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Dilated cardiomyopathy (DCM) is a clinical disorder characterised by reduced 
contractility of the heart muscle that is not explained by coronary artery disease or 
abnormal haemodynamic loading. Although Mendelian disease is well described, 
clinical testing yields a genetic cause in a minority of patients. The role of complex 
inheritance is emerging, however the common genetic architecture is relatively 
unexplored. To improve our understanding of the genetic basis of DCM, we perform a 
genome-wide association study (GWAS) meta-analysis comprising 14,255 DCM cases 
and 1,199,156 controls, and a multi-trait GWAS incorporating correlated cardiac 
magnetic resonance imaging traits of 36,203 participants. We identify 80 genetic 
susceptibility loci and prioritize 61 putative effector genes for DCM by synthesizing 
evidence from 8 gene prioritization strategies. Rare variant association testing 
identifies genes associated with DCM, including MAP3K7, NEDD4L, and SSPN. 
Through integration with single-nuclei transcriptomics from 52 end-stage DCM 
patients and 18 controls, we identify cellular states, biological pathways, and 
intercellular communications driving DCM pathogenesis. Finally, we demonstrate that 
a polygenic score predicts DCM in the general population and modulates the 
penetrance of rare pathogenic and likely pathogenic variants in DCM-causing 
genes. Our findings may inform the design of novel clinical genetic testing strategies 
incorporating polygenic background and the genes and pathways identified may 
inform the development of targeted therapeutics.  
 
Dilated cardiomyopathy (DCM) describes a spectrum of heart muscle diseases that are 
characterized by ventricular dilatation and/or impaired myocardial contractility in the absence 
of coronary artery disease or abnormal loading conditions1,2. DCM affects ~1/250 individuals 
and is one of the primary aetiologies of heart failure and the leading cause of cardiac 
transplantation3. Pathogenic mutations in relevant genes can cause DCM via monogenic 
disease mechanisms, however, recent evidence suggests individuals’ polygenic background 
can modify the risk of developing DCM4. Characterization of the genetic architecture 
underlying DCM provides opportunities for improved clinical genetic testing and the 
discovery of pathways and genes to inform therapeutic development and improve patient 
outcomes.  
 
We performed a meta-analysis of case-control DCM GWAS comprising 14,255 cases and 
1,199,156 controls from 16 studies participating in the Heart Failure Molecular Epidemiology 
for Therapeutic Targets (HERMES) Consortium5 (GWASDCM; Figure 1, Tables S1-2, 
Supplementary Methods). Of the 16 studies, 6 ascertained cases using strict criteria which 
require cardiac imaging, specific ICD diagnostic codes, and/or a clinical diagnosis of DCM 
(DCMStrict: 6,001 cases and 449,382 controls), while 10 ascertained cases based on left 
ventricular systolic dysfunction (LVSD) in the absence of secondary causes (DCMBroad: 9,298 
cases and 1,157,145 controls). Of 9,656,392 common variants (minor allele frequency 
[MAF]>0.01) included in the meta-analysis, we identified 63 conditionally independent 
(sentinel) variants at 62 genomic loci passing a false discovery rate (FDR) <1%, including 27 
sentinel variants at 26 loci passing genome-wide significance (P<5x10-8) (Figure 2, Figure 
S1, Table S3). 
 
To assess differences in genetic association signals that may arise from ascertainment of 
DCM cases, we performed a GWAS meta-analysis of the 6 studies that used strict case 
definitions (GWASDCM-Strict) (Figures S1 and S2). In this subset, all lead variants within 62 
loci identified in GWASDCM showed a concordant direction of effect, including 10 loci with one 
or more lead variants passing P<5x10-8 (Table S3). Most sentinel variants showed a larger 
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effect in GWASDCM-Strict (Figure S3 and S4). Using linkage-disequilibrium adjusted kinships 
(LDAK) with summary statistics from the GWAS meta-analysis6, we estimated the heritability 

explained by common SNPs (h2
SNP) on the liability scale as 20% (2.1% SD) for GWASDCM-

Strict and 11% (1% SD) for GWASDCM. Using linkage disequilibrium score regression (LDSC), 
we estimated the heritability explained by common genetic variants (hg

2) on the liability scale 
as 23% for GWASDCM-Strict and for 11% for GWASDCM. We found a near complete genetic 
correlation between GWASDCM and GWASDCM-Strict (rg>0.99).  
 
To explore shared genetic etiology with quantitative left ventricular (LV) traits, we estimated 
the pairwise genetic correlation (rg) of DCM with ten cardiac magnetic resonance imaging-
derived traits from 36,203 participants in the UK Biobank (UKB) using bivariate LD-score 
regression7,8; LV end-systolic volume (LVESV) (rg 0.73), circumferential strain (rg 0.71) and 
ejection fraction (LVEF) (rg -0.70) were highly correlated with DCM (Table S4). Based on 
these observations we included these traits in a DCM-anchored multi-trait analysis of GWAS 
(GWASMTAG), enabling joint analysis to increase genome-wide statistical power9. Through 
GWASMTAG, 58 sentinel variants at 54 loci were identified at P<5x10-8, including an additional 
18 loci that were not identified in GWASDCM at FDR <1%. Overall across both GWASDCM and 
GWASMTAG , there were a total of 80 genomic risk loci, of which 66 are novel associations 
with DCM (previously identified loci reported in Supplementary Methods). Regional 
association plots for all 80 risk loci are available in the Supplementary Material. Among loci 
from GWASDCM, 25 FDR-significant loci were not significant in GWASMTAG, although all 
uniquely significant loci (GWASDCM and GWASMTAG) shared directional concordance 
(Figures S3-S5).  
 
Using functionally-informed fine-mapping, we identified 100 credible sets of likely causal 
variants at 63 of 80 loci. The credible sets consist of 1,392 variants (60.6% intronic, 25.4% 
intergenic and 4.8% exonic), including 83 variants with a posterior inclusion probability (PIP) 
>0.5 identified at 43 loci (Figure S6, Table S5).  Several fine-mapped coding variants were 
identified within known DCM genes (FLNC, BAG3, and TTN) and genes with plausible 
modifying effects on cardiac function (NEXN and MYBPC3), including deleterious missense 
variants (CADD Phred score>15) in TTN, BAG3, and MYBPC3. 
 
