1 Supplementary material to the paper

- 2 Sociodemographic Characteristics and Longitudinal Progression of Multimorbidity: A Multistate
- 3 Modelling Analysis of a Large Primary Care Records Dataset in England
- 4 Supplemental Figure A. Flowchart for sample selection
- 5 Extraction stage from CPRD Aurum

6

7 Additional criteria applied at the data processing stage

1 Supplemental Technical Details

2

10

3 The multistate modelling approach

- 4 In this section we provide a brief introduction to multistate modelling (MSM), and we refer to [1] and
- 5 references therein for more in-depth coverage of the topic. A multistate model is built from a mathematical
- 6 object named a multistate process. A multistate process is a stochastic process $\{X(t), t \ge 0\}$ with a finite
- state space $S = \{1, ..., N\}$ (here we focus on the setting where t is continuous and X(t) is continuously
- 8 observed). The law of a multistate process can be fully characterised via the transition intensities, which

9 directly describe the instantaneous dynamic of the process

 $\alpha_{hj}(t;F_{t^-}) = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j | X(t) = h; F_{t^-})}{\Delta t} , \ h \neq j \in S,$

11 where F_{t^-} represents the history of the process over [0, t). There are two special classes of the multistate 12 processes that have been thoroughly studied. The first is the Markov processes, which relies on the Markov

13 assumption such that risks at a particular time are independent of the history, so that

14 $\alpha_{hi}(t; F_{t^-}) = \alpha_{hi}(t).$

15 The second class is the so-called clock-reset semi-Markov processes, which relaxes the Markov property by 16 assuming that

17
$$\alpha_{hj}(t; F_{t}) = \alpha_{hj}(B(t)),$$

18 where B(t) is the time since entry to the current state h. Therefore, α_{hj} depends on the history only 19 through B(t), and in effect, the time scale after each transition is reset to zero. In the former scenario, the 20 transition probabilities between two states can be derived from the intensities by solving the Kolmogorov

21 differential equations, whereas for the latter case, no explicit formulation exists. In such scenarios, one

22 could estimate transition probabilities from intensities via simulation-based techniques.

A multistate model can be fitted to data representing the evolution of *n* subjects (defined on the same
 state space) in a population, each of whom is followed up continuously for a potentially different length of

25 time (may be subject to delayed entry or right censoring). To model the covariate-dependent transition

- intensities for subject *i*, $\alpha_{h_i}^{(i)}(t; F_{t-})$, Markov or semi-Markov assumptions are commonly adopted and
- 27 semi-parametric or parametric proportional hazard regression framework is often used. If we in addition

assume that each individual's trajectory, $X_i(t)$, is independent, then it can be shown using counting process theory that the MSM likelihood factorizes as

29 theory that the MSM likelihood factorizes as

$$L = \prod_{i=1}^{K} L_i(\theta | D^{(i)}),$$

31 where K is the total number of allowed transition types in the multistate process (e.g. if $\alpha_{hj} \neq 0$ then $h \rightarrow 0$

32 *j* represents one type of transition), L_i is the likelihood obtained by considering transition type *i* as a

33 survival problem with data based on all subjects at risk for this transition and θ is the parameter vector

consisting of parameters from all transitions. An important consequence of this factorization property is that if no parameters are shared across transitions, i.e. $\theta = (\theta_1, ..., \theta_K)$, then we could perform maximum

likelihood estimation of the MSM by maximising each L_i independently with respect to its parameter set θ_i

37 (see e.g. [2]).

38

30

- 1 In our analysis, we specify the MSM by using a separate time-to-event model for each permitted $h \rightarrow j$
- 2 transition. To ensure flexibility, we use the spline-based Royston-Parmar model [3] for the transition-
- 3 specific intensities, $\alpha_{hi}^{(i)}(u; Z(t))$,
- 4

