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Section 1:  Parameters of the model. 

The duffing oscillator model is given by: 

𝑑2𝐺𝐹𝑅

𝑑𝑡2
− 𝜆

𝑑𝐺𝐹𝑅

𝑑𝑡
= 𝑓(𝐺𝐹𝑅) (S. 1) 

Where: 

𝑓(𝐺𝐹𝑅) = 𝑎 𝐺𝐹𝑅3 + 𝑏 𝐺𝐹𝑇2 + 𝛾 𝐺𝐹𝑅 + 𝛿 (S. 2) 

 

Which derives: 

𝑑𝐺𝐹𝑅

𝑑𝑡
= 𝑢 (S. 3) 

 

𝑑𝑢

𝑑𝑡
= −𝜆 𝑢 − 𝑓(𝐺𝐹𝑅) (S. 4) 

 

If c=GFR at 365 d, and θ is the threshold, then at steady-state, the model should satisfy 

equations S. 5, S. 6, and S. 7. 

𝑓(0) = 0  =>  𝛿 = 0 (S. 5) 

 

f(c)=0 => 𝑎𝑐3 + 𝑏𝑐2 + 𝛾𝑐 = 0 ⇔ 

⇔ 𝑎𝑐2 + 𝑏𝑐 + 𝛾 = 0 ⇔ 

⇔ 𝑎 = −
𝑏𝑐 + 𝛾

𝑐2
 

(S. 6) 

 

𝑓(𝜃) = 0 ⇔  𝑎𝜃2 + 𝑏𝜃 + 𝛾 = 0 (S. 7) 

 



At GFR at 365 days:  

𝑑𝑓

𝑑𝑥
< 0 ⇔ 3𝛼𝑐2 + 2𝑏𝑐 + 𝛾 < 0 (S. 8) 

 

At the threshold θ: 

𝑑𝑓

𝑑𝑥
> 0 ⇔ 3𝛼𝜃2 + 2𝑏𝜃 + 𝛾 > 0 (S. 9) 

 

Also, the curvature changes at the threshold 

𝑑2𝑓

𝑑𝑥2
= 0 ⇔ 6𝛼𝜃 + 2𝑏 = 0 ⇔ 

⇔ 𝜃 = −
𝑏

3𝛼
 

(S. 10) 

 

From equations S. 7 and S. 10: 

𝑎𝑏2

9𝛼2
−

𝑏2

3𝛼
+ 𝛾 = 0 ⇔ 

⇔ 𝑏2 − 3𝑏2 + 9𝛼𝛾 = 0 ⇔ 

⇔ 𝑏 = ±3√
𝛼𝛾

2
 

(S. 11) 

 

In equations S. 2 and S. 5, γ should be positive as it represents the decay of GFR in the 

patients.  Thus, from equation S. 11, α is positive.  Based on equations S. 10 and S. 11, 𝑏 =

−3√
𝛼𝛾

2
  because θ>0. 

θ then equals: 

𝜃 = −
𝑏

3𝛼
= −

−3√
𝛼𝛾
2

3𝑎
⇔ 

⇔ 𝜃 = √
𝛾

2𝛼
 

(S. 12) 

 

From equation S. 6, by replacing b, γ as a function of c and a can be approximated by: 

𝑎𝑐2 − 3√
𝛼𝛾

2
𝑐 + 𝛾 = 0 ⇔ 

⇔ 𝑎𝑐2 −
3

√2
𝑐√𝑎√𝛾 + 𝛾 = 0 ⇔ 

⇔ 𝑎𝑐2 − 2𝑐√𝑎√𝛾 + 𝛾 + 2𝑐√𝑎√𝛾 −
3

√2
𝑐√𝑎√𝛾 = 0 ⇔ 

⇔ (𝑐√𝑎 − √𝛾)
2

+
2√2 − 3

√2
𝑐√𝑎√𝛾 = 0 

 

(S. 13) 

The second term of equation S. 13 can be deleted as α and γ are quite small.  Therefore, γ can 

be approximated by: 



𝛾 ≈ 𝛼𝑐2 (S. 14) 

 

From equations S. 6 and S. 10: 

𝑐2 − 3𝜃𝑐 +
𝛾

𝛼
= 0 ⇔ 

⇔ 𝜃 =
𝑐2 + 𝛾/𝛼

3𝑐
 

(S. 15) 

 

Using equation S. 14 to S. 13, θ can also be approximated from measurable c by: 

𝜃 ≈
2𝑐

3
 (S. 16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section 2:  Feature selection and multi-linear regression. 

