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ABSTRACT 

Background: Artificial intelligence (AI) and machine learning (ML) are increasingly used for 

prevention, diagnosis, monitoring, and treatment of cardiovascular diseases. Despite the 

potential for AI/ML to improve care, ethical concerns and mistrust in AI-enabled health care 

exist among the public and medical community. To inform practice guidelines and regulatory 

policies that facilitate ethical and trustworthy use of AI in medicine, we conducted a literature 

review to identify key ethical and trust barriers and facilitators from patients’ and healthcare 

providers’ perspectives when using AI in cardiovascular care.  

Methods: In this rapid literature review, we searched six bibliographic databases to identify 

publications discussing transparency, trust, or ethical concerns (outcomes of interest) 

associated with AI/ML-based medical devices (interventions of interest) in the context of 

cardiovascular care from patients’, caregivers’, or healthcare providers’ perspectives. The 

search was completed on May 24, 2022 and was not limited by date or study design.  

Results: After reviewing 7,925 papers from six databases and 3,603 papers identified through 

citation chasing, 145 articles were included. Key ethical concerns included privacy, security, or 

confidentiality issues; risk of healthcare inequity or disparity; risk of patient harm; 

accountability and responsibility concerns; problematic informed consent and potential loss of 

patient autonomy; and issues related to data ownership. Major trust barriers included data 

privacy and security concerns, potential risk of patient harm, perceived lack of transparency 

about AI-enabled medical devices, concerns about AI replacing human aspects of care, concerns 

about prioritizing profits over patients’ interests, and lack of robust evidence related to the 

accuracy and limitations of AI-based medical devices. Ethical and trust facilitators included 
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ensuring data privacy and data validation, conducting clinical trials in diverse cohorts, providing 

appropriate training and resources to patients and healthcare providers and improving their 

engagement in different phases of AI implementation, and establishing further regulatory 

oversights.  

Conclusion: This review revealed key ethical concerns and barriers and facilitators of trust in AI-

enabled medical devices from patients’ and healthcare providers’ perspectives. Mitigation 

strategies, including enhancing regulatory oversight on the use of patient data and promoting 

AI safety and transparency are needed for effective implementation of AI in cardiovascular 

care.  
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BACKGROUND 

Artificial intelligence (AI) and machine learning (ML) are increasingly used in healthcare 

to improve the prevention, diagnosis, treatment, and maintenance of health conditions.1 These 

interventions have enormous potential to assist in the management of cardiovascular diseases, 

the leading cause of death in the US, given the high number of AI-based devices authorized for 

use and under review by the FDA for cardiovascular diseases, the breadth of use cases spanning 

clinical practice to consumer-facing AI-enabled solutions, and the potential for improving 

clinical outcomes.2-5   

Previous studies have shown that patients may be willing to accept the use of AI in 

healthcare and see its potential benefits if certain conditions are met, including transparency 

about the capture and use of their data by AI systems and the ability to opt out from data 

sharing at any time.6  Moreover, patients place a higher level of trust in a healthcare provider’s 

assessment of their health compared to an AI  and often want assurance that their physicians 

are involved in and ultimately are responsible for AI-enabled decisions due to the concerns 

about risks of AI failures during care.7,8 On a similar note, healthcare providers express specific 

needs for information transparency, such as explanations about known strengths and 

limitations of interventions when using AI-based software in clinical decision-making.9  

Healthcare providers also recognize the potential impact of AI on patient-clinician trust and 

seek support for transparent and effective communication with patients about AI use in their 

care.10 Thus, to fully achieve the appropriate uptake of AI/ML in medicine, patients’ and 

healthcare providers’ ethical and trust concerns must be addressed.11 
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Although existing research has begun to explore general patient and clinician 

perspectives on AI transparency, trust, and ethical concerns, specific barriers and facilitators to 

addressing these stakeholder concerns when implementing AI in cardiovascular care remain 

sparse and largely unactionable. More systematic research is needed to uncover the nuanced 

requirements for trusted understanding and use of these AI/ML-based medical devices and to 

inform practice guidelines and regulatory policies that facilitate ethical and trustworthy use of 

AI in medicine. Accordingly, this study reviews the literature to identify key ethical concerns, 

potential mitigation strategies, and barriers and facilitators to trustworthy AI-informed 

cardiovascular care.  