Next, we prioritized effector genes for DCM by evaluating functional evidence of 1,970 
protein-coding genes situated within or overlapping identified genomic risk loci (Figure 3A, 
Table S6). First, using a combination of nearest gene, locus-based (variant-to-gene [V2G]), 
and similarity-based (polygenic priority score [PoPS]) methods we identified 380 candidate 
genes for further prioritization (median 5 per locus [IQR 4 to 6]). Second, using evidence 
from 5 additional methods (coding variant, co-localization with expression quantitative trait 
loci [eQTL], transcriptome-wide association study [TWAS], activity-by-contact [ABC]-model, 
and established Mendelian cardiomyopathy or muscle-disease-causing genes) we prioritized 
a single high-confidence gene at 61 of 80 loci (Figure 3B, Figure S7, Table S7). The 
highest prioritization scores were for MYPN (prioritized by 7 out of the maximum of 8 
predictors), followed by HSPB8 and ALPK3 (6/8), and ACTN2, SPATS2L and BAG3 (5/8). 
Highlighting the robustness of this framework, all ClinGen cardiomyopathy-causing genes 
with definitive evidence of being Mendelian causes of cardiomyopathy except LMNA, 
together with several genes with limited evidence for cardiomyopathy (LDB3, MYPN, 
PRDM16, OBSCN), were prioritized at their respective loci. Genes that caused Mendelian 
forms of HCM (MYBPC3, ALPK3, FHOD3) were also identified at genomic risk loci for DCM; 
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a finding consistent with prior evidence that these disorders represent opposing extremes of 
a continuum of ventricular structure and systolic function8,10. 
 
Pathway analysis of prioritized genes identified enrichment of 72 biological pathways, 
including sarcomeric and cytoskeletal function, cellular adhesion and junction organization, 
aggrephagy, Wnt and TGF-β signaling (Figure 3B and 3C, Table S8). Among the novel 
genes identified in these analyses were additional genes with contractile and cytoskeletal 
functions, including MAPT11 and MYL612. The important role of cell-to-cell adhesion and cell-
to-matrix interaction in DCM pathogenesis was highlighted by many effector genes acting at 
these interfaces. STRN encodes the desmosomal protein striatin, the canine ortholog of 
which has been implicated in dilated and arrhythmic cardiomyopathy13. SSPN encodes 
sarcospan, a key component of the dystrophin glycoprotein complex (DGC) that has been 
linked to severe skeletal and cardiac muscle disorders. Other effector genes acting at the 
cell membrane identified include MTSS114, PDLIM515,16, THBS1, and TMEM1817.  

Cell signaling components were prominent among the prioritized genes, including 
members of the TGF-β (BAMBI, INHBB, PITX2, and THBS1) and Wnt signaling pathways 
(CAMK2D, MAP3K7, NEDD4L, NFATC1, PRKCA, and RNF207). INHBB encodes a 
secreted factor and THBS1 a transmembrane glycoprotein, both of which activate the TGF-β 
receptor, while BAMBI encodes a TGF-β-like pseudoreceptor that acts as a negative 
regulator of TGF-β signaling18. TGF-β signaling has been shown to be important in the 
development of fibrosis in cardiomyopathy models19. Finally, expanding upon the 
established role of BAG3 and the unfolded protein response and endoplasmic reticular 
stress on DCM pathogenesis, several genes encoding heat-shock proteins (HSPA4, HSPB7, 
and HSPB8) were identified. In addition, FBXO32 encodes a muscle-specific ubiquitin ligase 
involved in protein degradation that has been postulated to be a rare cause of DCM20. 
 
For genomic loci where a single high-confidence genes could not be identified, we manually 
curated the locus by integrating information from enriched biological pathways. The 
identified candidate genes map to cytoskeleton function (ROCK221 at locus 13), cell 
adhesion (ITGA5 at locus 52), MAPK signaling (EPHB1 at locus 23), and the unfolded 
protein response (DNAJC18 at locus 31, CRYAB at locus 50). Other notable genes included 
the taurine transporter SLC6A6 (locus 20) with existing evidence of taurine-deficiency 
causing feline DCM22, the cardiac-expressed K+ channel KCNIP2 that has been implicated 
in Brugada syndrome and conduction abnormalities23, RRAS2 where gain of function 
variants are a cause of Noonan syndrome and accompanying hypertrophic 
cardiomyopathy24,25, and several genes implicated in myopathy (CHCHD10 at locus 80, and 
DMPK at locus 76. 
 
Within the identified DCM loci were 7 Mendelian cardiomyopathy genes catalogued in 
ClinGen with definitive evidence (DCM: TTN, FLNC, LMNA, BAG3, HCM: MYBPC3, ALPK3, 
FHOD3) and 7 moderate or limited-evidence genes (DCM: PRDM16, LDB3; DCM or HCM: 
OBSCN, VCL, NEXN, MYPN; intrinsic cardiomyopathy: ACTN2). Emphasizing the role of 
gene dosage as a likely mechanism of action at GWAS genes26 and continuum of disease 
risk, 4 of the 6 DCM genes established to act through mechanisms that include reduced 
gene product27 were identified through GWAS (TTN, FLNC, LMNA, and BAG3), with a 10-
fold enrichment of Mendelian cardiomyopathy genes within GWAS loci (OR=10.0, P=1.1x10-

6). 
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We next performed rare variant (MAF<0.001) burden testing of (1) all ClinGen definitive and 
moderate evidence DCM-causing genes28 (predicted truncating variants [PTV] or missense 
variants) to characterize the overall genetic architecture of DCM, and (2) candidate genes 
identified at GWAS locus through functional genomics analysis (PTVs only) to identify novel 
Mendelian causes of DCM and cardiomyopathy. In 453,455 participants with whole exome 
sequencing (WES) in UKB, a population-based cohort recruiting middle-aged and older 
individuals with no disease focus, the combined risk effect of rare variants in ClinGen 
definitive or moderate evidence DCM genes were orders of magnitude higher than GWAS 
sentinel variants mapping to the same genes (Figure 4A, Table S9).  
 
To identify genes with novel Mendelian causes of DCM and cardiomyopathy more generally, 
we evaluated the effect of deleterious rare variants in the 61 prioritized genes with binary 
(cardiomyopathy and heart failure phenotypes) and quantitative CMR traits. Analysis was 
performed using whole genome data in 78,142 individuals participants of Genomics England 
(GeL), a rare disease and cancer cohort that recruited probands and their relatives from 
clinical centers, and with WES in the 453,455 participants (including a subset of 36,104 with 
CMR) in the UKB. PTVs in three genes which currently lack sufficient evidence to be 
definitive causes of Mendelian disease were nominally found to be associated with DCM 
(MYPN: OR 15.0, P 0.03; PRDM16: OR 40.3, P 0.008) in GeL, and with HCM (NEXN: OR 
24.1, P 0.01) in UKB. 

