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ABSTRACT 
 
Background: Socio-economic disparities were associated with disproportionate viral 
incidence between neighborhoods of New York City (NYC) during the first wave of SARS-
CoV-2. We investigated how these disparities affected the co-circulation SARS-CoV-2 
variants during the second wave in NYC. 
 
Methods: We tested for correlation between the prevalence, in late 2020/early 2021, of Alpha, 
Iota, Iota with E484K mutation (Iota-E484K), and B.1-like genomes and pre-existing immunity 
(seropositivity) in NYC neighborhoods. In the context of varying seroprevalence we described 
socio-economic profiles of neighborhoods and performed migration and lineage persistence 
analyses using a Bayesian phylogeographical framework. 
 
Findings: Seropositivity was greater in areas with high poverty and a larger proportion of 
Black and Hispanic or Latino residents. Seropositivity was positively correlated with the 
proportion of Iota-E484K and Iota genomes, and negatively correlated with the proportion of 
Alpha and B.1-like genomes. The proportion of persisting Alpha lineages declined over time 
in locations with high seroprevalence, whereas the proportion of persisting Iota-E484K 
lineages remained the same in high seroprevalence areas. 
 
Interpretation: During the second wave, the geographic variation of standing immunity, due 
to disproportionate disease burden during the first wave of SARS-CoV-2 in NYC, allowed for 
the immune evasive Iota-E484K variant, but not the more transmissible Alpha variant, to 
circulate in locations with high pre-existing immunity.    
 
Funding: We acknowledge funding from the National Institutes of Health and the Centers for 
Disease Control and Prevention.  
 
 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 2, 2023. ; https://doi.org/10.1101/2023.09.29.23296367doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.29.23296367
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

New York City (NYC), a city of 8.5 million people, was one of the locations most heavily 
affected by the first wave of SARS-CoV-2 infections in North America and Europe (1, 2). In 
March through May 2020, >200,000 laboratory-confirmed coronavirus disease 2019 (COVID-
19) cases were reported in NYC (2). However, in late March 2020, the percentage of positive 
PCR tests reached 65% (2), indicating that testing was insufficient to capture the full extent of 
the outbreak. Most prominently, the epidemiology of SARS-CoV-2 during this first wave 
reflected socio-economic disparities within NYC, as well as the rest of the US (3), with 
communities of color and those living in areas with lower average socioeconomic status 
experiencing the highest burden of SARS-CoV-2 cases, hospitalizations, and deaths (4, 5). 
The higher proportion of SARS-CoV-2 antibody prevalence in NYC neighborhoods with 
predominantly Black and Hispanic or Latino residents further highlighted inequalities in access 
to testing (6). Consequently, after the first wave, NYC neighborhoods were left with drastically 
different levels of standing immunity, with seropositivity ranging from 11 to 47% in November 
2020 at the beginning of the second wave of SARS-CoV-2 infections. 

The second wave in NYC, lasting from November 2020 through June 2021, started with an 
increase in B.1 cases that peaked in early January 2021, followed by a long plateau of high 
daily number of cases instead of the usual decrease after the peak (7). The plateau was 
caused by the introduction and co-circulation of a number of variants of concern (VOC) and 
interest (VOI) that emerged at the time, including the emergence of the B.1.526 lineage, a 
“local” NYC strain later designated as Iota VOI, characterized by a number of spike mutations 
that were previously hypothesized to allow SARS-CoV-2 immune-evasive properties (7, 8). 
Specifically, E484K, D253G, and S477N mutations in the spike protein have been shown to 
reduce both vaccine-induced and natural immunity. A sister lineage to the Iota variant, 
currently designated as B.1.637, shared a number of defining mutations (namely L5F, D253G, 
and T95I), but also included S477N and Q957R. Although prevalent in NYC in early 2021, 
B.1.637 is not recognized as a VOC or VOI, by the World Health Organization. 