METHODS 

Inclusion and Exclusion Criteria 

We conducted a rapid review of the literature, a form of information synthesis aiming to 

generate evidence through a resource-efficient approach by simplifying or removing certain 

components of the traditional systematic review process.12 Eligible for inclusion were 

publications discussing transparency, trust, or ethical concerns (outcomes of interest) 

associated with AI/ML-based medical devices (interventions of interest) in the context of 

cardiovascular care from patients’, caregivers’, or healthcare providers’ perspectives. Our 

search was not limited by date or study design. All papers published as full manuscripts, 

including qualitative and quantitative analyses, commentaries, editorials, expert opinions, 

perspective pieces, and guidelines were included. Conference abstracts, book chapters, pre-

prints, animal studies, and publications that were not in English were excluded. Prior to the 
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formal article screening process, a calibration exercise was conducted to test our screening 

criteria. 

 

Search Strategy and Data Sources 

A medical librarian with literature review expertise (AAG) developed the search strategy 

with input from all authors. The search was developed as an Ovid Embase search strategy, 

which was subsequently reviewed by a second librarian not otherwise associated with the 

project using PRESS.13  After the strategy had been finalized and unanimously approved by all 

authors, it was adapted to the syntax and subject headings of other databases. Details on the 

search strategy can be found in Error! Reference source not found.. The search was conducted 

on the following six bibliographic databases: Cochrane Library, Embase, Google Scholar, Ovid 

Medline, Scopus, and Web of Science Core Collection, and was completed on May 24, 2022.  

 

Study Selection 

Search results were downloaded to EndNote 20 (Clarivate, Philadelphia, PA), and 

duplicate citations were removed using the Yale Deduplicator Tool.14 Individual citations were 

ingested into Covidence, a software tool dedicated to literature review management that 

facilitates collaboration between independent reviewers in the article screening and review 

processes. The review process was divided into two major steps: title/abstract screening and 

full-text screening. Titles and abstracts of each paper identified by the search were 

independently screened by two authors [MM and AMS, AAG, or DWY] against the inclusion 

criteria. Next, full-text articles were obtained for all studies that had not been excluded at the 
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first level of screening and were assessed by two independent reviewers [MM and AMS or 

DWY], with the reasoning for exclusions being recorded. Disagreements on eligibility were 

resolved by consensus or through the input of a third investigator. After screening, 

CitationChaser was used to perform citation chasing on all included studies to identify other 

potentially relevant studies.15 One reviewer [MM, AMS, or DWY] screened the identified papers 

to decide whether they met the eligibility criteria. Reviewers were not blinded to the journal 

titles, authors, or institutions.  

 

Data Extraction and Synthesis 

Using a Qualtrics tool, data extraction was conducted by an author [MM, AMS, or DWY] 

for the following fields for each included paper: article type; article title; publication year; first 

author; purpose and indication(s) of AI/ML-based medical device; and device users (patients, 

caregivers, and healthcare providers). Next, the conceptualization and characteristics used to 

describe barriers and facilitators of transparency and trust and ethical concerns from patients’, 

caregivers’, and healthcare providers’ perspectives were recorded. For validation, a second 

reviewer independently performed data extraction on 20% of the final sample, selected at 

random. Disagreements were resolved by discussion or through the input of a third 

investigator. Data generated from this project will be actively preserved for three years per Yale 

Research Data and Materials Policy - Retention 6001.2 unless otherwise required by the 

journal. Content analyses were performed by MM, using Qualtrics 2022 and Microsoft Excel 

2018 (Microsoft Corp) to facilitate data management and organization. We used qualitative 
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coding to categorize the extracted data and identify the key trust and ethical concerns and 

facilitators. 

 

RESULTS 

Search Results 

The search resulted in 10,171 papers, of which 7,925 were unique. After conducting the 

first level of screening, 7,799 titles and abstracts were excluded, leaving 126 full-text articles for 

review. Of those, 71 did not meet eligibility criteria due to ineligible area of care, i.e., non-

cardiovascular (n=10); ineligible intervention, i.e., non-AI-ML tools (n=26); ineligible outcome 

(n=22); ineligible format, i.e., conference abstracts, book chapters, or preprints (n=13), leaving 

a total of 55 eligible publications. Citation chasing of these articles resulted in 3,603 additional 

citations, 3,330 of which were eliminated upon title and abstract reviewing. Of the 273 

reviewed full-texts, 90 articles were found to be eligible. The reasons for excluding the 

remaining papers included: ineligible area of care (n=69), intervention (n=14), outcome (n=88), 

and format (n=12). Overall, 145 papers were included in this review (Figure 1). Since we 

reached information saturation upon reviewing the additional papers identified through 

citation chasing, we stopped subsequent rounds of citation chasing. 