Given our finding of widespread allelic series for DCM genes, we explored genomic 
loci that did not harbor genes with assertion for autosomal DCM. Rare PTVs in 3 prioritized 
genes that are not established causes of cardiomyopathy were found to be associated with 
binary diseases outcomes (MAP3K7 and NEDD4L with DCM) in at least one cohort (Figure 
4B, Table S10 and S11), and with quantitative traits (NEDD4L, MAP3K7, and SSPN) in UKB 
(Figure 4B, Table S12). PTVs in MAP3K7 were associated with DCM in GeL (OR 24.2, Padj 
0.02), and increased LV volumes (LV end-diastolic volume [LVEDV] +54ml, Padj 0.01, 
LVESV +38ml, Padj 4.4x10-4) in UKB. The importance of MAP3K7 in DCM pathogenesis is 
highlighted by prioritization of additional pathway genes, including RNF20729, a regulator of 
the MAP3K7 activator TAB1. PTVs in the membrane receptor regulator NEDD4L were 
associated with DCM in UKB (OR 10.4, Padj 0.01), and HF in GeL (HF OR 13.0, Punadj 0.01), 
and quantitative traits (PTV: LVEDV +29.7, Padj 0.02; LVESV +19.8, Padj 0.005). PTVs in 
SSPN were associated with significant changes in quantitative LV traits (LVEF -5.9%, Padj 
0.004 and LVESV +13.0ml, Padj 0.02). Within a local DCM cohort, 3 of 337 cases (0.9%) 
carried PTV in SSPN compared with 80 in 352,564 (0.02%) in UKB controls (P<1x10-5). 
SSPN is located within DGC of myocytes and its activity protects against cardiac contractility 
impairment resulting from dystrophin deficiency in Duchenne muscular dystrophy, while loss 
of function destabilizes muscle adhesion and force generation30,31. Exploratory analysis of 
ultra-rare variants (MAF<1x10-5) in UKB highlighted additional associations with DCM 
(SLC38A6 and SSPN) (Table S13). 
 
To identify the organs, tissues and cell types mediating genetic risk of DCM, we performed 
bulk tissue-level heritability enrichment analysis. Cardiac and other muscle-related tissues 
(including vascular and gastrointestinal smooth muscle) were the most highly enriched 
(Figure S8, Table S14). Cell type heritability was assessed using the sc-linker framework32, 
by integrating single nuclei RNA-sequencing33 of LV tissue from 52 DCM cases with end-
stage heart failure undergoing cardiac transplantation, and 18 controls, and genome-wide 
enhancer-promoter contact in the LV, with GWAS heritability. We highlight biologically 
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important cell types and state-disease relationships by identifying enrichments in basal gene 
expression profiles within cardiomyocytes, and DCM-specific differentially expressed genes 
(DEG) in cardiomyocytes, fibroblasts, and mural cells (Figure S8, Tables S15 and S16). 
When evaluating gene expression in control hearts, most prioritized genes had highest 
levels of expression in cardiomyocytes (Figure S8). Several of the prioritized DCM genes 
(notably including, SSPN, MAP3K7, and NEDD4L) were differentially expressed in 
cardiomyocytes in DCM (Figure S8). Supporting the important role of non-cardiomyocytes in 
DCM pathogenesis, fibroblasts and mural cells (primarily pericytes) consistently had the 
highest proportion of DEGs in enriched biological pathways (Figure S8), with most 
prioritized genes being DEGs in non-cardiomyocytes. 

To explore non-cardiomyocyte and cardiomyocyte cell-non autonomous mechanisms 
and the role of prioritized genes encoding for ligands or receptors, we investigated 
intercellular signaling pathways using CellChat34, a method that uses cellular 
transcriptomics, a priori knowledge of ligand-receptor-cofactor interactions, and law of mass 
action to quantify communication networks. In DCM, there was an overall increase in global 
signaling, with notable reductions in cardiomyocyte-cardiomyocyte interaction strength 
(Figure S9). There was an increase in prioritized gene enriched TGF-β signaling pathway, 
and in pathways of specific prioritized genes (COL4A1 and EPHB1 interactions increased, 
and THBS1 reduced) (Figure S9). While there were modest increases in overall collagen 
signaling in DCM, COL4A1 expression was increased in fibroblasts in DCM (Figure S8) with 
increased signaling to cardiomyocytes, fibroblasts and mural cells (Figure S8). We 
demonstrate that EPHB1 expression is highest in cardiomyocytes and its major ligand 
EFNB2 is produced in endothelial cells, with an increase in ligand and corresponding 
decrease in receptor production in DCM (Figure S8). Similar findings were seen in a single 
nuclei study of pressure overloaded human hearts35. BMPR1A was predominantly 
expressed in cardiomyocytes, with increased expression in mural cells and fibroblasts 
leading to increased BMP6-BMPR1A signaling from endocardial cells to cardiomyocyte and 
fibroblast (Figure S8) as has previously been described33.  
 
Given the importance of common genetic variation on DCM heritability, we generated a 
polygenic score (PGSDCM) with 4,309,853 SNP predictors and evaluated it in 347,585 
unrelated participants of White British ancestry in UKB (Figure 5A). PGS was associated 
with DCM (OR per PGS SD 1.76 [95% CI 1.64 to 1.90], P <2x10-16; AUROC 0.71) in the 
general population, with 4-fold increased risk in the top centile compared with the median 
(OR 3.83, 95% CI 2.52 to 5.79, P 2.1x10-10) and 7-fold compared with the bottom centile (OR 
7.04, 95% CI 2.42 to 20.52, P 3.5x10-4) (Figures 5B and 5C). In 25,443 individuals with 
measured CMR traits, PGSDCM was associated with a cardiac traits consistent with DCM 
(Table S17): reduced contractility (LVEF: per PGS SD –0.7%, Padj 8.1x10-78; top vs. bottom 
centile 57.6 vs. 60.8, Padj 1.7x10-6) and increased volumes (LVEDV: +2.1ml, Padj 2.5x10-45; 
top vs. bottom centile: 158.1 vs. 143.4, P 3.1x10-6; LVESV: +1.9, P 1.6x10-93; top vs. bottom 
centile: 67.7 vs. 56.6, P 1.4x10-9). Given that penetrance and expressivity of DCM in carriers 
of rare pathogenic variants can be highly variable36, we next evaluated whether common 
variants affect penetrance of rare variants as has been demonstrated for hypertrophic 
cardiomyopathy10. In 1,546 carriers of pathogenic variants in DCM-causing genes in UKB 
(prevalence 0.5%), PGSDCM stratified DCM prevalence (top quintile: 7.3%, bottom quintile: 
1.7%, P 0.005), including in 1,166 carriers of rare TTN PTVs (Figure 5D). Finally, phenome-
wide association study of PGSDCM was used to explore genetic relationships between 
common variant risk and other traits, identifying significant associations with several heart 
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failure and related cardiovascular phenotypes (electrophysiologic and valvular), and 
established risk factors for impaired cardiac function (hypertension and obesity) (Figure 5E). 
We also identified significant associations with cardiac ischemic phenotypes highlighting the 
shared genetic overlap between primary and ischemic heart failure, and inverse associations 
with hypertrophic cardiomyopathy that have recently been described8. 
 