Coinciding with the emergence of the Iota variant, the Alpha VOC, which emerged in the 
United Kingdom in November 2020 (9), was introduced to NYC and started increasing in 
prevalence. The Alpha variant was characterized by high transmissibility [40-50% higher than 
the wild-type Wuhan strain (10)] associated with the N501Y mutation that improves its ACE2 
receptor binding ability (11). Our previous analysis showed that in January-March 2021, both 
Alpha and Iota variants grew rapidly in NYC, but a clade of Iota with the E484K mutation (Iota-
E484K) outpaced Alpha, B.1.637, and the rest of the Iota lineages in growth (7). At the same 
time, in the neighboring state of Connecticut and the rest of New York State, regions which 
were not as heavily impacted by early outbreaks, the Alpha variant was more prevalent 
compared with Iota (12, 13), as would be expected given the higher transmissibility of Alpha. 

Here, we examine how the immune-evasive Iota variant was able to compete and co-circulate 
with the more transmissible Alpha variant in NYC in early 2021. By focusing on the time that 
precedes the emergence of other variants and the steep rise in vaccination levels, we examine 
how differences in seropositivity (primarily from naturally acquired immunity) between different 
NYC neighborhoods created a niche for successful competition and co-circulation of the two 
SARS-CoV-2 variants. We examine geographical patterns and socio-demographic 
characteristics of areas more severely affected during the first SARS-CoV-2 wave in NYC. 
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This analysis sheds light on our understanding of the succession of SARS-CoV-2 variants and 
the ripple effect of socio-economic disparities on epidemic waves. 

 

METHODS 

Genetic data  

We analyzed 18,332 SARS-CoV-2 genomes sequenced by the NYC Public Health Laboratory 
(PHL) and the NYC Pandemic Response Laboratory (PRL) from 2 November 2020 through 
18 June 2021. Pangolin lineages (v4.0.6) were assigned using UShER (14).  

We aligned all Alpha, Iota, B.1.637, and other B.1-like (genomes that were not assigned as 
any of the other VOC/VOIs or B.1.637) genomes using MAFFT v.7.453 (15). Maximum 
likelihood trees were inferred using IQTREE2 (16), using the GTR+F+I substitution model, 
retaining polytomies, and enforcing a minimum branch length of 1x10-9 substitutions/site. 
Within the Iota variant there was a large clade defined by the E484K mutation; we analyzed 
genomes in this Iota-E484K sub-variant cluster separately from the remaining Iota analyses. 
 
Seroprevalence level and epidemiological data  

Publicly available data collected by the NYC Department of Health and Mental Hygiene and 
available at https://github.com/nychealth/covid-vaccine-data/ were used to incorporate 
information on SARS-CoV-2 seropositivity by modified ZIP Code Tabulation Area 
(MODZCTA), subsequently referred to as ZIP code. We used the seropositivity by ZIP code 
in NYC as of November 2020 based on the cumulative proportion of positive SARS-CoV-2 
antibody tests, available at https://github.com/nychealth/coronavirus-data. This testing method 
is representative of both natural or vaccine-induced immunity, though vaccination was not 
broadly available at the start of the second wave in NYC. 

Vaccination level by ZIP code was assessed as of May 2021 as the proportion of residents 
who had received at least one dose of COVID-19 vaccination administered by NYC 
vaccinating facilities and reported to the Citywide Immunization Registry. Neighborhood 
poverty level was defined based on the proportion of residents in a ZIP code with household 
incomes less than the federal poverty level, per the American Community Survey 2014–2018. 
We defined poverty levels as “Low” (<10% of residents in a ZIP code with household income 
lower than the federal poverty level), “Medium” (10-19.9%), “High” (20-29.9%), and “Very 
High” (≥30%). We considered five racial/ethnic groups: Asian or Pacific Islander, Black or 
African American, Hispanic or Latino, Other (including mixed race, American Indian or Alaska 
Native, unknown, and other), and White. ZIP code, poverty level, and race/ethnicity data were 
obtained from the NYC DOHMH population estimates (17). 