$$log (A_{hj}^{(l)}(u;Z)) = s_{hj}(log u;\gamma_{hj}) + \beta_{hj}^T Z_l,$$

where u refers to the time since entry to the state h, $A_{hj}^{(i)}$ is the cumulative transition intensity associated 5 with $\alpha_{hj}^{(i)}$, $s_{hj}(\log u; \gamma_{hj})$ is a natural cubic spline in $\log u$ with coefficient vector γ_{hj} (see [3] for more 6 7 details on the construction of the spline function), Z_i denotes the vector of the exogenous covariates for 8 subject i and β_{hi} is the vector of the associated linear effects. Note that the resulting time-to-event model 9 retains a proportional hazard structure so that elements of β_{hi} are still interpreted as log-hazard ratios. In our context, the covariates/sociodemographic characteristics are IMD, ethnicity, gender and age (at the 10 11 time of entering the current state; in 10 years). The first three variables are categorical and are represented 12 via dummy variables with reference groups set to female, the first IMD quintile (the least deprived group) 13 and White (the dominant ethnic group), respectively. Age is approximated by a piecewise constant process 14 with jumps occurring at the transition times (hence is treated as a time constant covariate in a transition 15 model). A practical issue here is to determine the number and location of the internal knots for the spline 16 term s_{hi} , which would influence the flexibility of the resulting model. We follow the suggestions in [3] to 17 use the Akaike information criterion (AIC) to determine the number of internal knots in the spline from the 18 candidate values of $\{0, ..., 5\}$. Note that when there are zero knots the model reduces to a Weibull model. 19 Conditional on the knot number, the location of these knots is set to equally spaced percentiles of the 20 logarithm of the uncensored transition times for $h \rightarrow j$ (empirical study indicates that the knot position is 21 not a key driver of model fit).

22

23 Model checking

We used the Cox-Snell residuals to graphically examine the goodness of fit of each of our transition models 24 [4,5]. For a fitted time-to-event model, the Cox-Snell residuals are defined as $r_i^{CS} = \hat{A}_i(T_i)$, where \hat{A}_i is the 25 estimated cumulative hazard function for subject i under the fitted model and T_i is the observed event 26 time. If the model fits the data well, we expect the r_i^{CS} to be close to draws from a unit exponential 27 distribution. This diagnostic is motivated by the fact that for any random variable T with survival function 28 29 S(t) = P(T > t), the transformed random variable $-\log S(T)$ is distributed as an exponential random 30 variable with unit mean. To appropriately take censored event times into account, in practice we estimate the cumulative hazard of the residuals, i.e. $-\log \hat{S}(r_i^{CS})$, where \hat{S} is the Kaplan-Meier estimate of the 31 survival function associated with r_i^{CS} (for censored event times T_i the corresponding r_i^{CS} are treated as 32 censored as well). A good fit is suggested if a plot of $-log \hat{S}(r_i^{CS})$ against r_i^{CS} is close to a straight line 33 with an intercept of zero and a slope of one. For our fitted MSM, we computed the Cox-Snell residuals for 34 35 each transition, and we observed satisfactory results for most of the transitions, see Figure B for selective results. Here we observed a slight lack of fit for transitions MH->MH+T2 and MH->MH+CK. We found that 36 37 residuals that significantly deviated from the reference line (in red) correspond to patients who had a long 38 transition time, but their sociodemographic characteristics suggest that the transition should have 39 happened earlier. The presence of such "outliers" may not be surprising given the complexity of the disease 40 progression mechanisms and the inter-subject heterogeneity in such a large cohort. On the other hand, it 41 should be noted that these outliers only account for an extremely small proportion of the data involved in 42 these 112 transitions. Out of the 112 transitions these two were among the most ill-fitting.

1 Meta-regression

- For a given sociodemographic characteristic and for transitions into diagnosis of a specific condition, we
 considered the following meta-regression model:
- 4

$\log \widehat{HR}_i = \beta_0 + \beta_1 level_i + v_i + \epsilon_i,$

- 5 where \widehat{HR}_i is the estimated hazard ratio for a specific group of the characteristic associated with transition
- 6 type i, $level_i$ denotes the count of pre-existing conditions prior to transition type i, $v_i \sim N(0, \tau^2)$ is the
- 7 transition-specific random effect, with τ^2 being the between-transition variance, and $\epsilon_i \sim N(0, \hat{\sigma}_i^2)$
- 8 represents the within-transition random error, where $\hat{\sigma}_i$ is the estimated standard error associated with
- 9 \widehat{HR}_i . Within our setting, $level_i$ can have values ranging from 0 to 4 (as we have a total of five conditions).
- 10 We did not consider more complex models as there are only 16 HRs for each category of the
- 11 characteristics, each HR corresponds to a transition associated with a diagnosis of a specific condition (note
- 12 that for age, there are only 15 HRs linked to it as when $level_i = 0$, age is zero). In our implementation, we
- 13 used the metafor R package. The model parameters were estimated via the Restricted Maximum Likelihood
- 14 (REML) method, and the Knapp-Hartung method was used for adjusting the standard errors of the
- estimated effect sizes to provide more conservative estimates. The intercept (β_0) and slope (β_1)
- 16 parameters together characterize the potential impact of the number of conditions on the hazard ratios.
- 17 The fitted regression line, transformed back to the original hazard ratio scale via exp ($\hat{\beta}_0 + \hat{\beta}_1 level_i$), is
- 18 superimposed on our hazard ratio plots (e.g. Figures 2-5) to facilitate illustrating the relationship.
- 19

