pan-cancer) and the use of the data (described in the 

“data usage” column in the table for pretraining, survival, or independent validation). When we 

then compared the model’s performance against those of state-of-the-art methods used for 

survival prediction, we found that our model consistently outperformed these methods, including 

Cox proportional hazards (PH) and random survival forest. Here we describe how the internal 

representations learned by the fully trained model could be used for specialized tasks, such as 

prediction of response to immunotherapy, in small real-world data sets or early-stage clinical 

trials. Finally, we show how the clinical transformer’s explainability and perturbation modules 

could be used to improve clinical interpretations of outcome and response predictions by 

allowing researchers to identify the molecular and clinical features that lead to specific outcomes 

in individual patients.  

RESULTS 

The clinical transformer framework 

The clinical transformer framework is shown in Fig. 1a and includes the following elements: 

input agnostic modeling and integration to enable prediction using multiple molecular (e.g., 

omics), clinical, and demographic modalities and their integration in a single system, including 

handling sparse features, missing data, and different annotation hierarchies (e.g., gene vs. protein 

name) (Fig. 1b); self-supervision and transfer learning to enable analysis on relatively small data 

sets, as in clinical studies (Fig. 1c); an interpretability module to enable executions of clinical 
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applications that require high confidence and understanding of the prediction model, including 

the capability to suggest biological insights (Fig. 1a); and a generative model to enable synthetic 

generation of populations of patients with distinct characteristics that may not currently exist in 

our data set. This was achieved by perturbing the molecular or clinical features of real patients 

and predicting the new virtual response after these modifications. This generative AI capability 

can enable researchers to explore scenarios that contribute to resistance or enhance response 

across a diverse array of patient populations (Fig. 1a).  

Learning strategies 

Our modeling framework is composed of three learning strategies: (1) direct learning, in which 

the model is trained from scratch to perform a given task, such as survival or response 

prediction; (2) gradual learning, in which, using the same input data for survival prediction, the 

model is first trained with self-supervised learning for masked feature prediction, similar to the 

strategy used to train large language models such as BERT20 (Fig. 1c), and is then fine-tuned on 

a specific task (e.g., patient response or survival prediction); and (3) transfer learning, in which a 

model is pretrained on large amounts of data, using self-supervision for masked feature 

prediction, and the weights are then used to initialize other models that are fine tuned to predict 

survival or patient response. The pretraining step (i.e., gradual learning and/or transfer learning) 

allows the model to recognize nonspecific biological and clinical patterns and relationships in the 

data. This step provides a more informative starting point than a random initialization and 

enables a new model to be further refined on another or a similar data set, focusing on patient 

outcome as a target function (Fig. 1c). 

Data sets used in training, validation, and testing 
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In total, 12 data sets from clinical trials and real-world data (pan- and cancer specific), 

comprising a total of 150,070 patients, were used in the framework for multiple tasks, including 

the three strategies mentioned above: direct, gradual, and transfer learning (Table 1). Data sets 

were used independently to predict patient response to treatment in direct and gradual learning 

modes, as well as by combining data sets with similar input features to evaluate the impact of 

transfer learning. All data sets were used to predict patient response to treatment with the 

survival outcomes, except for the GENIE project’s data, which was used in the self-supervision 

mode for transfer learning. These data comprised 134,626 patients21 and were used to build a 

model based on the gradual learning strategy mentioned above, using mutations and 

demographics data as input (Table 1). Instances of this general-purpose model were further used 

in multiple independent tasks to predict patient survival after fine-tuning based on relatively 

small clinical-trial or real-world data sets. A list of features and a complete description of the 

data sets used  is provided in Table 1.  

Performance compared with state-of-the-art survival prediction models  

To compare the performance of the clinical transformer (including all the aforementioned 

learning strategies) with those of methods commonly used in the field—specifically, Cox PH, 

TMB (using TMB as the risk score), and random survival forest, we used five independent data 

sets (Table 2) from the 12 data sets described in the preceding section.  

We evaluated the performance of the clinical transformer in a well-defined set of clinical and 

molecular biomarkers from a study by Chowell et al.,3  using concordance index (C-index).22 

This data set comprises multiple variables that have been integrated into a machine learning 

model to predict patient response to immunotherapy.3 To train our models, we used the same 
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training and testing data splits as in that study, as well as the reported prediction scores from the 

trained random forest model, along with TMB for comparison against our clinical transformer 

model (Supplementary Information section A1). In the pan-cancer setting, our clinical 

transformer achieved a C-index of 0.73, outperforming the Chowell et al.3 random forest model, 

which had a C-index of 0.68, and TMB (which was recently FDA approved for this purpose23), 

which had a C-index of 0.55 (Fig. 2a–c). 

To further evaluate our model’s performance for patient stratification, we assigned patients to 

either high- or low-risk populations using specific cutoffs. For the Chowell et al.3 classifier, we 

used the optimal cutoff of 0.239 as reported in that study;3 for TMB, we used the FDA-approved 

cutoff of 10 mutations per megabase;23 and for our model, we used median score cutoff derived 

from the training set. Our clinical transformer showed the best patient stratification (Fig. 2a), 

with a hazard ratio (HR) of 0.29 (95% confidence interval [CI], 0.21–0.40; P = 3e-14), compared 

with the Chowell et al.3 random forest model (Fig. 2b), with an HR of 0.34 (95% CI, 0.25–0.47; 

P = 2e-11), and TMB (Fig. 2c), with an HR of 0.69 (95% CI, 0.50–0.97; P = 3e-2). 

To examine the benefit of the gradual learning strategy described in the preceding section, we 

further pretrained the clinical transformer in a self-supervision mode for 30,000 iterations on the 

complete Chowell et al.3 data set and then fine-tuned it on the survival end point. We then 

evaluated its performance on an independent data set of 150 patients with non–small-cell lung 

cancer (74 patients treated with anti-PD-L1 and 76 treated with anti-PD-L1 + anti-CTLA-4 from 

the MYSTIC trial [NCT02453282]; see Supplementary Information section A2). The clinical 

transformer showed superior performance when trained on the Chowell et al. data with gradual 

learning and evaluated on MYSTIC data, with a C-index of 0.643 and an HR of 0.50 (95% CI, 
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0.34–0.74; P = 2.64e-3), whereas the clinical transformer in direct learning strategy showed a C-

index of 0.616 with an HR of 0.56 (95% CI, 0.38–0.81; P = 3.79e-3). TMB achieved a C-index 

of 0.608, with an HR of 0.68 (95% CI, 0.47–0.99; P = 4.4e-2) (Supplementary Fig. SF2.1, 

Supplementary Table ST2.1). These results indicate the benefit of the gradual learning strategy 

in predicting survival outcomes when large data sets are not available.  

As demonstrated in Table 2, the clinical transformer outperformed all other approaches. In the 

independent evaluation of the clinical transformer on IO treatment arms in the MYSTIC study 

(anti-PD-L1, anti–PD-L1 + anti–CTLA-4; NCT02453282) and OAK trials (anti–PD-1/PD-L1; 

NCT02008227), we observed survival predictions with C-indexes of 0.67 for MYSTIC and 

0.669 for OAK, compared with the random survival forest model, which had C-indexes of 0.606 

for MYSTIC and 0.664 for OAK. Cox PH modeling resulted in a much lower performance, with 

a C-index of 0.599 for MYSTIC and 0.620 for OAK. Similarly, TMB resulted in a C-index of 

0.589 for MYSTIC. 

Next we sought to examine the ability of the clinical transformer to predict survival based on 

nonclinical features. We used a set of features reported by Thorsson et al.24 to characterize the 

tumor microenvironment (TME) compiled from TCGA. Thorsson et al.24 integrated major 

immunogenomics methods for the assessment of total lymphocytic infiltrate (from genomic and 

hematoxylin-eosin image data), immune cell fractions from deconvolution analysis of mRNA 

sequencing data, immune gene expression signatures, neoantigen prediction, TCR and BCR 

repertoire inference, viral RNA expression, and somatic DNA alterations. The clinical 

transformer achieved a C-index of 0.734 and an improved prediction of overall survival (OS) 

compared with the random survival forest model, which had a C-index of 0.722; the Cox PH 
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model, with a C-index of 0.690; and TMB, with a C-index of 0.624. Finally, we further evaluated 

the clinical transformer using data from Samstein et al.,25 a molecularly derived study in which 

1,662 tumors from 32 different cancer types were profiled using the Memorial Sloan Kettering 

(MSK) Integrated Mutation Profiling of Actionable Cancer Targets (IMPACT) panel 

(Supplementary Information section A3). The clinical transformer achieved a C-index of 0.649, 

the random survival forest a C-index of 0.638, the Cox PH a C-index of 0.594, and the TMB a C-

index of 0.543. Overall, these results demonstrate the superiority of the clinical transformer in 

predicting patient survival in a multitude of feature modalities and types, suggesting its potential 

use in a wide range of clinical bioinformatics applications.  