In conclusion, we have performed the largest DCM GWAS to date, improving discovery 
power using MTAG with genetically correlated CMR traits, and identified 80 significant loci of 
which 66 have not been previously linked to DCM. Through a systematic locus annotation 
and gene prioritization approach, we identify effector genes at 61 loci, highlighting key 
biological pathways in disease pathogenesis. We demonstrate using single nuclei 
transcriptomics from explanted end-stage DCM hearts the importance of these biological 
pathways and the role of non-cardiomyocyte cell types and intercellular communication, 
including Ephrin-B and BMP6 signaling. Rare variant association testing identifies potential 
novel causes of DCM, including MAP3K7, NEDD4L, and SSPN. Finally, we generate a PGS 
that associates with DCM, and modulates penetrance of rare variants. These findings 
provide mechanistic insights into the genetic causes underlying DCM pathogenesis and may 
inform therapeutic strategies for DCM patients and at-risk individuals. 
 
Data and code availability 
Data from UK Biobank can be requested from the UK Biobank Access Management System. 
Data from 100,000 Genomes Project can be accessed following application to join the 
Genomics England Clinical Interpretation Partnership. GWAS summary statistics will be 
made available on the Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/) 
upon publication following peer-review. The PGS will be made available on the Polygenic 
Score Catalog (www.pgscatalog.org) following peer-review. The raw single nuclei gene 
expression dataset is available from CZI CELLxGENE (cellxgene.cziscience.com). The 
analyses reported in this article rely on previously published software, as detailed in the 
Methods. 
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Online Methods 
Phenotype and study populations 
Dilated cardiomyopathy (DCM) was defined in each participating study, using a harmonized, 
rule-based, multi-modal phenotyping algorithm as a guide. DCM was defined as left 
ventricular (LV) systolic dysfunction with or without LV dilatation in the absence of secondary 
causes of heart failure (coronary artery disease, valvular heart disease or congenital heart 
disease) (see Supplementary Methods for full definitions). Individuals with coronary artery 
disease, valvular heart disease or congenital heart disease were excluded from the control 
group. Imaging evidence or physician adjudication was preferred, but where unavailable, 
classifiers were defined as the presence of at least one relevant diagnosis or procedural 
code from the patient’s medical records.  
 
Discovery GWAS and multi-trait analysis of GWAS 
The current genome-wide association study (GWAS) meta-analysis included 14,255 cases 
and 1,199,156 controls of European ancestry from 16 studies in the HERMES Consortium 
(cohorts described in Supplementary Methods and Table S1). Genotyping for 15 of 16 
studies were performed locally in each participating study using high-density genotyping 
arrays imputed against reference whole-genome sequencing panels from the Haplotype 
Reference Consortium (HRC) (14 studies), 1000 Genomes Project (Garnier et al37), or 
population-specific reference panels (Estonian Biobank and deCODE) (Supplementary 
Methods). Genotyping for the Genomics England cohort was done using whole genome 
sequencing. Genetic association test was performed per study per phenotype, using a 
logistic regression model assuming additive genetic effects with adjustments for age, sex, 
genetic principal components (PC), and study-specific covariates. Full details of study-level 
GWAS methods available in Supplementary Methods. Descriptions of studies and 
participant characteristics are described in Table S1. Sensitivity analysis GWAS and meta-
analysis of strictly defined DCM (Supplementary Methods) was performed using the same 
workflow. To assess the effects of ascertainment of DCM using strict criteria, GWAS meta-
analysis was performed for the 6 studies that used strict criteria (Supplementary Table 1) 
and genetic correlation was assessed using bivariate linkage disequilibrium score regression 
with LDSC software38. 

GWAS meta-analysis was performed centrally using METAL39 with an inverse-
variance weighted fixed-effect model. To boost discovery power, we further conducted a 
multi-trait analysis of GWAS (MTAG), a method of jointly analyzing summary statistics from 
multiple overlapping GWAS of genetically correlated traits. GWAS in the UK Biobank of 10 
cardiac MRI-derived LV traits (ejection fraction [LVEF], end-systolic volume [LVESV], end-
diastolic volume [LVEDV], stroke volume, global circumferential, longitudinal and radial 
strains, mass, concentricity, and maximum wall thickness) from 36,083 unrelated 
participants of White British ancestry and without heart failure, cardiomyopathy, previous 
myocardial infarction, or structural heart disease7 were tested for genetic correlation with 
primary GWAS using ldsc40,41. MTAG of the primary GWAS was then performed with CMR 
traits with high genetic correlation (|rg| >0.7) using the mtag software9. 
 
SNP-based heritability estimation 
The proportion of variance in HF risk explained by common SNPs, i.e. SNP-based 
heritability (h2

SNP), was estimated from GWAS meta-analysis summary statistics using 
Linkage-Disequilibrium Adjusted Kinships (LDAK) SumHer software with the BLD-LDAK 
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heritability model6. The h2
SNP estimates were calculated on a liability scale, which assumes 

that a binary phenotype has an underlying continuous liability, and above a certain liability 
threshold an individual becomes affected42. To model the expected heritability tagged by 
each SNP, we used pre-computed tagging files derived from 2,000 individuals White British 
individuals, and used a correction for sample prevalence by calculating the effective sample 
size assuming an equal number of cases and controls43. The conversion to liability scale 
was calculated using a population prevalence of 0.004 for DCM-Strict (based on estimated 
prevalence of 1 in 250 individuals2,3) and 0.08 for DCM (assuming twice the prevalence of 
DCM-Strict).  
 
 
Locus identification 
To identify genetic susceptibility loci for DCM, we first identified conditionally independent 
genetic variants using a chromosome-wide stepwise conditional-joint analysis implemented 
in the Genome-wide Complex Trait Analysis (GCTA) software44 at a genome-wide 
significance threshold of P<5x10-8 in all GWAS, and additionally at FDR<1% estimated using 
qvalue) for DCMGWAS. To define a genomic locus, conditionally independent genetic variants 
across both DCMGWAS and MTAG that are located within 500kb of each other were 
aggregated, and an additional 500kb were added to flank the variants at the extremes within 
each set. A genomic locus was considered novel if all conditionally independent variants 
within the locus are located ≥250kb away and not in LD (R2) with any sentinel variant with a 
P <5x10-8 reported in previously published GWAS of DCM8,37. 
 