Sample Characteristics 

Included articles were published from 2014 to 2022, except for one paper16 published in 

1996. Of the 145 articles, 88 (60.7%) were review articles; 32 (22.1%) were commentaries, 
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editorials, or perspective pieces; 22 (15.2%) were original research; and 3 (2.1%) were case 

studies.  

The AI/ML-based interventions discussed in 43 (29.7%) papers were devices used for the 

diagnosis or monitoring of cardiovascular diseases (e.g., AI-enabled cardiac imaging), while 5 

(3.4%) were therapeutic devices (e.g., clinical decision support tools for heart pump implants). 

The interventions discussed in the remaining papers (101 [69.7%]) included both diagnostic and 

therapeutic AI-based medical devices. The indications for use of the AI-based devices were not 

specified in most papers (122 [84.1%]). Among those that specified, arrhythmia was the highest 

reported indication (8 [5.5%]), followed by heart failure (7 [4.8%]). Although all papers 

discussed AI-based devices in the cardiovascular context, 88 (60.7%) were specific to the 

cardiovascular specialty, while the remaining articles also included other areas of medicine.  

Among all the reviewed articles, 3 (2.1%) studied devices that were self-management 

software used directly by patients,17-19 whereas the main users of the other devices discussed 

by 48 (33.1%) papers were healthcare providers. The remaining 94 (64.8%) papers did not 

specify the users. Only 2 (1.4%) papers specified the device sponsor; both studied HeartMan, a 

personal decision support system for heart failure management, funded by the Horizon 2020 

Framework Programme of the European Union.17,18  

 

Ethical Concerns and Mitigation Strategies 

 

There were six key ethical concerns discussed in the literature, which were privacy, 

security, or confidentiality issues; risk of healthcare inequity or disparity; risk of patient harm; 
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accountability and responsibility concerns; problematic informed consent and potential loss of 

patient autonomy; and issues related to data ownership (Figure 2). Three papers discussed the 

lack of human involvement in patient care and the altered relationship between patients and 

healthcare providers as an ethical concern associated with AI-enabled medical care.20-22 One 

paper debated the additional complexity that AI-based medical devices could add to end-of-life 

care.23 

 

Privacy, Security, and Confidentiality Concerns 

Fifty-nine (40.7%) publications discussed ethical concerns related to privacy, security, or 

confidentiality. Specific concerns included potential inappropriate access to and misuse of 

personal information stored in medical devices and inadvertent release of private patient 

healthcare data.20,24 Protecting sensitive patient information from data leakage and 

cyberattacks, especially for data used by private for-profit organizations,25 and protecting the 

stored medical data, particularly by cloud-assisted AI medical devices or commercial 

smartphone-based applications with poorly secured servers, were other areas of concern.26,27 

Moreover, transferring data between institutions for the reproducibility of results could cause 

additional security problems.28 Lastly, ensuring confidentiality could be difficult owing to the 

circulation of sensitive patient information among unregulated companies and a lack of de-

identification of raw data input for AI algorithms.28,29  

Mitigation Strategies 

We identified mitigation strategies from the literature to address some of the 

aforementioned ethical concerns. Data de-identification or anonymization and using highly 
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secure data platforms could protect patient data used for the development and training of AI-

medical devices.29-31 Additionally, more secure health systems across different localities need to 

be built, and policymakers could help with constructing the adapted infrastructures and 

developing guidelines regarding patient privacy, data storage, and data sharing to ensure 

optimal implementation of AI tools in healthcare.32-34 Several papers emphasized the need for 

more regulation and legislation on patient data use, such as performing regular privacy audits, 

mandating security breach notifications, and setting greater penalties for data misuse.25,31,35-37  

 