Use of deep learning by GENIE to predict patient response in small immunotherapy 

cohorts 

“Real-world data” is a broad term applied to data generated in routine clinical practice and has 

been used to describe a variety of data sets, including UK Biobank,{UK Biobank,  #55} 

Flatiron,26 TEMPUS,27 and GENIE.21 GENIE is a cancer registry assembled through data sharing 

among 19 leading international cancer centers. These data link clinical and genomic data that can 

provide useful insights to support the identification of biomarkers associated with patient 

response to a given treatment. Here, we introduce as part of the clinical transformer framework 

the use of transfer learning, which is designed to take advantage of the data available in GENIE. 

As in large language models (e.g., chatGPT), which are pretrained to understand language by 

using large amounts of data for specific tasks, the clinical transformer uses unlabeled data from 

real-world evidence to learn general patterns and relationships in the data. The general model is 

then fine-tuned (or specialized) for a specific task, such as response to treatment or survival, 

based on a small data set from a clinical trial. We implemented the following three stages to 
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demonstrate the advantage of this approach: (1) pretraining, in which a model is trained by using 

the GENIE v.11 data set (N = 134,626), including 2,290 variables via standard masked self-

supervised learning; (2) transfer learning, in which the GENIE model’s weights are transferred to 

a survival model with the same architecture but outputs a survival score; and (3) prediction of 

patient survival by fine-tuning the model based on a small cohort of patients with a clear 

treatment line and survival endpoint. This third stage is benchmarked independently across four 

IO data sets: Samstein et al. pan-cancer (N = 1610),25 lung cancer from MSK Multi-modal 

Integration of Data (MIND) (N = 246), the MYSTIC trial (N = 325), and the Dana Farber Cancer 

Institute melanoma data set (N = 110) (Table 1). We evaluated direct and transfer learning 

models by using the C-index and the number of iterations to obtain the peak performance over 10 

training (80%) and testing (20%) splits (see Supplementary Information section A3). 

In general, transfer learning based on GENIE demonstrated improvement in predicting patient 

survival across all data sets (average C-index, 0.617) compared with direct learning (average C-

index, 0.583) (Supplementary Table ST3.1), with an average reduction in training time of 40% 

(Fig. 2d, 2e; Supplementary Fig. SF3.1). We further evaluated the advantage of transfer learning 

on another independent data set taken from the Chowell et al. study3 and fine tuned it on 

MYSTIC trial data (Fig. 2f; Supplementary Information section A4) and obtained a C-index of 

0.670, as compared with direct learning, with a C-index of 0.628 (Mann-Whitney-Wilcoxon test, 

two-sided; P = 0.045). For patient stratification, transfer learning achieved an average median 

risk cutoff, with an HR of 0.49 (95% CI, 0.21–1.15) across 10 testing splits, as compared with 

the model without transfer learning, which achieved an HR of 0.57 (95% CI, 0.24–1.33). 
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Using the clinical transformer’s explainability module to identify features associated with 

survival outcomes 

Clinical applications require information not only about results, such as risk or response 

prediction, but also about the characteristics and features on which these results are based and 

their respective underlying assumptions.28 Explainability has been an important area of research 

in recent years29-31 to turn black-box models to white-box in order to provide a verification 

check, increase human confidence in predictions, and unravel the underlying mechanisms behind 

successful predictions or erroneous results. Here we describe the clinical transformer’s 

explainability module, which allows for a comprehensive understanding of the factors 

influencing disease biology and their relationships with patient outcomes.  

To estimate feature importance in the model, we used a feature permutation importance 

algorithm in which the values of a given variable are perturbed and then fed into the model.32 

The difference between the output C-index from the unperturbed and perturbed feature is then 

computed. If a feature has a strong effect on the model’s outcome, it will be expected to generate 

a strong change in the model’s output. Conversely, for features that do not influence the 

outcome, the change would be close to zero. We evaluated feature importance by 10 permutation 

tests for each trained model over the testing splits.  

In the Chowell et al.3 data set, we observed that the most informative features were albumin, 

neutrophil-to-lymphocytes ratio (NLR), prior chemotherapy, TMB, fraction of copy number 

alterations (FCNA), and hemoglobin (HGB), whereas human leukocyte antigen (HLA) 

evolutionary divergence (HED), age, sex, and cancer type did not have a strong effect on the 

model’s outcome (Fig. 3a). In general, we observed strong agreement between the ranking of the 
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clinical transformer’s feature importance and those in the Chowell et al.3 study. To identify the 

association of the input features with patient response to immunotherapy, we stratified patients 

into four categories (Fig. 3b), defined by quartile cutoffs based on the model’s predicted survival 

scores. These resulted in the following patient groups: (1) short-term survivors, patients below 

the 25th percentile, with a median OS of 4.4 months; (2) mid-low survivors, patients between the 

25th and 50th percentiles, with a median OS of 10.3 months; (3) mid-high survivors, patients 

between the 50th and 75th percentiles, with a median OS of 19 months; and (4) long-term 

survivors, patients above the 75th percentile, with a median OS of 37 months. Albumin scores 

demonstrated a statistically significant difference (P  < 1e-16) between short-term survivors (μ = 

3.2 g/L, δ = 0.4 g/L)  and long-term survivors (μ = 4.1 g/L, δ = 0.27 g/L) as well as NLR scores, 

where short-term survivals were observed to have on average high NLR levels (μ = 12, δ = 11.8) 

and the long-term survivors relatively low average values (μ = 3.15, δ = 1.79) (Fig. 3c). The high 

variance in the short-term survivors suggests that this group may be less stable than the long-

term survivor population. Interestingly, the TMB score exhibited statistical significance only 

when the long-term survivors were compared with all other populations (P < 1e-4). However, 

there was no statistically significant difference when short-term survivors were compared with 

intermediate-term survivors (P = 0.2) or long-term survivors (P = 1.0). Therefore, in accordance 

with the literature,25, 33 high TMB scores (e.g., ≥10 mutations per megabase) could be interpreted 

as indicative of a positive IO treatment response. Conversely, lower TMB scores may not hold 

much relevance in predicting the IO treatment response. Moreover, in this data set, the clinical 

transformer identified approximately 60% of long-term survivors who did not receive 

chemotherapy prior to IO treatment (P < 1e-4; Fig. 3c). Nevertheless, due to the expected overall 
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better outcomes of patients treated with first-line therapies, the association of this factor 

specifically with IO response is uncertain.  

Identification of key functional groups associated with survival outcomes 

The attention mechanism is an important component that distinguishes the clinical transformer 

from other deep neural-network architectures (e.g., fully connected and convolutional neural 

networks) in generating biological insights. This mechanism enables the model to identify 

second-order or greater patterns in the data, such as interactions between two features that are 

associated with patient survival and response. The attention mechanism has been previously 

employed to interpret model predictions. For instance, in Xie et al.,34 Vashishth et al.,35 and Vig 

and Belinkov,36 attention weights were used as maps to investigate salient interactions among 

features. A limitation of these studies was that they considered only the attention network’s 

weights, which may not provide a direct interpretation and can be influenced by nonlinear 

relationships within other transformer components (e.g., feed-forward network following multi-

head attention, layer normalization). Because these weights may not necessarily correlate with 

importance values derived from gradient-based methods,37-39 they do not fully capture the 

underlying significance of the features. 

We propose a direct approach for assessing interpretability by calculating the similarity between 

the model’s embeddings, which are located downstream of all the transformer’s neural-network 

components. We used cosine distance as a similarity measurement between any two feature 

embeddings (e.g., the embeddings of the independent variables NLR or albumin) as well as the 

outcome embeddings (e.g., survival) (Fig. 1b). These embeddings encode both linear and 

nonlinear relationships between input features in the context of clinical outcomes. The cosine 
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similarity between two features provides insights into their relationship. A high cosine similarity 

suggests that the features share similar information and may be redundant. Conversely, a cosine 

similarity close to zero indicates that the features are independent and encode different 

information, such as orthogonality. A negative cosine similarity signifies that the two 

embeddings encode inversely. With this approach, we can make use of the information flow 

through the entire transformer network as opposed to independent attention scores derived from 

individual attention heads upstream in the neural-network model.  