Patients without rejection from the training set were used for feature selection and prediction 

of GFR after 365 days postransplantation.  The inputs were 1) patient age, 2) patient sex, 3) 

donor's age, 4) donor's sex, 5) deceased donor vs. living donor 6) cold ischemia time (hours), 

7) initial function vs. delayed function of the graft, 8) HLA-mismatch at locus A, 9) HLA-

mismatch at locus B, 10) HLA-mismatch at locus DR, 11) panel reactive antibodies (%), 12) 

blood transfusions before transplantation, 13) number of pregnancies, 14) number of previous 

transplantations, 15) highest GFR within six weeks after transplantation (ml/min/1.73 m2), and 

16) percentage change between the highest GFR within six weeks and the GFR at 100 d. All 

inputs were used in the AIC, BIC and adjusted R2 for feature selection in Python.  The results 

of the feature selection are shown in Figure S. 1. 

 

 

Figure S. 1:  AIC, BIC and adjusted R2 values over the number of features. 

 

Table S. 1 contains the number of the features and the index of the features for the first five 

numbers. 

 

Table S. 1:  Important features in the first five feature steps 

Number of features Index of the features 

1 GFRin
1

 

2  GFRin, % of GFR change 

3  GFRin, % of GFR change, donor’s age 

4  GFRin, % of GFR change, donor’s age, blood transfusions before 

transplantation  

5  GFRin, % of GFR change, donor’s age, blood transfusions before 

transplantation, HLA-mismatch at locus B  

 
1 GFRin: Highest GFR within the first 6 weeks posttransplantation 



According to Figure S. 1 and Table S. 1, the selected number of features was three as it showed 

a good performance, and each criterion value varied insignificantly when the number of features 

increased.  Thus, the most important features were donor’s age (x1), the highest GFR within six 

weeks after transplantation (x2), and the percentage change between the highest GFR within six 

weeks and the GFR at 100 d (x3). 

The corresponding coefficients of the features with reference to multi-linear regression, and the 

intercept for predicting the GFR 365 days posttransplantation, are shown in Table S. 2. 

Table S. 2: Ordinary least squares regression results 

Feature Value Std err t P>|t| 95% CI 

Intercept 19.5974 3.608 5.431 0.000 [12.501  26.694] 

x1 -0.1647 0.047 -3.513 0.001 [-0.257  -0.072] 

x2 0.7463 0.033 22.698 0.000 [0.682  0.811] 

x3  15.7827 1.937 8.149 0.000 [11.974  19.592] 

 

The results of the multilinear regression (Table S. 2.) are shown in patients without rejection 

from the training set in Figure S. 2.  By using the same coefficients in patients with one rejection 

and multiple rejections, the regression lines are shown in Figure S. 3 and Figure S. 4. 

 

Figure S. 2:  Multi-linear regression with the predicting interval for the GFR at 365 d in 

patients without rejection (training set) 

 

Figure S. 3:  Multi-linear regression with the predicting interval for the the GFR at 365 d in 

patients with one rejection (training set).  



 

s 

Figure S. 4:  Multi-linear regression with the predicting interval for the the GFR at 365 d in 

patients with multiple rejections (training set).  

 

The results showed that linear regression can be used for GFR prediction at 365 days 

posttransplantation in patients without rejection whereas both MSE and R2 significantly 

decrease in patients with one and with multiple rejection.   

 

Section 3:  Annual GFR decrease in real patients. 

Based on Table S. 3 if patients with relevant complications which are known to affect the graft 

(rejection, BK virus nephropathy, glomerulonephritis, severe infections and other severe extra-

renal diseases and urinary tract infections) are excluded the average annual loss is 1.58 ml/min 

1.73 m2/yr. 

 

Table S. 3:  Average loss per year in patients without rejection, BK virus nephropathy, 

glomerulonephritis, severe infections and other severe extra-renal diseases and urinary tract 

infections. 

  

Percentile 

5 10 25 50 75 90 95 

Grounded 

method 

Average loss per year -11.2680 -7.4477 -3.7441 -1.5803 0.9553 3.4796 5.2999 

Tukey test Average loss per year      -3.6809 -1.5707 1.0690     

 

Based on Table S. 4, the whole cohort of patients has an average annual GFR loss of 2.07 

ml/min/1.73 m2/yr).  