20

Cupplomental Table A		f disaaca st	atas bu sasia	domographia	abaractoristics
Supplemental Table A	. Summary O	n disease st	ales by socio	uemographic	characteristics.

		age*			IMD			Ger	nder		ł	Ethnicity		
Disease state	Counts	Median (IQR)	1st Quintile (Least deprived)	2nd Quintile	3rd Quintile	4th Quintile	5th Quintile	Male	Female	White	Asian	Black	Mixed	Others
CV	207102	68.4 [58.7, 77.2]	45889 (22.2%)	44310 (21.4%)	41403 (20%)	38687 (18.7%)	36813 (17.8%)	128239 (61.9%)	78863 (38.1%)	189530 (91.5%)	10563 (5.1%)	4781 (2.3%)	1194 (0.6%)	1034 (0.5%)
T2	269791	58.4 [48.7, 68.3]	44150 (16.4%)	47236 (17.5%)	51680 (19.2%)	62833 (23.3%)	63892 (23.7%)	158576 (58.8%)	111215 (41.2%)	196363 (72.8%)	44772 (16.6%)	21457 (8%)	4157 (1.5%)	3042 (1.1%)
СК	211219	74.3 [65.9, 81.3]	47907 (22.7%)	45631 (21.6%)	43041 (20.4%)	39080 (18.5%)	35560 (16.8%)	85293 (40.4%)	125926 (59.6%)	195653 (92.6%)	6810 (3.2%)	6808 (3.2%)	1333 (0.6%)	615 (0.3%)
MH	947978	37.3 [27.3, 49.8]	166803 (17.6%)	177562 (18.7%)	179870 (19%)	205494 (21.7%)	218249 (23%)	347552 (36.7%)	600426 (63.3%)	835101 (88.1%)	56324 (5.9%)	31355 (3.3%)	14755 (1.6%)	10443 (1.1%)
HF	35434	73.7 [62.9, 82.1]	7283 (20.6%)	7195 (20.3%)	7173 (20.2%)	6960 (19.6%)	6823 (19.3%)	20587 (58.1%)	14847 (41.9%)	32670 (92.2%)	1175 (3.3%)	1221 (3.4%)	221 (0.6%)	147 (0.4%)
CV,T2	74537	69.7 [61.3 <i>,</i> 77.3]	12870 (17.3%)	13932 (18.7%)	14573 (19.6%)	16050 (21.5%)	17112 (23%)	50521 (67.8%)	24016 (32.2%)	61380 (82.3%)	8869 (11.9%)	3029 (4.1%)	753 (1%)	506 (0.7%)