Applying this approach to the Chowell et al.3 data set showed albumin and TMB to be 

independent features with the highest level of orthogonality (cosine similarity of 0.09; 

Supplementary Table ST2.1, Supplementary Fig. SF6.1). This result suggests that albumin and 

TMB contribute complementary information to the prediction of patient survival, consistent with 

previous studies showing that albumin has a positive effect on predicting patient response to 

immunotherapy when combined with TMB.40 

Input features were grouped into four functional groups based on their cosine similarity 

(Methods), representing groups of features that shared similar information with respect to the 

survival endpoint (Fig. 3d). Cluster 1 included a grouping of TMB, MSI score, and HLA–loss of 

heterozygosity (LOH), with a mean cosine similarity of 0.65 (0.59, 0.68, and 0.70 cosine 

similarities for MSI-TMB, HLA-LOH–MSI, and HLA-LOH–TMB interactions, respectively) 

(Supplementary Table ST6.1), implying that these three features may share a common 

underlying mechanism. It has been well documented that a high MSI score is associated with 

high TMB,41-44 which provides a valid rationale for the grouping of these features. One possible 

link between these two features and HLA-LOH is the process of antigen availability and 

presentation. TMB and MSI are both surrogates for neoantigen availability, and tumors with 
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higher neoantigen loads are under greater pressure to lose the ability to present those neoantigens 

through the loss of HLA. Cluster 2 consisted of patient-related variables, including albumin, 

body mass index, HED, HGB, NLR, platelets, and age. Interestingly, although HED is a 

molecular-based biomarker, it was clustered together with clinical laboratory patient-level test 

markers, rather than with TMB, MSI, or HLA-LOH, which are also molecular markers but are 

directly derived from the tumor. This distinction can be attributed to the fact that HED is derived 

from germline DNA and represents an immune characteristic at the patient level. Cluster 3 

included FCNA, prior chemotherapy, and sex, with a mean cosine similarity of 0.60. Finally, 

cluster 4 had the highest average within-cluster cosine similarity, suggesting that cancer type, 

drug class, and tumor stage included in this cluster shared similar information (cosine, >0.95) 

with respect to the clinical endpoint. Nevertheless, this finding may reflect the underlying 

dependencies among drug, cancer type, and stage of disease that are associated with clinical 

practice. 

To further explore an application of the explainability module, we investigated the tumor biology 

and its association with survival based on mutational profiling in the Samstein et al. data set.25 

Here, we formed clusters on the basis of cosine similarity, the tumor tissue gene-level mutational 

features, to identify only molecularly derived functional groups associated with patient survival 

with immunotherapy (using the MSK IMPACT panel of 469 genes) (Supplementary section A5). 

Mutational features were clustered into 50 functional groups and were ranked on the basis of 

their association with benefit of immunotherapy (Fig. 3e, Supplementary Fig. SF5.1). We 

aggregated each functional group of multiple genes (each gene is a binary variable with an 

indication of 1 to denote that it is mutated and 0 if not) to a single variable using a simple rule, as 

follows: if any gene in a given functional group is mutated, the representing variable of that 
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functional group is assigned the value 1; if none of those genes is mutated, it is assigned 0. Two 

functional groups, denoted C47 (HR = 1.32; APC, PIK3CA, and TP53) and C48 (HR = 1.43; 

KEAP1 and STK11), were associated with short-term survival with immunotherapy. Indeed, 

multiple studies have shown the negative prognostic impact of KEAP1 and STK11 for both 

immunotherapy and chemotherapy.45-48 Alternatively, we evaluated the survival impact of the 

functional group C8, which was composed of the genes AKT2, BTK, CDC73, HLA-B, IKBKE, 

INPPL1, RFWD2, TRAF2, and WHSC1 and is associated with regulation of the immune response 

(GO:0002682, P = 8.69e-4). We used this group to stratify patients across independent IO-

treated data sets, resulting in a significant and selective benefit of IO treatment. We observed a 

meaningful stratification for both Samstein et al.25 and Miao et al.49 pan-cancer IO-treated 

patients in these data sets (HR = 0.58, P = 3.3e-4; HR = 0.42, P = 4.8e-2, respectively), whereas 

no meaningful stratification was observed for pan-cancer non–IO-treated patients in the TCGA 

data set (HR = 0.86, P = 4.6e-2; Fig. 3f). 

Translating the clinical transformer to simple and interpretable linear models 

As described in the preceding section, the clinical transformer was able to extract functional 

groups by clustering the features on the basis of the cosine similarity of their outcome 

embeddings. We sought to examine whether these patterns could be leveraged to construct a 

simple linear model. To this end, we binarized each functional group by using the strategy just 

described, in which each functional group is represented as a binary variable describing the 

presence of a mutation in any of the given genes. This single representing variable was then used 

as input to a Cox PH model to predict patient OS. Multiple function groups could be also used by 

representing each one as a single variable to construct a multivariate Cox PH model. Therefore, 

we selected the top 10 molecularly derived functional groups identified in the Samstein et al.25 
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data set (those showing the strongest relationship with OS; Fig. 3e) as inputs to a multivariate 

Cox PH model to predict patient OS (see Methods). Intriguingly, we observed only a small 

decrease in performance with this approach compared with the complex clinical transformer 

model. The Cox PH model resulted in an average C-index of 0.63 (HR = 0.53; Miao et al. data 

set49) (Fig. 3h), whereas the clinical transformer with the whole set of features (including clinical 

and demographics) resulted in a C-index of 0.65. In contrast to Cox PH and random Cox PH, the 

clinical transformer guided the selection of the functional groups, and the performance could not 

be recovered by using a random selection of functional groups (C-index = 0.55 on test data set, 

HR = 0.76; Miao et al. data set49) or a random set of 10 hallmark gene sets (C-index = 0.58 on 

test data set, HR = 0.76; Miao et al.49 data set) (Supplementary Fig. SF5.2). Stratifying the 

population by the median risk score cutoff derived from the discovery data set (Samstein et al.25), 

the Cox PH model achieved an average HR of 0.45 across the testing splits (Fig. 3g). We 

evaluated the model against several independent validation data sets and obtained an HR of 0.53 

in the pan-cancer IO-treated population from the Miao et al.49 data set, which outperformed TMB 

(using median cutoff) (Fig. 3h), as well as in the non–IO-treated patients in TCGA data set, 

where the Cox PH model did not show any significance for stratifying patients (HR = 0.99). We 

furthered evaluated the functional-group Cox PH model in melanoma, where we observed the 

same trend across all immunotherapy validation data sets and the opposite trend for TCGA 

melanoma (Fig. 3i). Note that our functional-group Cox PH model achieved an HR of 0.52, 

outperforming TMB with an HR of 0.72 in the Miao et al. data set.49 The same pattern was 

observed in the Van Allen et al.50 data set, where the Cox PH model achieved an HR of 0.72, 

outperforming TMB with an HR of 0.86 (Fig. 4i).  
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The results presented in this section demonstrate a valuable opportunity to translate patterns 

recognized with complex nonlinear models into an easily explainable linear model such as the 

Cox PH. This approach has the potential to facilitate a deeper understanding of the relationships 

between input features and outcomes and accelerate the discovery of a composite biomarker to 

be translated to companion diagnostics. 

Clinical transformer embeddings capture of biological patterns associated with response 

As in language models, which generate word embeddings that can incorporate both word-level 

characteristics and contextual semantics,11, 51-53 the clinical transformer’s outcome embeddings 

may incorporate relationships among the molecular and clinical features of a patient. These 

relationships are encoded in the context of the clinical endpoint (e.g., survival time) that the 

model was trained to predict and could potentially reflect higher-order dependencies required to 

unravel biological mechanisms related to response, resistance, or survival. Therefore, we 

transformed the 128-dimension outcome embeddings space (Fig. 1b) to a two-dimensional space 

by using the Uniform Manifold Approximation and Projection (UMAP) transformation, a 

method that is widely used in many computational biology applications.54, 55 Fig. 4a presents an 

example of this projection for the patients in the Chowell et al.3 data set. Clustering and labeling 

of outcome embeddings were projected into this UMAP plane, enabling us to explore patterns in 

the data in the context of response level, treatment lines, and other features of interest. 

As an example, Fig. 4a demonstrates how patients with specific clinical features, such as survival 

and treatment history, are organized in a clinically meaningful order on the embeddings plane of 

the clinical transformer. The left panel in Fig. 4a shows a clear trajectory on the embeddings 

space from short-term survivors to long-term survivors for IO-treated patients in the Chowell et 
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al.3 data set. The right panel in Fig. 4a demonstrates a clear separation of two distinct patient 

groups, one with prior chemotherapy and the other without.  