Risk of Healthcare Inequity or Disparity 

Thirty-six (24.8%) papers raised concerns that AI-based medical devices could create 

new or exacerbate healthcare inequities or disparities based on factors such as sex, race, 

ethnicity, or pathology-driven specificities. Potential unfairness in algorithmically automated 

decisions was described as the major cause of inequities and disparities. Papers discussed the 

risk of the AI intervention being less effective or providing inaccurate recommendations for 

under-represented patients if the training datasets for algorithms are based on 

unrepresentative patient samples.35,38 This in turn could lead to discrimination against certain 

patient populations and increase the gap in healthcare outcomes among different social 

groups. Furthermore, some were concerned that data could be used to improperly profile 

patients and differentially provide healthcare (e.g., avoidance of highest-cost or highest-risk 

patients).24 There were also concerns regarding social justice and potential unfairness in the 

distribution of the benefits and burdens of AI applications.20  

Mitigation Strategies 
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Several papers described important considerations for the data sources used by AI tools 

to help healthcare providers recognize when it could be inappropriate to use a specific AI tool 

for certain patient groups and to ensure that access to AI-based tools is not affected by 

demographic, geographic, or temporal constraints.39-41 Strategies to mitigate concerns related 

to health inequity when using AI in medical care include using a balanced dataset through 

collecting sufficient data from under-represented populations, validating AI algorithms on 

different minority and low-income groups, and obtaining robust input from different 

stakeholders involved in the development, use, and regulation of AI tools.42-44 Moreover, 

creating a distinct algorithm in AI systems for each group of patients, rather than using a 

universal algorithm for all patients, could improve fairness in decision-making.45 Lastly, 

conducting evidence-based assessment and implementing further regulatory oversights could 

help to ensure the fairness of AI tools.26,43 

 

Risk of Patient Harm 

Concerns about the risk of suboptimal care or patient harm associated with AI tools 

were raised by 24 (16.6%) papers. Inaccurate data used by AI-based decision tools, flawed AI 

algorithms, and deliberate hacking of algorithms were discussed as potentially leading to 

erroneous recommendations and patient harm on a massive scale.31,46 The risk of errors would 

be greater when the AI systems function independently with unchecked decision-making and 

actions,47 particularly in the setting where errors made by complex and untransparent AI 

systems are difficult to trace and debug.48 Moreover, the complexity of AI-based systems, 

potentially unpredictable system output, and the uncertainty of human–AI interactions could 
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result in substantial variation in the performance of AI-based medical devices, causing further 

safety challenges.49 Lastly, there were concerns about AI-based devices programmed to 

function in unethical ways, for example by suggesting clinical actions that generate higher 

profits without patient care benefits.29 

Mitigation Strategies 

Several papers described the importance of providing sufficient training to device users 

to reduce the risk of patient harm, with an emphasis on educating healthcare providers about 

the potential pitfalls and limitations of AI technologies.46,50 Additionally, rigorous validation and 

continuous assessment of the algorithms used in AI-based medical devices, including 

conducting clinical trials that compare AI-supported care with the standard of care, could 

identify potential bias in AI algorithms and minimize patient harm.48,51-53 Establishing further 

regulatory and ethical guidelines in the postmarket stage and implementing standard 

frameworks for regular assessment of the safety of AI tools are also necessary.31,44 

 

Problematic Informed Consent and Loss of Patient Autonomy 

We found 17 papers (11.7%) discussing ethical concerns about obtaining informed 

consent for providing care with AI-enabled medical devices. The main reason leading to 

problematic informed consent is the lack of transparency and interpretability of AI tools and 

insufficient information about different aspects of care provided by AI-enabled medical 

devices.43,54,55 Moreover, informing patients about all aspects of health data collection and its 

use across different platforms and for training algorithms may not be always feasible.34,56 

Withdrawing consent for the use of these data would cause further challenges.57 Eight papers  
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(5.5%) argued that patient autonomy could be negatively affected when using AI-enabled care. 

This issue specifically is likely to happen if the devices function independently and have 

unchecked actions,47 which could damage patients’ confidence in their ability to change their 

medical decisions, i.e. refuse care, if later desired.48  

Mitigation Strategies 

To improve informed decision-making, several papers described the necessity of 

providing patients and healthcare providers with sufficient information and ensuring that 

patients are freely able to change their medical decisions if desired.48,58 Moreover, further 

regulations on obtaining valid unambiguous consent when using patient data should be 

established.25 

 