CV,CK	93647	79.1	20775	20080	19178	17327	16287	48526	45121	89170	2543	1381	359	194
		[72.7 <i>,</i> 84.6]	(22.2%)	(21.4%)	(20.5%)	(18.5%)	(17.4%)	(51.8%)	(48.2%)	(95.2%)	(2.7%)	(1.5%)	(0.4%)	(0.2%)
CV,MH	108335	65.8	19829	20968	21023	21996	24519	51951	56384	101998	3701	1558	584	494
		[56.1, 75.6]	(18.3%)	(19.4%)	(19.4%)	(20.3%)	(22.6%)	(48%)	(52%)	(94.2%)	(3.4%)	(1.4%)	(0.5%)	(0.5%)
CV,HF	29851	76	5940	6094	5962	5807	6048	20458	9393	27995	1107	521	116	112
		[67.2, 83]	(19.9%)	(20.4%)	(20%)	(19.5%)	(20.3%)	(68.5%)	(31.5%)	(93.8%)	(3.7%)	(1.7%)	(0.4%)	(0.4%)
T2,CK	73307	74.5	13278	14230	14731	15539	15529	34860	38447	61431	6039	4664	839	334
		[67.3 <i>,</i> 80.6]	(18.1%)	(19.4%)	(20.1%)	(21.2%)	(21.2%)	(47.6%)	(52.4%)	(83.8%)	(8.2%)	(6.4%)	(1.1%)	(0.5%)
Т2,МН	131774	56.9	18727	21816	24835	30130	36266	58203	73571	109628	13163	6137	1622	1224
		[48.2 <i>,</i> 66.2]	(14.2%)	(16.6%)	(18.8%)	(22.9%)	(27.5%)	(44.2%)	(55.8%)	(83.2%)	(10%)	(4.7%)	(1.2%)	(0.9%)
T2,HF	11159	73	1781	2002	2228	2519	2629	6943	4216	9331	946	698	133	51
		[63.9, 80.6]	(16%)	(17.9%)	(20%)	(22.6%)	(23.6%)	(62.2%)	(37.8%)	(83.6%)	(8.5%)	(6.3%)	(1.2%)	(0.5%)
СК,МН	82217	71.8	17186	17042	16515	15764	15710	20981	61236	78644	1616	1391	390	176
		[62.5, 80]	(20.9%)	(20.7%)	(20.1%)	(19.2%)	(19.1%)	(25.5%)	(74.5%)	(95.7%)	(2%)	(1.7%)	(0.5%)	(0.2%)
CK,HF	17020	81.8	3581	3600	3540	3282	3017	7944	9076	16066	409	423	80	42
		[74.9, 87]	(21%)	(21.2%)	(20.8%)	(19.3%)	(17.7%)	(46.7%)	(53.3%)	(94.4%)	(2.4%)	(2.5%)	(0.5%)	(0.2%)
MH,HF	14443	70.1	2530	2752	2849	2995	3317	6339	8104	13762	288	274	62	57
		[58.9 <i>,</i> 79.8]	(17.5%)	(19.1%)	(19.7%)	(20.7%)	(23%)	(43.9%)	(56.1%)	(95.3%)	(2%)	(1.9%)	(0.4%)	(0.4%)

CV,T2,CK	42772	77.4	7618	8224	8537	8897	9496	24674	18098	36887	3713	1603	385	184
		[71.4, 82.9]	(17.8%)	(19.2%)	(20%)	(20.8%)	(22.2%)	(57.7%)	(42.3%)	(86.2%)	(8.7%)	(3.7%)	(0.9%)	(0.4%)
CV,T2,MH	39093	66.9	5544	6609	7195	8828	10917	21282	17811	34012	3393	1102	326	260
		[58.6 <i>,</i> 75.1]	(14.2%)	(16.9%)	(18.4%)	(22.6%)	(27.9%)	(54.4%)	(45.6%)	(87%)	(8.7%)	(2.8%)	(0.8%)	(0.7%)
CV,T2,HF	13867	74.3	2135	2452	2700	3099	3481	10050	3817	11865	1339	489	106	68
		[66.8 <i>,</i> 80.8]	(15.4%)	(17.7%)	(19.5%)	(22.3%)	(25.1%)	(72.5%)	(27.5%)	(85.6%)	(9.7%)	(3.5%)	(0.8%)	(0.5%)
CV,CK,MH	38653	78.1	7634	7799	7689	7577	7954	13949	24704	37386	721	350	128	68
		[70.8 <i>,</i> 84.3]	(19.8%)	(20.2%)	(19.9%)	(19.6%)	(20.6%)	(36.1%)	(63.9%)	(96.7%)	(1.9%)	(0.9%)	(0.3%)	(0.2%)
CV,CK,HF	23222	81.5	4713	4788	4765	4438	4518	13777	9445	22115	631	335	90	51
		[75.6 <i>,</i> 86.6]	(20.3%)	(20.6%)	(20.5%)	(19.1%)	(19.5%)	(59.3%)	(40.7%)	(95.2%)	(2.7%)	(1.4%)	(0.4%)	(0.2%)
CV,MH,HF	13155	73.8	2166	2440	2587	2745	3217	7389	5766	12532	358	168	54	43
		[64.1 <i>,</i> 81.6]	(16.5%)	(18.5%)	(19.7%)	(20.9%)	(24.5%)	(56.2%)	(43.8%)	(95.3%)	(2.7%)	(1.3%)	(0.4%)	(0.3%)
T2,CK,MH	28205	72.4	4703	5280	5437	5951	6834	9266	18939	25225	1550	1083	224	123
		[64.6 <i>,</i> 79.5]	(16.7%)	(18.7%)	(19.3%)	(21.1%)	(24.2%)	(32.9%)	(67.1%)	(89.4%)	(5.5%)	(3.8%)	(0.8%)	(0.4%)
T2,CK,HF	8441	79.1	1373	1586	1741	1828	1913	4491	3950	7257	556	506	87	35
		[72, 84.7]	(16.3%)	(18.8%)	(20.6%)	(21.7%)	(22.7%)	(53.2%)	(46.8%)	(86%)	(6.6%)	(6%)	(1%)	(0.4%)
T2,MH,HF	4763	69.8	658	774	921	1062	1348	2346	2417	4249	258	194	46	16
		[60.9 <i>,</i> 78.2]	(13.8%)	(16.3%)	(19.3%)	(22.3%)	(28.3%)	(49.3%)	(50.7%)	(89.2%)	(5.4%)	(4.1%)	(1%)	(0.3%)