Exploring alternatives of clinical response for patients with perturbation analysis 

Next, to examine potential alternatives to response of short-time survivors, we selected patients 

with a similar clinical response (e.g., short-time survivors) and separately perturbed each of their 

input features (i.e., artificially changing the value of a feature such as NLR, TMB, or gene or 

pathway expression) while maintaining the other features fixed. By calculating the difference 

between the predicted survival score of the patients before and after perturbation (see Methods 

and Supplementary section A7 for more details), we were then able to identify which patients 

within the same original clinical response segment may potentially have improved survival based 

on the expected pathways that were modulated (the perturbed pathway is related to the 

mechanism of action of the therapy investigated). Through examination of the other features of 

these patients, we may be able to identify new segments for potential treatment, and by 

examining patients whose disease failed to improve, we may inform potential resistance 

mechanisms and combination opportunities. 

 Individual feature perturbation (Fig. 4c) showed that patients can be sensitive to one, two, or 

none of the perturbed features, highlighting the sensitivity of a given patient to the input features. 

Fig.4c (top) shows an example of a patient who was more sensitive to changes when TMB and 

NLR were perturbed together rather than individually. Fig. 4c (bottom) depicts a patient who was 

not sensitive to NLR or TMB perturbations, individually or together. Next, we exhaustively 

perturbed all pairwise combinations of features to observe whether any two features resulted in 

an impactful interaction on the perturbed patient’s outcome. Interestingly, we found that 
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interactions between features from different clusters (i.e., clusters indicated in Fig. 3d) had a 

stronger impact on a patient’s survival than interactions between features from the same cluster 

(binomial test between clusters, P = 0.004; within clusters, P = 0.58; Fig. 4d). As demonstrated 

in Fig. 4d, TMB-NLR exhibited the most impactful pairwise-feature interaction, followed by 

TMB-HGB and TMB-albumin. Importantly, we identified two population subtypes, one that 

exhibited a strong change in survival score when either of those features were perturbed 

(hereafter denoted as the variant population; Fig. 4e) and another that was invariant to 

perturbations (hereafter denoted as the invariant population; Fig. 4f). We further investigated the 

patients that exhibited improvement of their predicted survival from short- to long-term survival 

(patients labeled Q1 by using the cutoff defined from the training set). As expected, patients 

from the variant population exhibited values within the normal ranges for albumin, HGB, and 

platelets, as indicated in Fig. 4g (blue boxes) (albumin, 3.4–5.4; NLR, 1–3; HGB, 12–17; 

platelets, 150–450) (Fig. 4g). These values may serve as indicators of better health compared 

with patients with values outside of the normal ranges. As expected, high values of TMB along 

with low values of NLR tended to produce the greatest changes in survival scores for this 

population (Fig. 4g). In contrast, the invariant population tended to be in worse health, with 

albumin and HGB outside the normal range (Fig. 4g).  

Identification of potential drivers of response and resistance to immune checkpoint 

inhibitor treatment via perturbation of a T-cell gene expression signature 

The clinical transformer was used to train a model of survival for patients with melanoma (skin 

cutaneous melanoma [SKCM], IO treatment naive) in TCGA based on the gene signatures of the 
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TME defined in Bagaev et al.56 Quartile survival groups resulting from this training are 

illustrated in Fig. 5a.  

Having established a model of the TME’s impact on survival in melanoma patients (see 

Supplementary Figs. SF8.1, SF8.2 and Bagaev et al.56), we sought to determine whether such a 

model could be used to better understand or predict drivers of response and resistance to 

checkpoint blockade in this setting. Fig. 5b presents the UMAP projection of the generative 

embeddings of the patients from this model. We then perturbed the values of a T-cell gene 

expression signature within the Q1 and Q2 patients of the TCGA-SKCM cohort to mimic the 

increase in T-cell infiltration and activation that would be expected upon checkpoint blockade. 

As with the example in the preceding section, this perturbation generated a variant group of 

patients, for whom an increase in T-cell gene expression mediated improved survival, and an 

invariant group, for whom it did not. The changes of these perturbations for the variant and 

invariant groups are shown on the generative embeddings UMAP plane in Fig. 5c. A comparison 

of gene expression signature differences between these variant and invariant groups is presented 

in Fig. 5d (Supplementary Fig. SF8.3). The variant group of patients, who might be considered to 

potentially benefit from checkpoint blockade, demonstrated significantly increased levels of 

expression for signatures associated with major histocompatibility complex class I  (MHC-I) and 

effector immune cells, suggesting, as has been described elsewhere,56 that a degree of preexisting 

immunity to the tumor, together with functional antigen presentation, are key determinants of 

benefit from checkpoint blockade. In contrast, the invariant population of patients, who might be 

considered to be resistant to checkpoint blockade, demonstrated increased signatures of 

angiogenesis, matrix remodeling, and infiltration of both cancer-associated macrophages and 

fibroblasts. Suppression of T-cell immunity by intratumoral macrophages through a number of 
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mechanisms has been well described as a mechanism of resistance to checkpoint blockade, as 

has the exclusion of T cells from the microenvironment by both cancer-associated fibroblasts and 

changes in the extracellular matrix. The impact of angiogenesis on response to checkpoint 

blockade is less well established but might also be expected, given the necessity of a functional 

blood vessel system to enable access to the tumor by T cells. 

The expected and interpretable nature of the potential mechanisms of response and resistance 

suggested by the clinical transformer in this context are encouraging with respect to the ability of 

this approach to yield biological insights. As a final step, we sought to further validate these 

findings by assessing the ability of the identified signatures to stratify melanoma patients treated 

with checkpoint blockade. Gene signatures were ordered with respect to the magnitude of 

difference they demonstrated between variant and invariant populations (Supplemental Table 

ST8.1). The four signatures with the most significantly increased associations in the variant 

population were effector cells, MHC-I, checkpoint molecules, and natural killer cells, and the 

four signatures with the most significantly decreased associations were endothelium, cancer-

associated fibroblasts, angiogenesis, and matrix remodeling. These eight signatures were 

examined in data from three studies.50, 57, 58 From these cohorts we selected patients who had a 

second line of IO treatment and whose tumor biopsies were obtained prior to IO therapy. Data 

from all three studies were initially pooled to define a global median for each of the signatures. 

Patients in each study were then stratified for survival around the mean for each signature. 

Results are shown in the forest plot in Fig. 5e. Although none of the differences between high 

and low groups with respect to stratification of survival reached statistical significance, several 

signatures showed consistent trends for differential HRs across studies. For example, high vs. 

low levels of the effector cell signature resulted in HRs of 0.53, 0.53, and 0.35 for survival across 
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the three studies, respectively, whereas matrix remodeling produced HRs of 3.65, 1.46, and 1.89 

(Supplementary Table ST8.2). These results speak to the potential for the clinical transformer to 

provide insights with respect to response and resistance, even with early clinical data that do not 

include the treatment under investigation.  

DISCUSSION  

Modified transformer architectures have enabled a significant acceleration in the development of 

computational models that make meaningful predictions from complex and heterogeneous 

biological and clinical data sets. The self-attention mechanism in transformer architecture, which 

enables the capture of dependencies among all input features, makes transformers highly 

appealing models for survival analysis. This is particularly due to the wide range of molecular 

and clinical features that play an important role in influencing patient outcomes and treatment 

response. Survival analysis is an area that has been dominated by statistical approaches, such as 

multivariate modeling using Cox PH for predicting individual patients’ responses to therapy 

based on their genomic and clinical features. Several nonlinear approaches have also been 

proposed, including gradient boosting machines, among others. In recent years, deep neural 

networks have also been applied to survival analysis. For instance, Katzman et al. developed 

DeepSurv, a personalized treatment recommender system using a Cox PH deep network59. 

Yousefi et al. implemented SurvivalNet, which uses Cox partial-likelihood to train a neural 

network to predict survival outcomes.60 Hu et al. developed a transformer-based survival model 

that utilizes ordinal regression to optimize survival probabilities over time.61 However, none of 

these methods consider the interactions among the features in an explicit way as part of the 

model or enable reviewing of the model at the single-patient level. 
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We developed the clinical transformer framework, a deep-learning model with explainability that 

can predict survival outcomes for different lines of treatment with greater accuracy than current 

state-of-the art prediction models. We demonstrated how the clinical transformer is trained in a 

self-supervision mode on TCGA or GENIE public data sets (regardless of the clinical endpoint) 

and is then fine-tuned to make improved predictions on specialized tasks, such as survival 

prediction for smaller data sets (e.g., clinical trials). This approach allowed us to leverage the 

wealth of information in large data sets, including unlabeled data, to enhance predictions on 

limited data sets for which response and survival end points are available. Basing our analysis on 

several independent data sets, including different input modalities, cancer type, and lines of 

treatment, we found that the clinical transformer could capture low- and high-order relationships 

that are encoded within the variation in the clinical, demographic, and molecular data of patients. 