Functionally-informed fine-mapping of genomic loci 
To prioritize likely causal variants at each genomic locus, we performed functionally 
informed fine-mapping using PolyFun45 and SuSiE46. Using precomputed prior causal 
probabilities of 19 million imputed SNPs with a minor allele frequency (MAF)>0.001 based 
on meta-analysis of 15 traits in UK Biobank from PolyFun, we first estimate per-SNP 
heritability. These results were then passed to SuSiE to calculate per-SNP posterior 
inclusion probability (PIP) and to identify 95% credible sets of likely causal variants, 
assuming at most 5 causal variants per locus. To run fine-mapping, we used linkage 
disequilibrium (LD) reference panels from 10,000 randomly selected UK Biobank (UKB) 
European ancestry participants. The procedure was performed separately for locus identified 
from GWASDCM and GWASMTAG using the respective summary statistics. For each locus, 
variants within the identified 95% credible sets in either GWASDCM or GWASMTAG were 
aggregated, and annotated with nearest gene(s), genic functions, and Combined 
Annotation-Dependent Depletion (CADD) Phred score47 extracted from ANNOVAR48 and 
OpenTargets Genetics49. 
 
Prioritization of effector genes at DCM loci 
To systematically identify and prioritize effector genes at each locus, we followed a two-step 
approach. First, the nearest gene and the top 3 genes prioritized by either PoPS50 or V2G51 
were selected as candidate genes. Second, the totality of evidence including nearest gene, 
PoPS, V2G and 5 additional approaches (coding variant, co-localization with gene 
expression, TWAS, ABC-model, and established Mendelian cardiomyopathy- and muscle-
disease-causing genes) was summarized by identifying the number of individual approaches 
that identified each candidate gene as the most likely, assuming that it met each method’s 
minimum threshold for significance or relevance. Each method received equal weighting, 
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with a maximum score of 8, and the candidate gene with the highest score at each genomic 
locus was determined to be the prioritized gene. 
Transcriptome-wide association study 
We estimated the associations between overall gene expression across tissues and DCM 
through a multi-tissue transcriptome-wide association study (TWAS) using expression 
quantitative trait loci (eQTL) data across 49 human tissues from GTEx v8 and the GWASDCM 
summary statistics implemented in S-MulTiXcan with MASH-R model52. 
Colocalization with gene expression 
To test the hypothesis whether genetic associations with gene expression in a given tissue 
and with DCM is driven by the same causal variants, we performed a statistical 
colocalization analysis using R coloc package46 allowing for multiple causal variants. The 
colocalization analysis was performed for all genes overlapping the identified DCM genetic 
loci using summary-level eQTL data from GTEx v853 in tissue with a lowest TWAS P-value 
and the GWASDCM summary statistics.  
Polygenic priority score 
We computed the polygenic enrichment of gene features derived from cell-type specific 
gene expression, biological pathways, and protein-protein interactions for all protein-coding 
genes within the human genome using the Polygenic Priority Score (PoPS)50. A higher score 
implicates a higher probability of a gene being causal for the trait under study, given feature 
similarities to other predicted causal genes. 
Variants-to-Gene 
The variants-to-gene (V2G) model aggregates data from molecular phenotype quantitative 
trait loci experiments (eQTL, pQTL, and sQTL), chromatin interaction experiments, in silico 
functional predictions, and genomic distance (between the variant and a gene’s canonical 
transcriptional start site) to compute a variant-level score with a higher value reflecting a 
higher functional relevance on a given gene51. To map variant-level V2G score into gene-
level score for gene prioritization, we extracted the V2G score for all variants that are in LD 
(R2 > 0.8) with conditionally independent variants or within the fine-mapped variant set for a 
given locus, and took the maximum V2G for a given gene. 
Activity-by-Contact model 
The Activity-by-Contact (ABC) model uses experimental estimates of enhancer activity 
(ATAC-seq, DNase-seq or H3K27ac ChIP-seq) and enhancer-promoter contact frequency 
(HiC) to predict enhancer-gene interactions54. Precomputed ABC scores generated from 
experimental data of cardiac left ventricles in ENCODE55 were identified for the genomic 
coordinates of fine mapped and lead variants, with scores >0.02 indicating an important 
interaction. 
 
Rare variant gene-based association testing 
Gene-based association testing was performed in the UK Biobank and 100,000 Genomes 
Project for all genes located within genomic loci, using the genome-wide regression test 
implemented by REGENIE. A whole genome regression model was fitted to allow handling 
of polygenicity, relatedness, and ancestry, using directly genotype-arrayed variants passing 
QC (MAF>0.01, <10% missingness, Hardy-Weinberg equilibrium [HWE] test P>10-15) in 
UKB, or directly sequenced variants in 100,000 Genomes Project (GeL). Next, gene-based 
burden test was performed conditional upon the phenotype-specific predictors from the 
genome-wide regression model and adjusting for sex, age, age2 and first ten genetic PCs, 
with body surface area and systolic blood pressure included as additional covariates for 
quantitative traits. The outcomes tested were binary case-control status (DCM [strict and 
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broad definition], heart failure, and HCM) and in the UKB, related cardiac magnetic 
resonance imaging (CMR) quantitative traits (LVESV, LVEDV, LVEF, LVSV, and maximum 
LV wall thickness). Firth correction was applied to account for case-control imbalance. 
Burden tests collapse variants into a single variable that can be tested for association with a 
phenotype or trait, thereby reducing computational cost and test statistic inflation that is seen 
with other gene-based rare variant tests (for example, SKAT and SKAT-O). Individuals with 
missing phenotype data were dropped from analysis. For consistency across UKB and GeL, 
one rare variant mask of predicted truncating variants (start lost, stop gained, frameshift, 
splice acceptor or donor lost) with a MAF<1x10-3 was tested. To minimize the false positive 
rate resulting from genes with very low allele counts, a minimum allele count (MAC) 
threshold was applied which approximately considered the sample size: analysis in UKB 
required MAC≥20 for binary traits, and MAC≥3 for quantitative traits; and analysis in GeL 
required MAC≥3. P-values were adjusted for the total number of genes passing the MAC 
threshold that were tested. Exploratory results evaluating the effect of ultra rare (MAF<1x10-

5) variants on binary outcomes in UKB were also tested. 
 To characterize the overall genetic architecture of DCM, gene-based burden testing 
was also performed for 16 DCM genes with moderate or definitive evidence28 in UKB to 
generate risk estimates for carriers of rare variants with DCM and heart failure. Two masks 
were tested: PTV and missense variants, both with MAF<1x10-3, with nominally significant 
associations highlighted in for visualization. 
 
Pathway enrichment analysis of effector genes, differentially expressed genes, and 
intercellular communication in DCM single-nuclei transcriptomics 
Pathway gene ontology (GO) enrichment of effector genes and DEGs in DCM at cell type 
and state level, with identification of driver GO terms was performed using a two-stage 
algorithm implemented by g:Profiler56. For enrichment of DEGs, only highly expressed genes 
within a cell type or state were considered in the background. Driver GO terms were 
highlighted using a two-stage algorithm implemented by g:Profiler to identify pathways that 
were further examined in the DCM single nuclei dataset. DCM DEGs were required to have 
normalized log2 count >0.0125/nuclei and FDR<0.05. and differentially expressed genes 
(DEG) in DCM cell types. 