Accountability and Responsibility Concerns 

Another key ethical concern raised by 19 (13.1%) papers was the issue related to 

accountability and responsibility. Since multiple groups of professionals are involved in the 

design, manufacture, and use of AI-based medical devices, accountability and liability of the 

decisions made by these devices could be difficult to determine. While some suggested that 

users of the devices should ultimately be responsible for the output of algorithms,23,59 there are 

considerable debates around the accountability of actions suggested or performed by AI-based 

technologies and the potential misuse of data.34,35  The complexity, opaqueness, and lack of 

transparency of AI-based medical devices make the accountability and responsibility issues 

even more challenging.48,60  

Mitigation Strategies 
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To address questions of accountability, several papers described the importance of 

improving the engagement of all stakeholders, including physicians and developers. Papers also 

suggested improving the transparency of AI tools’ function so that the reasons behind decisions 

and actions taken by the devices are clear.61,62 Moreover, there is a need for regulatory and 

legal systems to oversee the implementation of AI-based medical devices and determine the 

responsibilities of patients, healthcare providers, and others.63 

 

 

Data Ownership Issues 

There were further ethical concerns discussed by 11 (7.6%) papers related to ownership 

of the patient data being used by AI-based technologies, particularly if the data is identifiable.64 

The rules and regulations related to data ownership vary significantly across different regions 

and may be absent in some jurisdictions, which makes it unclear whether patients, hospitals, or 

private companies own the data analyzed by AI tools.65,66  This issue is directly associated with 

how AI and its data are monetized,66 as there are controversies about who should profit from 

the collected data and for how long these institutions or individuals can and should retain 

patient health information.67  

Mitigation Strategies 

To address these concerns, several papers described the importance of clear regulations 

around data ownership and preparing models of health data ownership with rights to the 

individual ahead of using AI-based devices in healthcare. 31,36 
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Trust Barriers and Facilitators 

 

 We identified 53 (36.6%) and 58 (40.0%) papers discussing trust barriers and facilitators, 

respectively, from patients’ and healthcare providers’ perspectives when using AI-based 

medical devices in cardiovascular care (Figure 3). 

 

Shared (Patient and Healthcare Provider) Perspective 

 

Data privacy and security issues 

Data privacy and security concerns were discussed as key trust barriers for patients and 

healthcare providers.17,62 In particular, patients were described as worried about the potential 

alteration of data, unauthorized use of data, information sharing with commercial partners, and 

data loss.57,68 These issues are specifically concerning in the absence of uniform federal privacy 

regulations regarding collecting, storing, and using patient health information in different 

settings.39  

Facilitators 

To address data privacy and security concerns, the literature discussed encrypting 

patient data according to the Health Insurance Portability and Accountability Act of 1996 

(HIPAA), removing data identifiers, documenting the purpose of datasets, establishing ethical 

standards for data use and access, and securing communications between patients and 
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healthcare providers.39,69,70 Regulatory bodies could ensure the competence of AI systems and 

their users and establish standardized codes of ethics and conduct for device developers.70  

 

Risk of Suboptimal Care or Patient Harm 

Users have expressed concerns around the possibility of device malfunction and are 

hesitant about the trustworthiness of diagnostic decisions or automatically generated medical 

advice by AI tools, especially if the advice contradicts their previous experiences.48 Another 

important trust barrier is the uncertainty about the reliability and quality of the data used in the 

algorithms, which could be incomplete, unrepresentative, or outdated.71 This lack of 

generalizability could exacerbate health inequities, and further decrease trust in the 

populations who feel that AI would be inaccurate when applied to their cases.72 Certain 

populations may also feel that they may not equally benefit from AI technologies because of 

the deployment and marketing strategies that manufacturers might take.72 Healthcare 

providers are also concerned that AI-based medical devices could provide inaccurate or biased 

recommendations, especially if the systems are not regularly updated.73,74 Moreover, clinicians 

may not trust the generalizability of the outputs of AI systems for their own patients due to the 

lack of diversity in the clinical dataset.75-77 

Facilitators 

To address these trust barriers, the literature discussed the importance of keeping AI 

systems updated by introducing new rules and cases along with routine performance 

assessments to enhance the accuracy of decisions made by AI-based medical devices.73,78 

Further regulations and legislation could also increase trust by ensuring the balance between 
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innovation and patient safety and confirming that AI algorithms meet appropriate standards of 

clinical benefit.79,80  

 