Importantly, using cosine-distance between the embeddings of the input features, we 

successfully used the clinical transformer to discover patterns in the data (e.g., interactions 

between features), such as separated clusters for patient health and immunogenicity. Using the 

cosine-distance also enabled us to map the dependencies between the input features associated 

with survival and to recommend minimalistic linear models with a small number of variables, 

which could be more easily translated to clinical practice and may introduce new insights to 

response and resistance. For example, our clustering analysis, based on pairwise cosine-distance 

between the input features, identified two functional groups, C47 (HR = 1.32; APC, PIK3CA, 

and TP53) and C48 (HR = 1.43; KEAP1 and STK11) associated with poor response to 

immunotherapy. The KEAP1 and STK11 genes are widely known for their role in 

immunotherapy resistance, illustrating the potential clinical utility of feature-based identification 

of molecular functional groups. We then showed that these molecular functional groups could be 
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represented as binary variables (i.e., 1 for a mutation, 0 if not) and used as inputs to construct a 

Cox PH model to analyze the role of molecular features in patient OS. When evaluated against 

independent validation data sets, we showed that our functional-group Cox PH model 

outperformed standard methods in pan-cancer IO-treated patient data sets.  

Another essential function of the clinical transformer, particularly in early clinical studies with 

no treatment data available, is perturbation analysis. Using data sets of patients before IO 

treatment was accessible in the community (e.g., TCGA), we selected patients with short-term 

survival and perturbed specific molecular features that were expected to change in the TME due 

to IO treatment. Subsequently, we predicted their survival outcomes. This process allowed us to 

identify two patient populations: those whose survival improved and those whose survival did 

not. By further investigating the TME profiles of these patients, we were able to pinpoint factors 

associated with response and resistance to IO treatment, thereby supporting the potential of this 

approach to identify patient populations that could benefit from IO treatment based on early data 

lacking such treatment information. 

The current version of the clinical transformer is designed to handle only a few hundred input 

features effectively (e.g., requiring RNA gene expression data to be aggregated into signatures 

before training a model). Additionally, for effective performance on relatively small data sets, it 

is necessary to pretrain the clinical transformer in a self-supervision mode on thousands of 

patient entries with a similar set of features. Unsurprisingly, the performance and interpretability 

of the clinical transformer rely on the quality and perspicuity of the features (e.g., gene 

expression signatures) it uses. We observed that even when prediction performance is high, the 

lack of direct interpretability in certain features (e.g., immune landscape of cancer signatures24) 

hinders the generation of actionable insights in the relevant clinical context. Conversely, well-
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defined clinical features56 that are structured on the basis of melanoma TME demonstrated 

highly preferential performance for that indication compared with others. As with other machine 

learning and AI applications, careful review of the clinical transformer output in the correct 

context is required to avoid misinterpretation (e.g., prior chemotherapy treatment is probably due 

to the expected overall better outcomes of first-line patients rather than the association of this 

factor specifically with response to IO treatment). A key assumption in the perturbation analysis 

is the presence of sufficient natural variation in patient biology and survival outcomes, allowing 

the model to learn this variation effectively. This assumption is dependent on the dimensionality 

and complexity of the data and study, as well as the size of the data set. Additionally, the 

generative nature of the perturbation analysis in the clinical transformer may result in 

“hallucinations,” making it essential to validate findings on independent data sets and carefully 

examine the results.  

A key advantage of deep neural networks over conventional machine learning is their flexibility 

in designing model architecture that can learn from diverse types of data sets. These include both 

flexibility in including different input features (e.g., molecular signatures and clinical features) 

and target functions (e.g., prediction of progression-free survival or response). With the 

proliferation of available biological data from the multitude of assays in preclinical and clinical 

settings, the digitization of clinical samples, and the vast body of knowledge that is available in 

the literature, our ability to integrate these data to understand disease biology and response and 

resistance to treatment is highly valuable. The clinical transformer framework presented in this 

study is a promising step in this direction. We expect that this research will benefit the scientific 

community by fostering further developments in maximizing data utilization for the benefit of 

patients. 
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METHODS 

Model architecture 

The clinical transformer is composed of three main components: (1) an embedding layer that 

projects the input features F ∈ RN×1 to an embedding space E ∈ RN×dk by using the feature name 

and value pairs; (2) a transformer encoder composed of l number of layers that transforms the 

input embeddings E into the output embeddings P ∈ RN×dk, which encodes feature interactions 

via the self-dot product attention; and (3) a prediction layer that uses the output embeddings P 

from the transformer encoder to perform the training task (survival or self-supervision) via 

different loss functions. 

Input embeddings layer 

The initial transformer architecture proposed by Vaswani et al.11 uses positional encoding 

vectors to account for the absolute location of tokens in the sequence. Because we did not use 

sequential data in our work, we excluded the positional encoding vectors from the transformer 

architecture. The input feature vector x, composed of continuous and categorical features, is 

treated as a set of key value pairs x ≡ {xk,xv}, where each element {xi ≡ x(i,k),x(i,v)} consists of a 

feature name k and its corresponding value v. To fit into this encoding schema, categorical 

variables are converted to ordinal arrays (e.g., n categories converted to n − 1 integers). 

Feature names xk ∈ RN×1 are embedded into a latent representation Ek ∈ RN×dk via a standard text 

embedding layer, while feature values xv ∈ RN×1 are projected into a latent space Ev ∈ RN×dk by 

plugging them into a dense layer. Therefore, each component of the feature value space is 
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decomposed into a linear combination of the learned weights. The aggregated embeddings E = Ek 

+ Ev are the input into the transformer layer (Fig. 1b). 

Encoding the input feature names and values enables the model to utilize a large and diverse 

range of features from different modalities, which is common in computational biology. This 

embedding schema differs from previous approaches that have used transformer models for 

tabular data, where inputs are fixed-length vectors that are limited to a given number of 

features.16-18 In other words, it is not necessary for our clinical transformer to have all features 

available as input, which can be useful when working with missing data and reduces the 

complexity of the model on highly sparse data sets. 

Transformer 

The clinical transformer encoder is a multilayer bidirectional transformer (similar to BERT) that 

is based on the original implementation from Vaswani et al.11 The transformer consists of l 

blocks containing a multi-head self-attention network, a position-wise feed-forward layer with 

element-wise addition with a layer normalization. The core of the transformer is the self-

attention layer that enables the model to selectively focus on relevant features from the input 

space by identifying similarities among the input features while associating those similarities 

with the model outcome. Formally, input embeddings E are projected into three parametric 

matrices, the Key (K), Query (Q), and Value (V ). Queries represent current information for each 

input feature, and keys represent the information to which features will be attending. The output 

of the attention mechanism is defined as the Softmax function of the product between Q and KT, 

normalized by a dk and multiplied by the V matrix as follows: 

    [1] 
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Attention(A,V ) = Softmax(A)V [2] 

where Q,K,V ∈ RN×dk. N is the number of input features and dk is the dimension of key, query, 

and value vectors. The attention matrix A ∈ RN×N captures contextual similarities between queries 

and keys. The output embeddings of the transformer encoder P ∈ RN×dk are retrieved from the 

attention matrix after the pointwise and normalization layers. 

Prediction layer 

The clinical transformer supports two learning modes: (1) time-to-event prediction (survival 

analysis) to predict patient survival with a given treatment; and (2) unsupervised learning, in 

which the model identifies feature interactions by looking only at the input features (Fig. 1b), 

that is, self-supervision. Similar to BERT, we also included the special features [CLS], [MASK], 

and [PAD] to represent the objective task (survival), masked input features (for unsupervised 

learning), and unavailable features (for padding absent features), respectively. 

Survival task 

The final hidden state of the special task feature P[CLS] ∈ R1×dk is used as the aggregate feature 

representation of the input data (described as patient embeddings). This vector is passed through 

a single neuron layer without bias parameter and with weights W ∈ R1×dk. Thus, the survival 

output score is a scalar defined as 𝛽 =  𝑃[𝐶𝐿𝑆]  ∗  𝑊𝑇 with a linear activation function. 

To optimize model parameters toward patient survival outcomes, instead of a binary response or 

text translation, we used the concordance metric in the survival analysis workflow as a measure 

of model discrimination. Harrell’s C-index is defined as the proportion of observations that the 
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model can order correctly in terms of survival times.(62) The C-index can be interpreted as a 

generalization of the area under the receiver operating characteristic curve that considers 

censored data. It represents the global encapsulation of the model’s discrimination power and its 

ability to provide a reliable ranking of survival times based on individual risk scores. In our 

workflow, the concordance-based model discrimination was implemented by using a loss 

function with a sigmoid approximation of Harrell’s C-index. This led to an objective of the form: 

 𝐿𝑠𝑢𝑟𝑣 = ∑ 𝑤𝑖,𝑗
1

1+exp (
𝛽𝑗−𝛽𝑖

𝜎
)

𝑖,𝑗   [3] 

  𝑤𝑖𝑗 =
∆𝑖𝐼(𝑇𝑖<𝑇𝑗)

∑ ∆𝑖𝐼(𝑇𝑖<𝑇𝑗)𝑖𝑗
  [4] 

where the indices i and j refer to pairs of observations in the data, ∆i = 0 if censored and 1 if 

deceased, T is the corresponding survival time, 𝛽 is the predicted survival scores from the 

clinical transformer, and σ is a smoothing parameter for the sigmoid approximation. 