To highlight the importance of cardiomyocyte and non-cardiomyocyte cell types in 
DCM, and the role of candidate genes and effector gene enriched signaling pathways, we 
explored disease-specific intercellular communication. The single nuclei transcriptome of 
DCM and control samples was interrogated using the CellChat package for manually 
curated ligand-receptor interactions (CellChatDB)34. In brief, this method identifies over-
expressed genes within cell types and states, quantifies receptor-ligand communication 
probability between cells using the law of mass action, and infers statistically and biologically 
important cellular communications34. CellChat was run using default program settings, and 
analysed at the cell type level. Endocardial cells were separated out from other endothelial 
cells due to previously reported important biological effects on ligand-receptor signaling33. 
 
Tissue, cell type and cell state heritability enrichment 
Tissue-level heritability enrichment analysis was performed using pre-calculated LD scores 
of gene expression data from GTEx53 and chromatin data from Roadmap Epigenomics57 and 
ENCODE55 projects, using ldsc58. For cell type and state heritability enrichment, we used the 
sc-linker32 approach to link transcriptome wide gene programs from single nuclei dataset 
with GWAS summary statistics. Gene programs derived from snRNA-seq were used to 
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investigate heritability enrichment in cardiac cell types and states using the sc-linker 
framework32. This approach uses snRNA-seq data to generate gene programs that 
characterize individual cell types and states. These programs are then linked to genomic 
regions and the SNPs that regulate them by incorporating Roadmap Enhancer-Gene 
Linking57,59 and ABC models54,60. Finally, the disease informativeness of resulting SNP 
annotations is tested using stratified LD score regression (S-LDSC)61 conditional on broad 
sets of annotations from the baseline-LD model38,62. 
            Cell type and state-specific gene programs were generated from snRNA-seq data of 
ventricular tissue from 18 control subjects, with cell type and state annotations made as part 
of a larger study of ~880,000 nuclei (samples from 52 DCM and 18 control subjects)33. Cell 
states that may not represent true biological states (for example, technical doublets) were 
excluded from analysis. For cell type and state disease-specific programs, pseudobulked 
counts were used to compare expression levels in DCM and control LV samples within all 
annotated cell types and cell states, implemented using edgeR63. Significant differentially 
expressed genes (DEG) were defined as FDR <0.05 and absolute(log2 fold change) >0.5, 
requiring a minimum normalized log2 count >0.0125 in both control and DCM samples. 
 
Polygenic risk score generation and testing 
Polygenic score (PGS) was generated using a Bayesian framework that models ancestry-
specific LD using an external reference set and uses a continuous shrinkage prior, 
implemented using the PRS-CS package64. The phi constant was automatically selected by 
PRS-CS in an unsupervised approach (PRS-CS auto). Whole genome PGS scores for all 
included UKB individuals were calculated using the PLINK 1.9 --score function65. Individual 
SNP weighted scores were generated from GWAS that excluded the UKB cohort, and a 
subsequent MTAG, to avoid the substantial inflation that is seen when there is overlap of 
individuals in the GWAS and testing cohorts66. The base GWAS and MTAG summary 
statistics were filtered to exclude rare and uncommon variants (MAF <0.01), and ambiguous 
SNPs that were not resolvable by strand flipping. We calculated a PGS for unrelated (3rd 
degree or closer), White British participants in the UKB (application number 47602) using 
variants that passed genotyping QC (MAF>0.01, genotyping rate >0.99, HWE 1x10-6). 
Variants overlapping the base, target, and LD reference set (1000 Genomes Project Phase 
3 European ancestry) were included. PGS predictive performance was assessed by area 
under the receiver operating characteristic, and association with DCM and associated CMR 
traits (OR per PGS standard deviation, and comparing top quantiles with the median) in the 
UKB, and in carriers of rare variants predicted to cause DCM28 (see Supplementary 
Methods for full details on variant curation and genes tested). 
 
Phenome-wide association study 
The pleiotropic effect of genetic risk arising from common variants was tested by performing 
a phenome-wide association study (pheWAS) of PGS in the UKB. ICD-9 and ICD-10 codes 
from death records and hospital admission episodes were translated to Phecodes (Phecode 
Map 1.2)67. For binary phenotypes with at least 20 cases, PGS-phenotype association was 
tested using logistic regression adjusted for age, age2, sex and first ten genetic PCs as 
covariates. Significance threshold was adjusted for the total number of phenotypes tested 
(P<2.72x10-5), and data presented with Manhattan plots grouping by body system. PheWAS 
was performed using PheWAS68 in R version 4.0.3. 
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Figure 1: Study overview of European Ancestry GWAS of dilated cardiomyopathy 
spectrum (GWASDCM) performed in 14,256 cases and 1,185,671 controls from 16 
studies. Cases were defined as having LV systolic dysfunction with or without LV dilatation 
(DCMBroad), or LV systolic dysfunction and LV dilatation (DCMStrict) in the absence of coronary 
artery disease, significant valvular heart disease or congenital heart disease. Multi-trait 
analysis of GWAS (MTAG) was performed combining GWASDCM with GWAS of genetically-
correlated quantitative cardiac CMR traits (GWASMTAG). Genomic risk loci were identified 
and systematically annotated to prioritize candidate genes at each locus.  
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Figure 2: Manhattan plot of primary GWAS and MTAG identifying novel (red) and 
previously reported8,37 (orange) genomic loci associated with DCM. Loci reaching 
genome-wide (P<5x10-8, blue) in GWAS and MTAG, and FDR (alphaFDR0.01, light blue) in 
GWAS are highlighted. Loci are annotated with the nearest gene(s) of all conditionally 
independent variants within the locus and ordered in ascending genomic location.    
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Figure 3: Locus annotation and candidate gene scoring prioritize genes at risk loci 
and important biological pathways and processes in DCM pathogenesis. (A and B) 
Among all genes located within genomic risk loci (1,970 genes), candidate genes were 
selected based on proximity and being one of the top 3 genes predicted using V2G or PoPS 
(380 candidate genes). 61 genes were prioritized at 61 loci after scoring highest among the 
8 predictors. (B) Pathway enrichment analysis of prioritized genes highlighted pathways 
related to muscle structural constituents. (C) Schematic overview of pathways and 
processes highlighted in DCM pathogenesis. Manually curated from pathway enrichment 
analysis and published literature.  
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Figure 4: Rare variant analysis highlights the genomic architecture of dilated 
cardiomyopathy and identifies novel disease- and trait-associated genes. (A) Burden 
testing was performed for rare variants (MAF<0.001) in genes with moderate or definitive 
evidence of causing DCM28, collapsed into 2 variant classes: predicted truncating (PTV, 
red), and missense (yellow) variants. Individual sentinel common variants (MAF>0.01) in 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