Lack of transparency and Insufficient knowledge 

Substantial barriers to trust in AI-enabled medical devices are the lack of transparency, 

opaqueness (black box nature), and poor interpretability of the devices.74,81,82 Physicians tend 

to trust a device less if they do not fully understand how it functions or how its outputs are 

generated, even if the device performs well.35,38,52 Multiple barriers to transparent AI-based 

medical devices exist, including the lack of understanding of what information is being used by 

the AI tools, what the AI systems are learning, and how the AI algorithms reach conclusions 

based on the inputs.28,83-85  Also, it could be difficult to achieve algorithmic transparency due to 

the complicated structure, dynamic learning, and constant evolution of AI algorithms.34,54 These 

factors make AI models difficult to explain and justify, and therefore, uninterpretable.86 

Besides, inadequate education and experience with AI tools can cause additional barriers to 

trustworthy AI-enabled care.74,87 

Facilitators 

To improve explainability and physicians’ understanding of AI-based medical devices, it 

is essential to clarify AI algorithm training data, explain the computational model and its output, 

and acknowledge the existing limitations of AI-based medical devices.74,76,85,88,89 Making the 

datasets, codes, and trained models publicly available and using interpretable models that will 

allow healthcare providers to review and provide feedback to the AI decision-making tools 

could further improve transparency.45,90 Some argued that healthcare providers may not need 
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detailed explanations of the validated predictions and decisions made by AI-enabled medical 

devices but need to have sufficient information about the major components that affect the 

decisions.41 Additionally, a visual display of the consensus between decision support tools and 

clinicians’ assessments could enhance clinicians’ trust in AI systems.53  

Restricting the complexity of AI tools as well as providing clarity on how AI devices are 

regulated could facilitate patient trust.17,19,57,91 It is also essential to provide patients with 

appropriate education about how to use AI tools and enhance their engagement in different 

phases of the design and implementation of AI technologies.48,87,92,93 

Other important factors for facilitating transparency are to clarify all the interactions 

within and among different sectors that led to the development of AI systems and to maintain 

open and clear communication between healthcare providers and developers.86,94 Regulatory 

bodies could establish more rigorous regulations for the enforcement of transparency in 

datasets and algorithms used in AI-based medical devices.45,90 

 

Replacing human aspects of care 

Patients and healthcare providers seem to trust AI tools less if the devices are meant to 

entirely replace the human aspect of care.51  

Facilitators 

Trust could improve if patients and healthcare providers are assured that AI-based 

devices are supplementary to care, rather than outright replacing clinicians or other human 

aspects of care.51,90 
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Patient Perspective 

Prioritizing profits over patients’ interests 

From the patient perspective, trust would be diminished when they feel AI devices are 

mainly used for economic efficiency at the cost of patient interests and benefits.70 

No facilitators were identified in the reviewed literature for this trust barrier. 

 

Healthcare Provider Perspective 

Lack of robust evidence 

A significant barrier to clinician trust is the lack of robust evidence for the accuracy and 

limitations of AI-based medical devices in addition to the inadequate education and training 

about the use of AI tools.74,95,96  

Facilitators 

Several papers argued that while it might not be feasible to explain all aspects of AI, 

generating more reliable evidence and standards through rigorous internal and external 

validations, prospective clinical trials in diverse cohorts which demonstrate safety, efficacy, and 

generalizability of AI devices, and peer-reviewed publications can improve trust.97-101 Therefore, 

collaborative practices with healthcare providers for the development and continuous 

assessment of AI devices are essential.73,96 Lastly, complying with the established legislations 

and regulations is essential when producing trustworthy AI research.86 

 

DISCUSSION 
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 After reviewing more than 11,000 publications, we identified key ethical concerns and 

major trust barriers around the use of AI in cardiovascular care held by healthcare providers 

and patients. Concerns focused on data privacy and security, risk of patient harm, and the 

possibility that AI/ML-based medical care could exacerbate healthcare inequities or advance 

unfair algorithmically automated decisions. Inadequately obtaining informed consent from 

patients regarding the use of AI and various forms of data collection while providing AI-enabled 

care was also described, as was determining who is ultimately responsible for regulating the 

development, performance, and use of AI in medicine and who owns the collected data. The 

absence of rigorous clinical trials to support the safety and efficacy of AI-enabled medical 

devices and the lack of transparency about the data used by AI devices and their subsequent 

recommendations remain other significant barriers to patients’ and healthcare providers’ trust. 

These challenges should be carefully identified and addressed to ensure that AI systems are 

developed and implemented in an ethical and trustworthy manner.  