Masked pretraining task 

Pretraining a transformer model has proven to be an effective strategy to leverage relevant 

patterns directly from the raw data in the absence of labels. In the pretraining mode of the 

clinical transformer, 20% of the input feature names are randomly replaced by the special tag 

[MASK] while its original value is unchanged (similar to language model pretraining). The 

model is then trained to predict the masked feature names and values by using as input the 

unmasked features and their respective values (Fig. 1b). The input feature vector is composed of 

masked and unmasked features and is passed through the clinical transformer to obtain the output 

embeddings P[MASK] ∈ RF×dk. These vectors are fed to a dense layer with a Softmax activation 
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function to predict the original masked feature names. The output embeddings P[MASK] are also 

fed into another dense layer with a linear activation function and outputs the masked feature 

values. To optimize the model, we used standard categorical cross-entropy for predicting the 

masked feature names (𝐿𝑜𝑠𝑠𝑛𝑎𝑚𝑒𝑠) and the mean square error loss to predict the masked feature 

value (𝐿𝑜𝑠𝑠𝑣𝑎𝑙𝑢𝑒𝑠). The final loss corresponds to the weighted sum of the independent losses 

(𝛼1 ∗ 𝐿𝑜𝑠𝑠𝑛𝑎𝑚𝑒𝑠 + 𝛼2 ∗ 𝐿𝑜𝑠𝑠𝑣𝑎𝑙𝑢𝑒𝑠  ), where α1 = 1 and α2 = 0.01 are set as default parameters 

and define the contribution of predicting the name and value. In our current settings, we 

prioritize the prediction of feature names, given that masked values are also included as inputs. 

The clinical transformer framework is also designed to support custom loss functions. 

Feature position invariant trick 

To encode feature names and values for tabular data, it is critical for the model to ignore the 

position where the features are placed. To make the model position invariant, we removed the 

position encoding layer. In addition, to force the model to avoid any association between position 

and outcome, we used a simple trick in which the order of the input features is randomized for 

each input sample during training (except for the [CLS] feature, which is always the last feature). 

This processing forces the model to ignore the position where features may occur. 

Model training and evaluation 

Motivated by the fact that IO-related clinical data with patient outcomes are difficult to obtain in 

high numbers, we sought a strategy to enable the use of all available clinical data sets to 

maximize the value of limited IO clinical data. Our framework can leverage the use of other 

clinical data sets, even with no outcome labels, to improve predictions in smaller clinical data 

sets. To this end, we evaluated three training strategies. (1) In direct learning, a machine learning 
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model is trained to predict a target task, given an input data set. (2) Gradual learning consists of 

an intermediate step in which a model is trained over unlabeled data taken from the input data set 

before training over the target task. In natural-language processing, this is done by predicting a 

word that is masked in the original text (self-supervision). The obtained model is then transferred 

to a new model designed to predict the target task of interest. In gradual learning, the same data 

set used for pretraining is used for fine-tuning (e.g., pretrain on entire data set and fine-tune 

survival on entire data set). (3) Finally, transfer learning, which is used when a large data set is 

available, entails pretraining a large model using all unlabeled data and fine-tuning on a target 

data set and task (e.g., pretrain on the GENIE data set and fine-tune survival prediction over the 

Samstein et al.25 data set). 

Explainability framework 

Cosine similarity between patient embeddings 

We defined “post-attention” as the pairwise cosine similarity among all features in their latent 

representations. Formally, for each pair of vectors P[fk],P[fl] ∈ R1×dk from output embeddings, we 

computed the cosine similarity score as: 

   [9] 

where fk and fl are any two features present in the input data point xi. The complete pairwise 

feature similarities can be depicted as the square matrix S(xi) ∈ RF×F. The rationale for using the 

output embeddings from the last encoder layer is that those embeddings preceded the outcome 

classifier networks (survival, masked prediction). These embeddings represent the aggregated 

information of the input feature interactions in the sample xi. 
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Given that the outcome embedding vector P[CLS] ∈ R1×dk is directly associated with the outcome 

variable (because this vector is used as input to the prediction layer), the cosine similarity 

between this vector and any feature vector P[fk] reflects the contribution of the feature fk to the 

outcome. Thus, for a given input data point xi, we can identify and rank the features, encoding 

the similar information to the predicted outcome by computing all their cosine similarity scores 

to the outcome embedding. 

Similarly, the cosine similarity among feature embeddings PFl, PFk ∈ R1×dk, where Fl, Fk ≠ 

[CLS], depicts local relationships and feature interactions. Similar to language models, in which 

two words can describe semantic similarities within a certain context, the cosine similarity 

between two features describes their information content and can be seen as a local feature 

interaction. 

Functional groups 

A functional group ζ is defined as the collection of interacting features encoding related 

information on a global scale. To obtain functional groups, we averaged the pairwise similarities 

S(xi) ∈ RF×F across a given population (e.g., an entire population or specific populations) and 

clustered them, using agglomerative clustering, k-means, or any clustering algorithm that can 

better represent the data, with a predefined number of ζn clusters. For selecting the best number 

of clusters, the elbow or silhouette score can be applied. To perform clustering analysis, missing 

pairs are encoded with 1 value.  

Functional group ranking 
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In a specific patient subpopulation c ∈ C, where C represents all patient groups (e.g., labels in a 

classification problem or response population in survival analysis), the aggregated mean cosine 

similarity of a functional group ζc over the subpopulation c represents the effect of the functional 

group in the subpopulation. Therefore, mean cosine similarities close to 1 indicate that the 

functional group is characteristic of the subpopulation, whereas a mean cosine score close to 0 

reflects high orthogonality, indicating that the functional group is not associated with the given 

subpopulation. Core functional groups are those that show a high cosine similarity across all 

subpopulations, whereas target functional groups are enriched on specific subpopulations. 

Therefore, we ranked the functional groups by their mean cosine similarity on each 

subpopulation to describe their most informative functional groups. 

Validation of mutational functional groups 

The mutational data offer a direct alternative to validate the effect of functional groups from the 

input data. In particular, we can measure the impact of mutations in patient survival outcome by 

binarizing each functional group to either mutation or wild-type status. Formally, a functional 

group is defined as a collection of mutated genes, ζk = {g1,...,gi,...,gGk}, where Gk represents the 

genes in the group k. Therefore, for a given patient I, we can measure whether the functional 

group ζ
¯
 is mutated if at least one gene in Gk is mutated as follows: 

  [10] 

where k represents the kth functional group and xi,g represents the gene value g for patient i. We 

then fit a univariate Cox PH model for each binary functional group, selected only those groups 

that are statistically significant (P < 0.05), and ranked them based on their HR. Statistically 
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significant functional groups were tested on the complete training set and on a fully independent 

validation data set. 

Functional group simplification of survival modeling 

A subset of functional groups are strongly associated with patient survival. To maximize the 

signal from the functional groups, we trained a multivariate Cox PH regression model using the 

top 10 binarized functional groups ζ
¯
 as input. This model uses a subset of input features 

(aggregated genes as functional groups), reducing the model’s complexity. To evaluate the 

performance of the model, we used 10 training and testing splits of 80% and 20%, respectively, 

over the Samstein et al.25 pan-cancer data set. To evaluate the model on independent data sets, 

we trained a Cox PH model using the entire Samstein et al.25 data set. The model outperformed 

TMB and achieved comparable performance to the clinical transformer model trained with all 

input features (genes). The multi–Cox PH model was also compared with a control model in 

which random functional groups ζrand were built by randomly selecting the same number of genes 

as the real functional groups ζ to train a multivariate Cox PH model. The multivariate Cox PH 

model was evaluated in the pan-cancer and cancer-specific settings across multiple studies and 

trials. 

Clinical transformer as generative model 

To extract potential trajectories in the single-variable perturbation setting, we perturbed the input 

feature 𝑓𝑖 by sampling the feature according to its distribution in the training population (i.e., 

divided the distribution of feature 𝑓𝑖 across all patients into 10 percentiles and used its 

corresponding value as perturbation). This generated a new set of output embeddings along with 
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their corresponding survival scores. On the other hand, to measure the impact of two feature 

interactions (pairwise interactions), we randomly sampled each pair of feature values from the 

training data while keeping all other features constant. We repeated this process 50 times for 

each feature pair and each patient. We were then able to identify the features and interactions 

with the strongest impact on the model’s output (survival score).  