DCM loci are highlighted in blue. Variant frequency represents MAF for individual sentinel 
variants, and the cumulative population frequency of rare variants in burden tested genes. 
Outcome for burden testing were DCM and heart failure, with all gene masks reaching 
nominal significance (P<0.05) presented. The grey highlighted region indicates smoothened 
regression lines of the upper and lower bounds for each effect estimate. (B) Burden analysis 
of rare PTVs (MAF<0.001) in 58 prioritized protein-coding genes in UKB (453,455 
participants with WES, and 36,104 with CMR) highlights known Mendelian disease-causing 
genes (TTN, BAG3, FHOD3, ALPK3 and MYBPC3) and 3 novel genes (NEDD4L, MAP3K7, 
and SSPN). Red line indicates statistical significant (P<8.6x10-4 [0.05/58 genes]) and orange 
line indicates nominal significance (P<0.05). Genes are ordered by mean P-value across all 
tested traits, from lowest to highest, with genes reaching nominal significance (P<0.05) for at 
least one trait highlighted in bold. Detailed results available in Tables S11-13. 
  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

Figure 5: DCM PGS is associated with DCM disease status in the UK Biobank, 
including in carriers of pathogenic or likely pathogenic variants in DCM-causing 
genes. (A) PGS distribution in 347,585 UKB participants with and without DCM highlighting 
higher PGS in those with DCM. (B) Odds ratio for DCM in quantile bins compared with 
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median (40-60%), demonstrating an increased risk of DCM in individuals with the highest 
PGS. (C) Cumulative hazards for lifetime diagnosis of DCM stratified by high (highest centile 
– red), median (middle quintile - orange) and low PGS (bottom quintile – yellow) in UKB. (D) 
Cumulative hazards for lifetime diagnosis of DCM in carriers of pathogenic or likely 
pathogenic (PLP) rare variants in DCM-causing genes, stratified by high (highest quintile – 
red), median (middle quintile - orange) and low PGS (bottom quintile – yellow) in UKB. (E) 
Manhattan plot of DCM PGS phenome-wide association study in UKB, showing associations 
with cardiovascular phenotypes and obesity. ICD-9 and ICD-10 diagnostic codes are 
mapped to Phecode Map version 1.2. Mapped phenotypes exceeding phenome-wide 
significance threshold (P 2.7x10-5, red line) are labelled. Blue line indicates nominal 
significance (P<0.05). Direction of triangle indicates the direction of effect of the PGS 
association.  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

 

References 
1. Pinto, Y.M. et al. Proposal for a revised definition of dilated cardiomyopathy, 

hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a 

position statement of the ESC working group on myocardial and pericardial diseases. 

Eur Heart J 37, 1850-8 (2016). 

2. Arbelo, E. et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur 

Heart J (2023). 

3. Seferović, P.M. et al. Heart failure in cardiomyopathies: a position paper from the 

Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21, 

553-576 (2019). 

4. Pirruccello, J.P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 

individuals yields genetic insights into dilated cardiomyopathy. Nature 

Communications 11, 2254 (2020). 

5. Lumbers, R.T. et al. The genomics of heart failure: design and rationale of the 

HERMES consortium. ESC Heart Fail 8, 5531-5541 (2021). 

6. Speed, D. & Balding, D.J. SumHer better estimates the SNP heritability of complex 

traits from summary statistics. Nature Genetics 51, 277-284 (2019). 

7. Tadros, R. et al. Large scale genome-wide association analyses identify novel genetic 

loci and mechanisms in hypertrophic cardiomyopathy. medRxiv, 

2023.01.28.23285147 (2023). 

8. Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and 

dilated cardiomyopathies with opposite directions of effect. Nature Genetics 53, 

128-134 (2021). 

9. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics 

using MTAG. Nat Genet 50, 229-237 (2018). 

10. Zheng, S.L. et al. Evaluation of polygenic score for hypertrophic cardiomyopathy in 

the general population and across clinical settings. medRxiv, 2023.03.14.23286621 

(2023). 

11. Betrie, A.H. et al. Evidence of a Cardiovascular Function for Microtubule-Associated 

Protein Tau. J Alzheimers Dis 56, 849-860 (2017). 

12. England, J. & Loughna, S. Heavy and light roles: myosin in the morphogenesis of the 

heart. Cellular and Molecular Life Sciences 70, 1221-1239 (2013). 

13. Meurs, K.M. et al. Association of dilated cardiomyopathy with the striatin mutation 

genotype in boxer dogs. J Vet Intern Med 27, 1437-40 (2013). 

14. Dawson, J.C., Bruche, S., Spence, H.J., Braga, V.M. & Machesky, L.M. Mtss1 promotes 

cell-cell junction assembly and stability through the small GTPase Rac1. PLoS One 7, 

e31141 (2012). 

15. Huang, X., Qu, R., Ouyang, J., Zhong, S. & Dai, J. An Overview of the Cytoskeleton-

Associated Role of PDLIM5. Front Physiol 11, 975 (2020). 

16. Cheng, H. et al. Loss of enigma homolog protein results in dilated cardiomyopathy. 

Circ Res 107, 348-56 (2010). 

17. Luo, W. et al. TMEM182 interacts with integrin beta 1 and regulates myoblast 

differentiation and muscle regeneration. J Cachexia Sarcopenia Muscle 12, 1704-

1723 (2021). 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

18. Villar, A.V. et al. BAMBI (BMP and activin membrane-bound inhibitor) protects the 

murine heart from pressure-overload biomechanical stress by restraining TGF-β 

signaling. Biochim Biophys Acta 1832, 323-35 (2013). 

19. Bhandary, B. et al. Cardiac Fibrosis in Proteotoxic Cardiac Disease is Dependent Upon 

Myofibroblast TGF&#x2010;&#x3b2; Signaling. Journal of the American Heart 

Association 7, e010013 (2018). 

20. Al-Yacoub, N. et al. Mutation in FBXO32 causes dilated cardiomyopathy through up-

regulation of ER-stress mediated apoptosis. Communications Biology 4, 884 (2021). 

21. Shimokawa, H., Sunamura, S. & Satoh, K. RhoA/Rho-Kinase in the Cardiovascular 

System. Circ Res 118, 352-66 (2016). 

22. McGurk, K.A., Kasapi, M. & Ware, J.S. Effect of taurine administration on symptoms, 

severity, or clinical outcome of dilated cardiomyopathy and heart failure in humans: 

a systematic review. Wellcome Open Res 7, 9 (2022). 