Statistical analyses 

We performed a linear model regression between the seropositivity in a ZIP code and the 
proportion of genomes of each studied lineage (e.g., number of Alpha genomes/number of all 
SARS-CoV-2 genomes reported for that ZIP code) as reported by PHL and PRL. ZIP codes 
with less than 10 reported genomes were not included in the analysis. Then, we tested the 
association between seropositivity and poverty at ZIP code level using analysis of variance 
(ANOVA). We used the Pearson correlation coefficient to test the correlation of the proportion 
of the population of a certain race/ethnicity in a ZIP code and seropositivity in the ZIP code. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 2, 2023. ; https://doi.org/10.1101/2023.09.29.23296367doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.29.23296367
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then calculated the proportion of adjacent ZIP codes (ZIP codes that share a land border) 
with the similar seropositivity relative to the total number of adjacent ZIP codes and performed 
a permutation analysis across the NYC ZIP codes, randomly permuting seropositivity 1000 
times, to obtain the expected proportion of adjacent ZIP codes with similar seropositivity.  

BEAST analyses 

We conducted Bayesian phylogeographic analyses to estimate rates of the variants migration 
between locations with different standing immunity. We first used BEAST v1.10.4 (18) to 
reconstruct time-scaled phylogenies for four lineages: Alpha, Iota, Iota-E484K, and B.1.637. 
We used the GTR+G4 nucleotide substitution model, assuming a strict molecular clock model 
(fixed to the value of 8×10−4 substitutions/site/year), and a Skygrid coalescent tree prior with 
20 dimensions to reconstruct past population dynamics (19). We ran Markov Chain Monte 
Carlo (MCMC) for 108 generations and investigated the chain convergence using Tracer 
v1.7.1 (20). 

For phylogeographic analysis, we used LogCombiner (18) to resample the obtained tree 
distributions at a lower frequency. The resulting tree distributions for each lineage included 
2000 trees; these tree distributions were used for all consequent phylogeographic analyses. 
We assigned geographic trait value to sequences in the phylogeographic analysis to locations 
based on the seropositivity reported in the area separately for each of the variants. We ran 
MCMC for 108 generations to estimate pairwise migration rates between different locations in 
this analysis.  

To assess whether certain variants were preferentially migrating from one location to another 
based on the seropositivity, we calculated the pairwise difference in seropositivity and 
estimated whether it was correlated with the log-transformed viral lineage migration rate 
between the locations. We then re-ran the analyses separately including seropositivity and 
vaccination level in each location as of May 2021 as a covariate for the migration rates directly 
in the phylogeographic analysis. We ran these analyses separately for each variant using a 
previously described approach (21).  

Persistence analysis 

We used PersistenceSummarizer, as implemented in BEAST (22), to examine the effect of 
seropositivity on the persistence of specific variants in a location. PersistenceSummarizer 
identifies lineages that have been in a location from the beginning to the end of an observation 
period. For this analysis, we partitioned the observation period into biweekly intervals going 
backward in time from the most recent genome in each of the datasets.  

Ethical considerations 

The institutional review board of UC San Diego granted ethical approval of this work as human 
subjects exempt. 
 

RESULTS 

Geographical patterns in seropositivity 

To test whether there was geographical structure in the levels of preexisting immunity to 
SARS-CoV-2 across NYC as of November 2020, we analyzed whether areas with similar 
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seroprevalence levels were more likely to be geographically adjacent to each other. First, we 
assigned every ZIP code across NYC into one of three quantiles (“High”, “Medium”, and “Low”) 
based on their reported seroprevalence levels (Fig. 1). We found the proportion of adjacent 
ZIP codes (i.e., ZIP codes sharing a land border) with the same seroprevalence level was 
higher than expected and had a strong geographical pattern. Specifically, 20.6% of ZIP codes 
adjacent to ZIP codes with “High” seroprevalence level also had “High” seroprevalence, the 
expected proportion was 7.2% (95% range 4.2–10.5%). For “Medium” seroprevalence level 
ZIP codes, the observed proportion of adjacent ZIP codes in the same category was 45.9%, 
while the proportion expected by chance was 29.1% (95% range 24.1–34.1%). For “Low” 
seroprevalence level ZIP codes, the observed proportion of adjacent ZIP codes with “Low” 
seroprevalence level was 50.7%, while the expected was 26% (95% range 20.8–30.7%). For 
each seroprevalence level the average proportion of adjacent ZIP codes that match the 
seroprevalence level was higher than expected, indicating that seroprevalence level in NYC 
has geographic structure. 