Feature-feature interactions from the generative model for patient survival scores 

Let 𝑃 be the population of patients and let 𝐹 be the set of features. For each patient 𝑝 in 𝑃, we 

performed 𝐹 single simulations by perturbing one feature at a time, and F × F paired simulations 

by perturbing two features at a time. 

For each simulation, we recorded the patient’s maximum survival score. Let 𝑀𝑝(𝑓) denote the 

maximum survival score for patient 𝑝 in the simulation where feature 𝑓 is perturbed, and let 

𝑀𝑝(𝑓, 𝑔) denote the maximum survival score for patient 𝑝 in the simulation where features 𝑓 

and 𝑔 are perturbed. For each feature 𝑓, we have a distribution of maximum survival scores, 

consisting of 𝑀𝑝(𝑓) for all patients in 𝑃. Similarly, for each feature pair (𝑓, 𝑔), we have a 

distribution of maximum survival scores, consisting of 𝑀𝑝(𝑓, 𝑔) for all patients in 𝑃. 

We computed the Mann-Whitney nonparametric statistical test between the distribution of 

maximum survival scores for each feature and feature pair and the distribution of the survival 

scores from the original data (without perturbation). Let 𝑃𝑣𝑎𝑙(𝑓) and 𝑃𝑣𝑎𝑙(𝑓, 𝑔) be the P values 

resulting from the statistical test for feature 𝑓 and feature pair (𝑓, 𝑔), respectively. We 

transformed 𝑃𝑣𝑎𝑙(𝑓)   and 𝑃𝑣𝑎𝑙(𝑓, 𝑔) to the –log scale, denoted as −𝑙𝑜𝑔(𝑃𝑣𝑎𝑙(𝑓)) and –
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𝑙𝑜𝑔(𝑃𝑣𝑎𝑙(𝑓, 𝑔)), respectively. To evaluate the effect of an interaction being stronger than the 

individual counterparts, we used the following equation: 

𝐷𝑖𝑓𝑓 =  𝑚𝑎𝑥{−𝑙𝑜𝑔(𝑃𝑣𝑎𝑙(𝑓)), −𝑙𝑜𝑔(𝑃𝑣𝑎𝑙(𝑔))} – (−𝑙𝑜𝑔(𝑃𝑣𝑎𝑙(𝑓, 𝑔))) 

where 𝑃𝑣𝑎𝑙(𝑓)and 𝑃𝑣𝑎𝑙(𝑔) are the –log of the P values for the features f and g, respectively, and 

𝑃𝑣𝑎𝑙(𝑓, 𝑔) is the P value of the interaction between features 𝑓 and 𝑔. If 𝐷𝑖𝑓𝑓 is negative, it 

represents an aggregated value for the interaction between features 𝑓 and 𝑔, indicating that the 

combined perturbation of both features is more significant than the individual perturbations. If 

𝐷𝑖𝑓𝑓 is positive, it indicates that the individual perturbations are enough to improve patient 

survival score. 

Analysis of variant and invariant populations 

A feature or set of features 𝐹 is perturbed 𝑛 times, generating a conditional output patient 

embedding 𝑃[𝐶𝐿𝑆](𝑀|𝐹 = 𝑓𝑖), as well as a conditional survival score 𝛽(𝑀|𝐹 = 𝑓𝑖), where 𝑀 

represents the trained clinical transformer model and 𝑓𝑖 a given perturbation 𝑖 < 𝑛 in the feature 

𝑓. We can define the change in survival scores for a given patient 𝑗 by taking the difference 

between the maximum and minimum of the perturbed survival scores 𝛽𝑗
𝑓

= {𝛽𝑗1
𝑓

, … , 𝛽𝑗𝑛
𝑓

} over 

the feature (or set of features). The ∆𝛽𝑗
𝑓

= max{𝛽𝑗
𝑓

} − min{𝛽𝑗
𝑓

} describes the impact of the 

perturbation of the feature 𝑓 in the patient survival score, indicating the sensitivity of the patient 

𝑗 to a given perturbation 𝑓. We can then define two populations based on the median of the 

distribution of all patients ∆𝛽𝑗
𝑓
: a variant population defining patients with a ∆𝛽𝑗

𝑓
score higher 

than the median of the ∆𝛽𝑗
𝑓
 distribution, and an invariant population defining patients with a 
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∆𝛽𝑗
𝑓

below the median of the ∆𝛽𝑗
𝑓
distribution. In the perturbation analysis for the Chowell et al.3 

and Bagaev et al.56 data sets, we defined the variant/invariant populations exclusively on the poor 

and low-mid survivors in order to identify patients that under a perturbation show a transition 

that reflects improved survival. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.09.12.23295357doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295357


 

42 

Acknowledgments 

All authors are employees of AstraZeneca and may hold stock ownership, options, or interests in 

the company. 

Funding 

This study was funded by AstraZeneca. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.09.12.23295357doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295357


 

43 

FIGURE LEGENDS 

Fig. 1. Overview of the clinical transformer framework. a, Framework capabilities and analysis 

overview of the clinical transformer to process data to insights. Model interpretability is 

extracted by using the output embeddings to generate functional modules (group or input 

features) that are associated with the outcome. The clinical transformer is shown as a generative 

model to recreate a patient’s trajectory of response, using patient embeddings with a 

perturbation-based approach. Embeddings can also generate synthetic data restricted by certain 

conditions. b, Input data are represented by [Key, Value] pairs, where the key is the feature name 

and the value corresponds to the numerical score of the feature (e.g., [Age, 20] represents a 

patient with an age of 20 years). Feature names and values are embedded and fed to a 

transformer encoder architecture without positional encoding. The special input token [TASK, 1] 

is added in front of every input sample, and the output of this token is used to predict patient 

survival or classification outcomes. The special token [MASK] is used for performing the 

pretraining stage, in which the model is asked to predict the masked token names (corresponding 

to the masked features). c, The clinical transformer trained in self-supervised mode uses data set 

A to train over a masked-prediction task in which input features are randomly ignored and used 

as labels. Thus, the objective of the model is to predict the feature name of the ignored input 

features. After pretraining, the weights of the model can be used to fine-tune into a specialized 

task such as responder prediction or survival analysis. When input data A are different from 

input data B, it refers to transfer learning, whereas if the same data are used for both tasks (data 

A = data B), it is called gradual learning, as the model first learns about the data in an 

unsupervised way and then specializes on a specific task over the same data set (e.g., survival 

prediction).  
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Fig. 2. Clinical transformer performance and impact of pretraining. a, Performance of the 

clinical transformer using the median survival score to stratify patients into high and low 

populations with Kaplan-Meier plots. b, Kaplan-Meier curve of Chowell et al.3 random forest 

model used in the testing data set with an optimal cutoff (pan-cancer 0.238). c, Kaplan-Meier 

curves for evaluating TMB score in the Chowell et al.3 data set, using 10 mutations per megabase 

as the cutoff. d, Learning curves of the clinical transformer for the training epochs with respect 

to the C-index for a pretrained model using the GENIE data set and evaluated in the Samstein et 

al.25 pan-cancer data set for the 10 testing splits. e, Learning curves of the clinical transformer, 

comparing the pretrained model using GENIE against the baseline model without pretraining on 

the MYSTIC data set with 10 testing splits. f, Learning curves of the clinical transformer 

pretrained by using the Chowell et al.3 data set and evaluated on the MYSTIC trial with 10 

testing splits. 

Fig. 3. Patient stratification and model interpretability in the test sets. a, Global feature 

contributions across the clinical transformer models using the feature permutation importance 

algorithm in the Chowell et al.3 data set. b, Kaplan-Meier curve consistency for different 

population groups defined by the four quantile cutoffs from the clinical transformer survival 

scores. Solid lines represent the median survival time and probability from the 10 models on the 

test splits. c, Raw feature value enrichment in the four populations used to stratify the patients. 