We identified mitigation strategies to address most key ethical and trust concerns about 

the use of AI in medicine, which requires a collaborative effort involving AI developers, 

regulators, hospital systems, healthcare providers, and patients. Regulatory agencies were 

identified as having multiple inroads to addressing patient and clinician concerns. Notably, we 

found that establishing further regulations and legislation around development, adoption, and 

use of AI in healthcare is a key facilitator for addressing almost all the identified ethics concerns 

and trust barriers. Certain proposed frameworks and guidance documents have carved out 

actions for oversight bodies to delineate the scope of liability, strengthen data privacy 

protections, and clarify data ownership regulations.102,103 Moreover, requiring postapproval 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2023. ; https://doi.org/10.1101/2023.10.02.23296447doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.02.23296447
http://creativecommons.org/licenses/by-nd/4.0/


 22

studies could ensure continuous monitoring of AI devices' performance, potential biases, and 

unintended consequences.  

AI developers similarly have a significant stake in addressing patient and clinician 

concerns and need to be attentive to data stewardship practices, safety, and transparency as 

models are researched, developed, and marketed. Moreover, current medical device labeling 

does not always address the unique challenges of the use of AI/ML-based software, such as 

training data sources, model accuracy, potential biases, and opting out of use, which can hinder 

patient-shared decision-making and trust in AI-enabled care. Providing AI model facts labels will 

establish a clear and standardized communication of information with users and enhance 

transparency and trust.50 Furthermore, self-governance approaches may serve as a potential 

mechanism in tandem with regulatory intervention for implementing mitigation strategies. 

Submitting to a set of industry standards as well as certification processes may help to mitigate 

the risks of AI tools and help to facilitate trust in models.104  

Hospital systems and clinicians will also be faced with key decisions regarding AI tools 

adopted in their practices. As hospitals become a source of data for the development of 

numerous models, appropriate privacy protections and transparency about data use and model 

deployment would be relevant, especially as they act in coordination with third-party 

developers.105 As end-users of most healthcare AI tools, clinicians may become responsible for 

providing appropriate information about these systems to patients at the point of care and for 

appropriately integrating model insights into clinical decision-making. 

While our findings are indicative of many strategies that would be taken up by clinical, 

technical, and regulatory stakeholders, there are also opportunities for including patients. 
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Stakeholder engagement with patient populations and the public in the research and design of 

AI tools may be relevant to mitigating bias and developing trust, particularly by communicating 

the underlying design of AI tools in ways that are understandable to patients and leveraging 

advisory groups to inform the creation of such tools.106 Identifying opportunities for patient 

engagement will be incumbent upon all stakeholders with more formal decision-making 

authority. Thus, regulatory oversight on using and sharing patient information, safety and 

transparency of AI tools, and responsibilities of healthcare providers, device manufacturers, 

and patients would facilitate the application of AI in medical care.  

 Overall, we found that most papers briefly touched upon issues related to trust and 

ethics and potential mitigation strategies without providing in-depth information.  Additional 

studies translating ethical principles into tangible tools and guidance for stakeholders will be an 

important next step in implementation of responsible and trustworthy AI-enabled health 

care.107 Moreover, we did not find any ethical concerns or trust barriers and facilitators from 

the caregivers’ perspective, necessitating further research in this area. 

Our study has limitations. First, similar to all reviews of published literature, publication 

and reporting biases may have affected our findings. Second, while we identified and reviewed 

a significant number of relevant papers, the vast majority were review articles and 

commentaries, editorials, or perspective pieces with fewer original research articles. While our 

search was very exhaustive, there was an inconsistency in the level of detail, which may have 

led to papers potentially being missed. However, citation chasing was undertaken to identify 

additional relevant articles that failed to include the three main concepts of our search. Lastly, 
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this study focused on the use of AI in cardiovascular care and may not generalize to uses in 

other areas of medicine.  

 

CONCLUSION 

 

This literature review of using AI/ML-based interventions in cardiovascular care 

identified key ethical and trust concerns from patients’ and healthcare providers’ perspectives, 

including issues related to data privacy and security, potential inequity and bias, risk of patient 

harm, patient consent and autonomy, and a lack of transparency about the function of AI-based 

medical devices. To address these concerns, certain mitigation strategies, particularly 

establishing further regulatory oversight on the use of patient data, and safety and 

transparency of AI tools seem necessary.  

 

 

List of abbreviations 

AI: Artificial Intelligence 

HIPAA: Health Insurance Portability and Accountability Act of 1996 

ML: Machine learning 
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