CK,MH,HF	6247	80.5	1189	1315	1279	1220	1244	1913	4334	6033	109	80	13	12
		[72.6 <i>,</i> 86.2]	(19%)	(21.1%)	(20.5%)	(19.5%)	(19.9%)	(30.6%)	(69.4%)	(96.6%)	(1.7%)	(1.3%)	(0.2%)	(0.2%)
CV,T2,CK,MH	18628	76	2959	3354	3577	4052	4686	8057	10571	16827	1137	465	144	55
		[69.3, 82.2]	(15.9%)	(18%)	(19.2%)	(21.8%)	(25.2%)	(43.3%)	(56.7%)	(90.3%)	(6.1%)	(2.5%)	(0.8%)	(0.3%)
CV,T2,CK,HF	14282	78.8	2295	2585	2877	3024	3501	9110	5172	12380	1236	499	109	58
		[72.6, 84.2]	(16.1%)	(18.1%)	(20.1%)	(21.2%)	(24.5%)	(63.8%)	(36.2%)	(86.7%)	(8.7%)	(3.5%)	(0.8%)	(0.4%)
CV,T2,MH,HF	6494	71.9	851	1045	1238	1491	1869	3952	2542	5817	462	143	43	29
		[63.9 <i>,</i> 79.1]	(13.1%)	(16.1%)	(19.1%)	(23%)	(28.8%)	(60.9%)	(39.1%)	(89.6%)	(7.1%)	(2.2%)	(0.7%)	(0.4%)
CV,CK,MH,HF	9291	80.8	1627	1795	1873	1881	2115	4162	5129	8977	189	79	28	18
		[74.2 <i>,</i> 86.2]	(17.5%)	(19.3%)	(20.2%)	(20.2%)	(22.8%)	(44.8%)	(55.2%)	(96.6%)	(2%)	(0.9%)	(0.3%)	(0.2%)
T2,CK,MH,HF	3244	77.2	489	589	630	712	824	1224	2020	2918	162	117	30	17
		[69.8, 83.5]	(15.1%)	(18.2%)	(19.4%)	(21.9%)	(25.4%)	(37.7%)	(62.3%)	(90%)	(5%)	(3.6%)	(0.9%)	(0.5%)
All diseases	6162	78	860	1075	1196	1381	1650	3087	3075	5548	387	156	51	20
		[71 <i>,</i> 83.6]	(14%)	(17.4%)	(19.4%)	(22.4%)	(26.8%)	(50.1%)	(49.9%)	(90%)	(6.3%)	(2.5%)	(0.8%)	(0.3%)

* Age represents age at entry into the disease state.

Abbreviations: CV: cardiovascular disease; T2: type-2 diabetes; CK: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Supplemental Table B. Summary of disease transitions.