Correlation of variant prevalence and seropositivity 

We estimated whether prevalence of SARS-CoV-2 lineages during the second wave was 
correlated with estimated seropositivity at the start of the second wave, by ZIP code. We 
focused on Alpha, Iota, Iota-E484K, and B.1.637 lineages and compared them to the co-
circulating B.1-like viruses. In locations with higher pre-existing seropositivity, we observed a 
higher proportion of Iota and Iota-E484K genomes, but not other variants or B.1-like lineages 
(Fig. 2A). Specifically, we found a positive correlation between the higher pre-existing 
seropositivity and the proportion of Iota-E484K genomes (R2=0.104, p<0.001) and Iota 
genomes (R2=0.037, p=0.014). In contrast, we found a negative correlation with pre-existing 
seropositivity and the proportion of Alpha (R2=0.026, p=0.040) and B.1-like genomes 
(R2=0.082, p<0.001); no correlation was found for the B.1.637 lineages (R2=0.005, p=0.376) 
(Fig. 2B). Although the correlations of seropositivity and some variants are significant, 
seropositivity does not explain most of the variance in lineage proportion. We note that ZIP 
codes with low numbers of sampled genomes will have high variance in estimated lineage 
proportion and high stochasticity in population dynamics which are other major factors that 
impact estimated lineage proportion in a ZIP code, along with relative susceptibility of a 
population to different variants due to standing immunity levels. 

Correlation between seropositivity and socio-demographic data 

We then investigated the relationship between ZIP code seropositivity and socio-demographic 
composition (Fig. 2C and Suppl. Table 1). We found a negative correlation between the 
seropositivity and the proportion of residents who identified as White, Asian or Pacific Islander, 
or Other races (Pearson correlation coefficients -0.73 (p<0.001), -0.31 (p<0.001), and -0.23 
(p=0.002), respectively). Conversely, seropositivity was positively correlated with the 
proportion of Black or African American and Hispanic or Latino residents (Pearson correlation 
coefficients 0.49 (p<0.001), and 0.63 (p<0.001), respectively). Similarly, we found that areas 
with “High” and “Very High” poverty levels were more likely to have high seropositivity (ANOVA 
p<0.0001; Suppl. Table 1, Fig. 2D).  

Phylogeographic analysis findings 

We performed phylogeographic analysis to infer viral lineage migration rates between regions 
of seroprevalence levels. To make our approach computationally tractable, we grouped all ZIP 
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codes with the same seroprevalence level (“High”, "Medium", or “Low”; Fig 1) in the same 
borough into one category and manually reviewed (Fig.3). Since there was only one “Low” 
seroprevalence ZIP code in the Bronx, it was included in the Bronx “Medium” seroprevalence 
group. Staten Island did not have any ZIP codes with “High” seroprevalence level, resulting in 
a total of 13 total locations for phylogeographic inference.  

We found no significant relationship between the log-transformed between-location viral 
migration rates and the pairwise seropositivity difference for any of the studied lineages: 
correlation coefficients 0.04 (p=0.65), 0.02 (p=0.78), 0.17 (p=0.84), and -0.06 (p=0.48) for 
Alpha, B.1.637, Iota, and Iota-E484K, respectively. There is no significant pattern of migration 
between locations that is explained by the difference in seroprevalence of those locations.  

Inclusion of seropositivity as a generalized linear model covariate directly in the 
phylogeographic model also showed no statistically significant association with the migration 
rates (Suppl. Table 2). The same result was observed when all locations with the same 
seropositivity level were merged together irrespective of the borough. Additionally, to test 
whether different levels of vaccination throughout NYC could have affected SARS-CoV-2 
migration rates between the different locations as estimated in the phylogeographic analysis 
described above, we included vaccination level (as of May 2021) as a covariate in our 
analyses, but similarly, no association was found.  