23. Veerman, C.C. et al. The Brugada Syndrome Susceptibility Gene HEY2 Modulates 

Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity. Circulation 

Research 121, 537-548 (2017). 

24. Niihori, T. et al. Germline-Activating RRAS2 Mutations Cause Noonan Syndrome. Am 

J Hum Genet 104, 1233-1240 (2019). 

25. Capri, Y. et al. Activating Mutations of RRAS2 Are a Rare Cause of Noonan Syndrome. 

Am J Hum Genet 104, 1223-1232 (2019). 

26. Connally, N.J. et al. The missing link between genetic association and regulatory 

function. eLife 11, e74970 (2022). 

27. Josephs, K.S. et al. Beyond gene-disease validity: capturing structured data on 

inheritance, allelic-requirement, disease-relevant variant classes, and disease 

mechanism for inherited cardiac conditions. medRxiv (2023). 

28. Jordan, E. et al. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. 

Circulation 144, 7-19 (2021). 

29. Yuan, L. et al. RNF207 exacerbates pathological cardiac hypertrophy via post-

translational modification of TAB1. Cardiovasc Res 119, 183-194 (2023). 

30. Parvatiyar, M.S. et al. Stabilization of the cardiac sarcolemma by sarcospan rescues 

DMD-associated cardiomyopathy. JCI Insight 4(2019). 

31. Parvatiyar, M.S. et al. Sarcospan Regulates Cardiac Isoproterenol Response and 

Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart 

Assoc 4(2015). 

32. Jagadeesh, K.A. et al. Identifying disease-critical cell types and cellular processes by 

integrating single-cell RNA-sequencing and human genetics. Nature Genetics 54, 

1479-1492 (2022). 

33. Reichart, D. et al. Pathogenic variants damage cell composition and single cell 

transcription in cardiomyopathies. Science 377, eabo1984 (2022). 

34. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nature 

Communications 12, 1088 (2021). 

35. Nicin, L. et al. A human cell atlas of the pressure-induced hypertrophic heart. Nature 

Cardiovascular Research 1, 174-185 (2022). 

36. Shah, R.A. et al. Frequency, Penetrance, and Variable Expressivity of Dilated 

Cardiomyopathy-Associated Putative Pathogenic Gene Variants in UK Biobank 

Participants. Circulation 146, 110-124 (2022). 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

37. Garnier, S. et al. Genome-wide association analysis in dilated cardiomyopathy 

reveals two new players in systolic heart failure on chromosomes 3p25.1 and 

22q11.23. Eur Heart J 42, 2000-2011 (2021). 

38. Gazal, S., Marquez-Luna, C., Finucane, H.K. & Price, A.L. Reconciling S-LDSC and LDAK 

functional enrichment estimates. Nat Genet 51, 1202-1204 (2019). 

39. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics 26, 2190-1 (2010). 

40. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and 

traits. Nat Genet 47, 1236-41 (2015). 

41. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nat Genet 47, 291-5 (2015). 

42. Ojavee, S.E., Kutalik, Z. & Robinson, M.R. Liability-scale heritability estimation for 

biobank studies of low-prevalence disease. Am J Hum Genet 109, 2009-2017 (2022). 

43. Grotzinger, A.D., Fuente, J., Privé, F., Nivard, M.G. & Tucker-Drob, E.M. Pervasive 

Downward Bias in Estimates of Liability-Scale Heritability in Genome-wide 

Association Study Meta-analysis: A Simple Solution. Biol Psychiatry 93, 29-36 (2023). 

44. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 

identifies additional variants influencing complex traits. Nat Genet 44, 369-75, s1-3 

(2012). 

45. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of 

complex trait heritability. Nature Genetics 52, 1355-1363 (2020). 

46. Wang, G., Sarkar, A.K., Carbonetto, P. & Stephens, M. A simple new approach to 

variable selection in regression, with application to genetic fine mapping. Journal of 

the Royal Statistical Society: Series B (Statistical Methodology) 82(2020). 

47. Rentzsch, P., Witten, D., Cooper, G.M., Shendure, J. & Kircher, M. CADD: predicting 

the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47, 

D886-d894 (2019). 

48. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 

variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010). 

49. Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-

associated genes using large-scale genetics and functional genomics. Nucleic Acids 

Res 49, D1311-d1320 (2021). 

50. Weeks, E.M. et al. Leveraging polygenic enrichments of gene features to predict 

genes underlying complex traits and diseases. medRxiv, 2020.09.08.20190561 

(2020). 

51. Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, 

rebuilt. Nucleic Acids Research 51, D1353-D1359 (2022). 

52. Barbeira, A.N. et al. Exploring the phenotypic consequences of tissue specific gene 

expression variation inferred from GWAS summary statistics. Nat Commun 9, 1825 

(2018). 

53. Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human 

tissues. bioRxiv, 787903 (2019). 

54. Fulco, C.P. et al. Activity-by-contact model of enhancer-promoter regulation from 

thousands of CRISPR perturbations. Nat Genet 51, 1664-1669 (2019). 

55. Consortium, E.P. An integrated encyclopedia of DNA elements in the human 

genome. Nature 489, 57 (2012). 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

56. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and 

conversions of gene lists (2019 update). Nucleic Acids Res 47, W191-w198 (2019). 

57. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 

518, 317-30 (2015). 

58. Finucane, H.K. et al. Heritability enrichment of specifically expressed genes identifies 

disease-relevant tissues and cell types. Nature Genetics 50, 621-629 (2018). 

59. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell 

types. Nature 473, 43-9 (2011). 

60. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. 

Nature 593, 238-243 (2021). 

61. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-

wide association summary statistics. Nat Genet 47, 1228-35 (2015). 

62. Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex 

traits shows action of negative selection. Nat Genet 49, 1421-1427 (2017). 

63. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 

139-40 (2010). 

64. Ge, T., Chen, C.Y., Ni, Y., Feng, Y.A. & Smoller, J.W. Polygenic prediction via Bayesian 

regression and continuous shrinkage priors. Nat Commun 10, 1776 (2019). 

65. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-

based linkage analyses. Am J Hum Genet 81, 559-75 (2007). 

66. Wray, N.R. et al. Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 14, 

507-15 (2013). 

67. Wei, W.-Q. et al. Evaluating phecodes, clinical classification software, and ICD-9-CM 

codes for phenome-wide association studies in the electronic health record. in PloS 

one Vol. 12 e0175508 (2017). 

68. Carroll, R.J., Bastarache, L. & Denny, J.C. R PheWAS: data analysis and plotting tools 

for phenome-wide association studies in the R environment. Bioinformatics 30, 

2375-6 (2014). 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.28.23295408doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.28.23295408
http://creativecommons.org/licenses/by/4.0/