Previous	Comorbidity	Incidence Rate of CVD	Number of Events
4 conditions	T2D,CKD,MH,HF	0.059	521
3 conditions	CKD,MH,HF	0.052	960
	T2D,MH,HF	0.061	741
	T2D,CKD,HF	0.058	1416
	T2D,CKD,MH	0.025	3370
2 conditions	MH,HF	0.06	2313
	CKD,HF	0.056	2869
	CKD,MH	0.02	8343
	T2D,HF	0.063	1788
	T2D,MH	0.014	8677
	T2D,CKD	0.023	8525
1 condition	HF	0.063	6047
	MH	0.004	18165
	CKD	0.02	23075
	T2D	0.012	15838
0 condition	NONE	0.00046	207,102

Summary of CVD diagnosis grouped by comorbidity

Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Summary of T2D diagnosis grouped by comorbidity

Previous	Comorbidity	Incidence Rate of T2D	Number of Events
4 conditions	CVD,CKD,MH,HF	0.023	720
3 conditions	CKD,MH,HF	0.02	375
	CVD,MH,HF	0.025	1101
	CVD,CKD,HF	0.022	1790
	CVD,CKD,MH	0.017	3111

MH,HF	0.023	871
CKD,HF	0.02	1012
CKD,MH	0.013	5706
CVD,HF	0.024	2362
CVD,MH	0.019	9036
CVD,CKD	0.016	7512
HF	0.021	2012
МН	0.0055	25540
CKD	0.013	15174
CVD	0.017	16224
NONE	0.0006	269,791
	MH,HF CKD,HF CKD,MH CVD,HF CVD,CKD HF MH CKD CVD CVD	MH,HF 0.023 CKD,HF 0.02 CKD,MH 0.013 CVD,HF 0.024 CVD,MH 0.019 CVD,CKD 0.016 HF 0.021 MH 0.021 CKD 0.016 HF 0.017 CKD 0.013 CVD,CKD 0.016

Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Previous	Comorbidity	Incidence Rate of CKD	Number of Events
4 conditions	CVD,T2D,MH,H F	0.071	1449
3 conditions	T2D,MH,HF	0.066	812
	CVD,MH,HF	0.054	2332
	CVD,T2D,HF	0.087	3703
	CVD,T2D,MH	0.03	5101
2 conditions	MH,HF	0.048	1844
	T2D,HF	0.081	2306
	T2D,MH	0.014	8813
	CVD,HF	0.062	6117
	CVD,MH	0.021	10103
	CVD,T2D	0.034	11028
1 condition	HF	0.056	5408
	МН	0.0029	13347

Summary of CKD diagnosis grouped by comorbidity

	T2D	0.014	19008
	CVD	0.023	21873
0 condition	NONE	0.00047	211,219

Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Summary of MH diagnosis grouped by comorbidity

Previous	Comorbidity	Incidence Rate of MH	Number of Events		
4 conditions	CVD,T2D,CKD,H F	0.015	702		
3 conditions	T2D,CKD,HF	0.013	316		
	CVD,CKD,HF	0.014	1197		
	CVD,T2D,HF	0.016	674		
	CVD,T2D,CKD	0.013	2488		
2 conditions	CKD,HF	0.012	635		
	T2D,HF	0.016	466		
	T2D.CKD	0.011	4093		
	CVD,HF	0.016	1526		
	CVD,CKD	0.013	5780		
	CVD,T2D	0.015	4943		
1 condition	HF	0.015	1425		
	CKD	0.011	12476		
	T2D	0.014	18600		
	CVD	0.016	15087		
0 condition	NONE	0.002	947,978		

Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Summary of HF diagnosis grouped by comorbidity

Previous	s Comorbidity	Incidence Rate of HF	Number of Events
4 conditions	CVD,T2D,CKD,M H	0.024	1924
3 conditions	T2D,CKD,MH	0.01	1321
	CVD,CKD,MH	0.017	3054
	CVD,T2D,MH	0.012	2089
	CVD,T2D,CKD	0.024	4664
2 conditions	CKD,MH	0.0062	2644
	T2D,MH	0.0031	1928
	T2D,CKD	0.0098	3631
	CVD,MH	0.0088	4242
	CVD,CKD	0.018	8085
	CVD,T2D	0.013	4304
1 condition	MH	0.00071	3310
	CKD	0.0066	7707
	T2D	0.0027	3660
	CVD	0.0095	8868
0 condition	NONE	0.000079	35434

Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Supplemental Figure B. Plots of the estimated cumulative hazard of the Cox-Snell residuals.