Analysis of persisting lineages  

We further ran lineage persistence analyses that allow inference, whether a variant was likely 
to persist in a location (i.e., if a variant observed in a location is still present in that same 
location at the end of the two-week observation period) or if it was more likely to migrate to 
another location or go extinct (i.e., not observed after two weeks). We ran the persistence 
analysis separately for each of the variants to describe patterns of their circulation within 
locations of “High”, “Medium”, and “Low” seroprevalence level. We found that for the Alpha 
variant, the proportion of lineages persisting in “Low” seroprevalence level locations grew over 
time, from 19% in mid-January to 81% in early June. Concurrently, the proportion of Alpha 
lineages was gradually declining in “High” seroprevalence level locations, from 16% to 2% in 
the same observation period (Fig. 4A). This finding indicates that Alpha was able to 
consistently persist for longer than 2 weeks in locations with “Low” seroprevalence level, but 
repeatedly and rapidly went extinct in “High” seroprevalence locations. Given that 
seropositivity was not a significant predictor for migration rates between locations with different 
seroprevalence levels, it is likely that Alpha was going extinct in areas with “High” 
seroprevalence. 

In contrast, the proportion of persisting Iota-E484K lineages remained relatively stable in all 
locations in the corresponding time period. Between mid-January and mid-May, the proportion 
of Iota-E484K lineages that persisted in “High” seroprevalence level locations for at least 2 
weeks changed from 41% to 39%, and in “Low” seroprevalence level locations from 13% to 
10% (Fig. 4B). Importantly, Iota-E484K was not able to establish itself at high prevalence in 
“Low” seroprevalence level locations, likely in part because they were being outcompeted by 
infections with the more transmissible Alpha variant. 

Other Iota lineages circulated mostly in locations with “Medium” seroprevalence level: the 
proportion of Iota lineages persisting in both “High” and “Low” seroprevalence level locations 
was gradually decreasing, while the proportions of Iota lineages persisting in the “Medium” 
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seroprevalence level locations grew from 26% to 96% between mid-January and early June 
(Fig. 4C). Between mid-January and mid-April, the proportion of B.1.637 persisting lineages 
remained stable in the “Low” seroprevalence level locations (28% and 33%), grew in the 
“Medium” seroprevalence level locations from 34% to 55%, and declined in the “High” 
seroprevalence level locations from 38% to 11% (Fig. 4D).  

 

DISCUSSION 

Infectious disease thrives on disparity and inequality (3). Here we demonstrate how socio-
economic disparities in New York City created unequal predispositions for successful spread 
of emerging lineages during the second wave of SARS-CoV-2. We show that those areas that 
had high seropositivity after the first wave of SARS-CoV-2 and were predominantly high 
poverty areas with majority Black and Hispanic or Latino residents, were less likely to sustain 
the highly transmissible Alpha variant. In contrast, these locales were more likely to sustain 
the Iota-E484K variant; areas with high levels of preexisting seropositivity provided a 
successful niche for the emergence and spread of an immune evasive variant (in comparison 
to a highly transmissible but less immune evasive variant) likely due to re-infection of 
individuals who had acquired SARS-CoV-2 during the first wave.  

Our findings confirm that areas with high seropositivity were more likely to have SARS-CoV-2  
infections of  Iota-E484K than Alpha, as hypothesized earlier (13); and that once Iota-E484K 
reached those areas of high seropositivity, it was able to persist there, while Alpha was not. 
Interestingly, we did not find a correlation between virus migration rates and difference in 
seropositivity between locations. This finding suggests that when the Alpha variant reached 
“High” seroprevalence areas, it likely went extinct there, unable to re-infect individuals, but did 
not successfully migrate to other areas. In contrast, in “Low” seroprevalence locations, Alpha 
prevalence was able to grow and thus maintain its dominant position in the city. 