For numerical variables, the y-axis defines the units of each variable (e.g., albumin g/L), whereas 

for binary features such as prior chemotherapy and cancer type, the y-axis represents the number 

of patients in each population. Statistical significance from t tests is depicted on top of each box 

plot (P value annotation level: ns, 5.00e-02 < P ≤ 1.00e+00; *, 1.00e-02 < P ≤ 5.00e-02; **, 

1.00e-03 < P ≤ 1.00e-02; ***, 1.00e-04 < P ≤ 1.00e-03; ****, P ≤ 1.00e-04). d, Feature 
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interaction graph derived from cosine interaction scores. Each color depicts one of the four 

functional groups identified when clustering the feature pairwise cosine similarities in the test 

sets. Intracluster (within-cluster) interactions are depicted in black, whereas intercluster 

interactions (across functional groups) are shown in magenta. e, Forest plot depicting the patient 

stratification for the top 10 functional groups in the Samstein et al.25 data set. The majority of 

functional groups are associated with response to treatment, whereas two groups are associated 

with poor outcomes. The genes belonging to each functional group are capped at 10 genes for 

visualization purposes. f, Pathway analysis of the functional groups reveal that functional group 

C8 is associated with innate immune system. Kaplan-Meier curves depict the prognostic value of 

the group C8 on the discovery data set (training/testing clinical transformer) as well as for an 

independent data set (Miao et al.49) and TCGA data set for patients treated with standard of care. 

g, Cox PH model trained on top 10 functional groups. The bar plot depicts Cox PH coefficients, 

and the Kaplan-Meier curve shows the performance of the Cox PH model on training/testing 

strategy. h, Evaluation of the Cox PH model in the pan-cancer setting on the discovery data set 

(Samstein et al.25), the pan-cancer IO validation data set (Miao et al.49), and TCGA data from 

treatment-naive patients. i, Patient stratification using the Cox PH model derived from the top 10 

functional groups on melanoma across independent validation data sets. 

Fig. 4. Impact of functional groups on patient response to IO treatment. a, Two-dimensional 

projection of patient embeddings with UMAP labeled by response of patient populations (left) 

and by prior chemotherapy (right). Each point in the UMAP plane is a patient’s embeddings 

projection. b, Schematic of perturbation framework and expected survival trajectory in the latent 

space of patients under perturbation. c, Response trajectory for the patients who, under 

perturbation of the top feature interaction (TMB-NLR), moved from poor-response to super-
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response (variant population). d, Top inter- and intra-feature interactions using the generative 

module and measuring the impact of perturbing one and two features at a time and calculating 

the maximum effect of the perturbation for individual and paired features. e, Example of the 

variant population (patients showing a change in survival score) under TMB and NLR 

perturbations. f, Example of an invariant population, in which a patient survival score is 

independent of the perturbed features. In this case, for TMB and NLR perturbations, these 

patients exhibited no change in survival score. g, Differences in clinical and molecular features 

for the variant and invariant populations. 

Fig. 5. Clinical transformer and TME on SKCM data. a, Survival stratification of SKCM patients 

from TCGA. Patients are grouped into quartiles from the clinical transformer survival score. The 

solid line represents the mean survival time across the 10 testing splits. b, UMAP projection of 

patient embeddings in the TCGA SKCM data set. c, Effect of T-cell perturbations (variant and 

invariant populations) in TCGA SKCM data set exclusive to patients in the Q1 and Q2 

populations. The size and direction of the arrows reflect the effect and directionality, 

respectively, of the perturbation. d, Distribution of TME signatures for the variant and invariant 

populations as an effect of T-cell perturbations. e, Forest plot of top gene signatures associated 

with response and resistance in TCGA and IO-treated populations. 
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Table 1. Data sets used in this study  

Data set 

(reference) 

Cancer 

type Description Data usage 

No. of 

patients Treatment 

No. of 

features Features 

Chowell et al. 

20213 

Pan-

cancer 

Patients treated with 

anti–PD-1/PD-L1 and 

combo in multiple 

cancer types 

Survival modeling 

(training and testing), 

transfer learning 

1479 IO 17 Data set consisting of 17 features 

(e.g., TMB, HLA-LOH, MSI, 

albumin, NLR) 

MYSTIC trial 

(NCT02453282) 

NSCLC Stage IV NSCLC 

treatment-naive anti–

PD-L1 and anti–PD-L1 

+ anti-CTLA-4 

Survival modeling 

(training and testing) 

325 IO 15 Data set consisting of 15 features 

(e.g., TMB, HLA-LOH, MSI, 

albumin, NLR) in addition to 

FMI mutation calls, in addition 

to a  subset of 150 with HLA 

germline typing 

OAK trial 

(NCT02008227) 

NSCLC Stage IV NSCLC 

patients treated with 

anti–PD-1/PD-L1 after 

failure of chemotherapy 

Survival modeling 

(training and testing) 

396 IO 418 ctDNA-derived mutation calls 

Samstein et al. 

201925 

Pan-

cancer 

Response to IO 

treatment (anti–PD-

1/PD-L1 and combo) in 

pan-cancer setting 

Survival modeling 

(training and testing) 

1610 IO 474 Tissue MSK-IMPACT calls 

from 474 genes in addition to 

demographic features 

Thorsson et al. 

201824  

Pan-

cancer 

Study on TCGA data 

that derives features 

associated with the 

tumor micro 

environment in a pan-

cancer setting. 

Survival modeling 

(training and testing) 

6012 TCGA 49 A total of 49 derived features 

from RNA sequencing data that 

profile the TME 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.09.12.23295357doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295357


 

48 

Data set 

(reference) 

Cancer 

type Description Data usage 

No. of 

patients Treatment 

No. of 

features Features 

Bagaev et al. 

202156 

Pan-

cancer 

TME subtypes derived 

from TCGA data 

Pretraining and 

survival modeling 

(training and testing) 

for SKCM 

11070 TCGA 29 A total of 29 RNA signatures 

obtained from this study 

Van Allen et 

al.50 – DFCI 

metastatic 

melanoma 

Melanoma Metastatic melanoma 

data set from DFCI; 

anti–CTLA-4 

monotherapy 

Validation data set 110/40 IO 36,859 Whole exomes from 

pretreatment melanoma tumor 

biopsies and matching germline 

tissue samples from 110 patients 

AACR project 

GENIE (Pugh et 

al.21) 

Pan-

cancer 

Publicly accessible 

international cancer 

registry of real-world 

data assembled through 

data sharing among 19 

of the leading cancer 

centers in the world 

Transfer learning 134,626 Not 

available 

2290 Mutation and copy number calls 

from multiple panels and centers 

spanning 2290 genes in addition 

to demographic features 

MSK MIND 

(Vanguri et al.4) 

Lung Initiative to accelerate 

research and discovery 

through advanced 

analytics 

Validation data set 247 IO 1043 Cohort of 247 patients with 

advanced NSCLC with 

multimodal baseline data; only 

molecular data used 

Miao et al. 

201849 

Pan-

cancer 

WES of 249 tumors 

from patients with 

clinically annotated 

outcomes to immune 

checkpoint therapy 

Validation data set 249 IO >10,000 WES and demographic features 

Riaz et., al 

201758 

Melanoma Whole transcriptome 

from patients who 

progressed 

on ipilimumab or were 

ipilimumab naive, 

Validation data set 26 IO 29 Extracted 29 signatures defined 

by the Bagaev et al.56 signatures 

using whole transcriptome data 
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Data set 

(reference) 

Cancer 

type Description Data usage 

No. of 

patients Treatment 

No. of 

features Features 

before and 

after nivolumab 

Liu et al. 201957 Melanoma Whole transcriptome for 

patients treated with 

anti–PD-1 therapy 

Validation data set 42 IO 29 Extracted 29 signatures defined 

by the Bagaev et al.56 signatures 

using whole transcriptome data 

 

ctDNA, circulating tumor DNA; DFCI, Dana Farber Cancer Institute; FMI, Foundation Medicine; WES, whole-exome sequencing. 
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Table 2. Overall performance of the clinical transformer compared with Cox PH, random survival forest models, and TMB  

Modeling 

framework 

Learning 

strategy 

MYSTIC 

trial 

(NSCLC) 

OAK trial 

(NSCLC) 

Samstein et 

al.25 pan-

cancer 

Thorsson et 

al.24 pan-

cancer 

(TCGA) 

Chowell et 

al.3 pan-

cancer 

Chowell et 

al.3 evaluated 

on MYSTIC 

Clinical 

transformer 

Neural 

network 

0.670 ± 0.07a 0.669 ± 0.04 0.649 ± 0.02b 0.734 ± 0.01 0.720 ± 0.01 0.643 ± 0.004a 

Linear 

modeling 

Cox PH 

regression 

0.599 ± 0.03 0.620 ± 0.03 0.594 ± 0.03 0.690 ± 0.01 0.709 ± 0.01 ** 

Nonlinear 

modeling 

Random 

survival forest 

0.606 ± 0.04 0.664 ± 0.05 0.638 ± 0.01 0.722 ± 0.01 0.714 ± 0.01 ** 

Biomarkers TMB 0.589 ± 0.05 0.543 ± 0.05 0.538 ± 0.02 0.624 ± 0.01 0.550 ± 0.02 ** 

**Not evaluated. 

a Chowell et al. pretraining. 

b GENIE pretraining. 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 5
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