Note: The red line is a reference line with an intercept of zero and a slope of one. Abbreviations: CV: cardiovascular disease; T2: type-2 diabetes; CK: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Supplemental Figure C. Estimated association between each sociodemographic characteristic and the rate of CVD or MH diagnosis based on their respective narrower definitions

Figure C.1. Estimated association between each sociodemographic characteristic and the rate of CVD diagnosis (defined based on stroke/TIA only). Graphical settings are the same as in Figures 2-5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; TIA: transient ischaemic attack.

Figure C.2. Estimated association between each sociodemographic characteristic and the rate of CVD diagnosis (defined based on IHD only). Graphical settings are the same as in Figures 2-5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; IHD: ischaemic heart disease.

Figure C.3. Estimated association between each sociodemographic characteristic and the rate of MH diagnosis (defined based on anxiety only). Graphical settings are the same as in Figures 2-5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure C.4. Estimated association between each sociodemographic characteristic and the rate of MH diagnosis (defined based on depression only). Graphical settings are the same as in Figures 2-5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Supplemental Figure D. Results of the multistate analysis obtained with COPD replacing HF, focusing on the associations between each sociodemographic characteristic and the rate of CVD, T2D, CKD, or MH diagnosis.

Figure D.1. Estimated association between ethnicity (groups) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 2 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Figure D.2. Estimated association between (IMD quintiles 2-5) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 3 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Figure D.3. Estimated association between gender (male) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 4 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Figure D.4. Estimated association between age at entry to the current state (per 10 years) and the rate of next disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Supplemental Figure E. Results of the multistate analysis with COPD included as the sixth condition in addition to CVD, T2D, CKD, HF and MH, focusing on the same transition types as in Figures 2-5.

Figure E.1. Estimated association between ethnicity (groups) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 2 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Figure E.2. Estimated association between (IMD quintiles 2-5) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 3 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Figure E.3. Estimated association between gender (male) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 4 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Figure E.4. Estimated association between age at entry to the current state (per 10 years) and the rate of next disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions; COPD: chronic obstructive pulmonary disease.

Supplemental Figure F. Estimated association between deprivation (IMD deciles) and the rate of disease transition by number of existing conditions and comorbidity status. Panels from left to right show HRs for 2nd (left) – 10th (right) IMD deciles. The 1st IMD decile (the least deprived group) is treated as the reference category. For each transition and each category, the estimated HR is shown by an orange dot, with the corresponding 95% confidence interval represented by a black band.

Supplemental Figure G. Results of the multistate analysis obtained based on the expanded cohort including patients with missing ethnicity information.

Figure G.1. Estimated association between ethnicity (groups) and the rate of disease transition by number of existing conditions and comorbidity status. Patients with missing ethnicity were assigned to the group "Missing". Graphical settings are the same as in Figure 2 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure G.2. Estimated association between (IMD quintiles 2-5) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 3 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure G.3. Estimated association between gender (male) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 4 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure G.4. Estimated association between age at entry to the current state (per 10 years) and the rate of next disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions. Supplemental Figure H. Results of the multistate analysis with transitions specified via semi-parametric Cox models.

Figure H.1. Estimated association between ethnicity (groups) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 2 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure H.2. Estimated association between (IMD quintiles 2-5) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 3 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure H.3. Estimated association between gender (male) and the rate of disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 4 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

Figure H.4. Estimated association between age at entry to the current state (per 10 years) and the rate of next disease transition by number of existing conditions and comorbidity status. Graphical settings are the same as in Figure 5 of the main paper. Abbreviations: CVD: cardiovascular disease; T2D: type-2 diabetes; CKD: chronic kidney disease; HF: heart failure; MH: mental health conditions.

References

- 1. Cook RJ, Lawless JF. Multistate models for the analysis of life history data. [cited 22 Oct 2022]. doi:10.1201/9781315119731/multistate-models-analysis-life-history-data-richard-cook-jerald-lawless
- 2. Ieva F, Jackson CH, Sharples LD. Multi-state modelling of repeated hospitalisation and death in patients with heart failure: The use of large administrative databases in clinical epidemiology. Stat Methods Med Res. 2017;26: 1350–1372.
- 3. Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. 2002;21: 2175–2197.
- 4. Collett D. Modelling Survival Data in Medical Research. CRC Press; 2015.
- 5. Cox DR, Snell EJ. A general definition of residuals. J R Stat Soc. 1968;30: 248–265.