In May 2021, after the second wave, the proportion of partially vaccinated people in NYC 
ranged from 22-82% and only 5-17% were fully vaccinated. Vaccination level at that point in 
time was not a main contributing factor to relative variant prevalence during the second wave 
that took place in November 2020 through June 2021, as evidenced by our phylogeographic 
analysis. Less than 1% of people were vaccinated at the start of the second wave.  

In NYC, the introduction of the Alpha variant around the time of Iota emergence (7) likely 
prevented Iota from establishing at a level that would make it difficult for Alpha to compete. 
Unlike previous analyses that focused on competition at a country level (23, 24), we were able 
to decipher competition dynamics between variants at the neighborhood level owing to the 
granularity of seropositivity data and SARS-CoV-2 genome data. Given the higher 
transmissibility of the Alpha variant, it might have completely eliminated Iota from NYC if not 
for the pockets of higher seropositivity left in the wake of the first wave of SARS-CoV-2. For 
example, when the Gamma variant, another lineage with immune-evasive properties, reached 
NYC in January 2021 (25), it was not able to successfully establish in the city and only 
circulated at low frequencies, likely because its niche in people with pre-existing immunity was 
taken by Iota-E484K that had been circulating in NYC for several months. 

The Gamma variant dominated the Brazilian SARS-CoV-2 epidemic in late 2020/early 2021 
due to the high levels of pre-existing immunity in Brazilian population (26, 27), but in mid-2021 
it was quickly replaced by Delta due to the Delta variant’s higher transmissibility (28). At the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 2, 2023. ; https://doi.org/10.1101/2023.09.29.23296367doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.29.23296367
http://creativecommons.org/licenses/by-nc-nd/4.0/


same time, the Gamma variant was not able to successfully establish itself in the neighboring 
Colombia or Peru (23, 24). This failure is likely due to a founder effect as competing variants, 
Mu in Colombia and Lambda in Peru, which also have immune-evasive properties, already 
dominated the Colombian and Peruvian epidemic by the time Gamma reached the country. 
Thus, the time of VOCs emergence and introductions, and mechanisms for increased fitness, 
is crucial for their success in a location in the presence of other variants. 

Our study was able to elucidate how various factors, including geographic variability in 
seropositivity, a symptom of inequities associated with socio-demographic factors in 2020, 
affected the competition dynamic between two co-existing viral lineages. Such analyses would 
not be possible in the post-Omicron era when multiple consecutive waves are dominated by 
variants with similar properties and where the majority of the population have a mixture of 
acquired natural and/or vaccine-induced immunity (29). By focusing on the time preceding the 
emergence of the Delta and Omicron variants, we show that the consequences of socio-
economic disparities in an outbreak can have a ripple effect that can last into subsequent 
outbreaks, providing an important lesson for future epidemic preparedness and mitigation 
efforts. 
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Figure 1. Seroprevalence of SARS-CoV-2 antibodies across NYC in November 2020. 
Color borders indicate boroughs. Gray borders denote ZIP codes and shading indicates 
seroprevalence. 
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Figure 2. SARS-CoV-2 variants and demographics across ZIP codes in NYC. Correlation 
analysis between (A) seroprevalence level and proportion of each lineage, (B) seropositivity 
and proportion of each lineage; (C) proportion of population of a certain race/ethnicity by 
seroprevalence level by ZIP code, and (D) number of ZIP codes of different seroprevalence 
level by poverty level.  
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Figure 3. Seroprevalence quantiles across NYC boroughs. Seroprevalence level for ZIP 
codes (black square); categorized by location groups (high, medium, and low seroprevalence 
within each borough). Location group summarized by boxplot where shading indicates 
seroprevalence level, and color is associated with borough. 
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Figure 4. Persistence of variant lineages over time in NYC stratified by seroprevalence 
level. Percent of persisting lineages indicates the proportion of lineages present in a location 
at the observation time that were already present in the same location 2 weeks prior. Shading 
indicates seroprevalence level. 
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