 

 



Table S. 4:  Average loss per year in the whole training cohort of patients 

  

Percentile 

5 10 25 50 75 90 95 

Grounded 

method 

Average loss per year  -17.8305 -10.6935 -4.7898 -2.0732 0.0798 1.9119 3.5672 

Tukey test Average loss per year      -4.7898 -2.0587 .0798     

 

From Eqs. S3 and S4 in the Section 1,  it is assumed that 
𝑑𝑢

𝑑𝑡
≈0,  u = -2.07 ml/min/1.73 m2/365 

d, α =0, b = 0.  Also, if we considered λ = 1 d-1 and an average value of GFR equal to 60 ml/min/ 

1.73 m2, then substituting all these values in Eq. S.3,  

𝜆𝑢 ≈ −𝛾 𝐺𝐹𝑅𝑎𝑣𝑒 ⇔ 𝛾 = −
𝜆𝑢

𝐺𝐹𝑅𝑎𝑣𝑒
⇔ 𝛾 = −

1 𝑑−1  (−
2.07
365 

  
𝑚𝐿

min 1.73 𝑚2 𝑑
)

60 
𝑚𝐿

min 1.73 𝑚2

⇔ 

⇔ 𝛾 = 9.45⸱10−5 ≈ 10−4 𝑑−2  

 

Section 4:  Distribution of λ. 

The distribution of λ obtained from the parameter estimation of 362 patients without rejection 

is depicted in in Figure S. 5. 

 

 

Figure S. 5:  Distribution of λ values in the non-rejection patients. 

 



Small values of λ capture GFR courses that oscillate over time (underdamped oscillator)., 

whereas for high λ the model could fit patients whose GFR course relaxes fast to a certain value 

(overdamped oscillator). 

 

Section 5:  Graft Survival probabilities for all patients of the training group. 

The following data stem from an unpublished analysis which applied the same approach and 

cohort that was used in the study on patient survival from Scheffner et al (Scheffner et al., 2020) 

 

 

Figure S. 6:  Model fitting of graft survival probability for all patients of the training group 

(Abbreviation:  RSF is the random survival forest) 

 

 

 Figure S. 7: Model fitting of graft survival probability in patients without rejection in the 

training group (Abbreviation:  RSF is the random survival forest) 



 

Figure S. 8: Model fitting of graft survival probability for patients with one rejection of the 

training group (Abbreviation:  RSF is the random survival forest) 

 

 

 

Figure S. 9: Model fitting of graft survival probability of patients with multiple rejections of 

the training group (Abbreviation:  RSF is the random survival forest) 

 

 

 

 

 



Section 6:  Classification with regular XGBoost, and Random Forest. 

In this section, the prediction of high risk patients was treated as a very simple classification 

problem.   The high risk patients were those whose GFR annual value was less than a threshold  

The thresholds obtained from section 5 of SI were 30, 40, and 50 mL/min/1.73m2.   

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = {
1,  𝑤ℎ𝑒𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐺𝐹𝑅365 𝑑 ≤ 𝐶𝑙𝑖𝑛𝑡ℎ𝑟

0,  𝑤ℎ𝑒𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐺𝐹𝑅365 𝑑 > 𝐶𝑙𝑖𝑛𝑡ℎ𝑟
 (S. 17) 

 

For classification XGBoost and Random Forest were performed in the patient with one, with 

multiple and without rejection, and the SMOTE (Synthetic Minority Over-sampling Technique) 

algorithm was used due to imbalanced data.  The results are shown in Table S. 5. 

 

Table S. 5: XGBoost, and Random Forest accuracies for different critical thresholds (Critthr) in 

non-rejection patients. 

Classifier AUC for 

Critthr  equal to 

30 mL/min/1.73m2 

AUC for 

Critthr
 equal to 

40 mL/min/1.73m2 

AUC for 

Critthr
 equal to 

50 mL/min/1.73m2 

XGBoost 0.65 0.68  0.72 

Random 

Forest 

0.57 0.86 0.82  

 

 

Table S. 8: XGBoost, and Random Forest accuracies for different critical thresholds (Critthr) in 

one rejection patients. 

Classifier AUC for 

Critthr  equal to 

30 mL/min/1.73m2 

AUC for 

Critthr
 equal to 

40 mL/min/1.73m2 

AUC for 

Critthr
 equal to 

50 mL/min/1.73m2 

XGBoost 0.72 0.77 0.80 

Random 

Forest 

0.73 0.73 0.75  

 

 

Table S. 9: XGBoost, and Random Forest accuracies for different critical thresholds (Critthr)  

in multiple rejection patients. 

Classifier AUC for 

Critthr  equal to 

30 mL/min/1.73m2 

AUC for 

Critthr
 equal to 

40 mL/min/1.73m2 

AUC for 

Critthr
 equal to 

50 mL/min/1.73m2 

XGBoost 0.86 0.70 0.71 

Random 

Forest 

0.75 0.76 0.77  

 

Based on the results on Table S. 5-S.9, regardless of considering the issue of data imbalance, 

the classification accuracy depends on the threshold, and the accuracy is low especially when 

the threshold decreases. 
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