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ABSTRACT 

INTRODUCTION: Given the established association between DNA methylation and 

the pathophysiology of dementia and its plausible role as a molecular mediator of 

lifestyle and environment, blood-derived DNA methylation data could enable early 

detection of dementia risk. 

METHODS: In conjunction with an extensive array of machine learning techniques, we 

employed whole blood genome-wide DNA methylation data as a surrogate for 14 

modifiable and non-modifiable factors in the assessment of dementia risk in two 

independent cohorts of Alzheimer's disease (AD) and Parkinson's disease (PD). 

RESULTS: We established a multivariate methylation risk score (MMRS) to identify 

the status of mild cognitive impairment (MCI) cross-sectionally, independent of age 

and sex. We further demonstrated significant predictive capability of this score for the 

prospective onset of cognitive decline in AD and PD. 

DISCUSSION: Our work shows the potential of employing blood-derived DNA 

methylation data in the assessment of dementia risk. 
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ABBREVIATIONS 
 

Aβ: amyloid-β, AD: Alzheimer’s disease, ADAS: Alzheimer’s disease assessment 

scale, AUROC: area under the receiver operating curve, CI: confidence interval, CSF: 

cerebral spinal fluid, EN: ElasticNet, GO: gene ontology, HR: hazard ratio, HWE: 

Hardy-Weinberg equilibrium, LDELTOTAL: Wechsler logical memory delay, MAE: 

mean absolute error, MAF: minor allele frequency, MCI: mild cognitive impairments, 

mQTL: methylation quantitative trait loci, MMRS: multivariate methylation risk score, 

MMSE: Mini Mental State Examination, MPS: methylation profile score, PCA: principal 

component analysis, PD: Parkinson’s disease, PGS: polygenic (risk) score, p-tau: 

phosphorylated tau, QC: quality control, RAVLT: Rey’s auditory verbal learning test, 

RF-RFE: random forest with recursive feature elimination, SHAP: Shapley additive 

explanations, SNP: single nucleotide polymorphism, sPLS-DA: sparse partial least 

squares discriminant analysis, TRABSCOR: trail making test part B time, t-tau: total 

tau, UTR: untranslated region.  

 

1. BACKGROUND 

As a result of population aging, the global number of dementia cases has drastically 

increased over the past decade and is estimated to keep increasing to more than 150 

million patients worldwide by 2050 [1]. Despite the seemingly ever-increasing global 

burden, there is currently no availability of drugs or other treatment options that can 

halt or fully reverse the cognitive decline in dementia [2]. This emphasizes the 

importance of pre-clinical prevention strategies that require the identification of persons 

at risk of developing dementia before the onset of irreversible cognitive decline.  

Over the past decades, the most precise models for predicting dementia and 

Alzheimer's disease (AD) have relied on molecular information derived from 
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cerebrospinal fluid (CSF) and neuroimaging modalities [3, 4]. In addition to that, several 

studies have identified genetic and environmental (lifestyle-related) factors that are 

associated with dementia risk, such as smoking [5], alcohol intake [6], plasma 

cholesterol levels [7], physical activity [8], education [9], and diet [10]. Accordingly, 

several of these unmodifiable and modifiable (lifestyle-related) dementia risk factors 

have been combined into a single score, such as the ‘Cardiovascular Risk Factors, 

Aging, and Dementia’ (CAIDE) [11] and ‘Lifestyle for Brain Health’ (LIBRA) [12] scores, 

respectively. However, in recent years, there has been a significant shift towards 

prioritizing blood-based biomarkers for AD [13]. This is due to several factors, including 

the invasive nature of CSF sampling, the lack of objective quantitative assessment of 

lifestyle-related factors, and the high cost and limited availability of specialized 

neuroimaging facilities. 

It has been well-established that epigenetic mechanisms and in particular, DNA 

methylation, are involved in the molecular pathology of various neurodegenerative 

diseases, including dementia [14]. DNA methylation is a molecular mechanism that 

can mediate the impact of lifestyle and environmental factors on the genome, 

regulating the expression of the genes [15]. Notably, prior research has demonstrated 

associations between peripheral DNA methylation patterns and risk factors for 

dementia, such as smoking [16], obesity [17], and blood pressure [18]. Moreover, 

recent comprehensive DNA methylation Quantitative Trait Locus (mQTL) analyses 

have confirmed a substantial genetic influence on methylation patterns [19]. This 

collective evidence positions DNA methylation as an intriguing molecular biomarker 

with the potential to capture both genetic and environmental information at the 

individual level. However, previous endeavors to establish blood-derived DNA 

methylation-based predictions for AD have encountered challenges in external 
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validation, likely attributed to the heterogeneity of the disease among different cohorts 

[20].  

Therefore, in this study, rather than adopting a direct approach to predict the 

risk of dementia using blood DNA methylation, we sought to utilize the large-scale 

nature of a general population cohort to first develop objective and precise DNA 

methylation-based prediction models for the CAIDE and LIBRA scores and multiple 

modifiable and non-modifiable dementia risk factors. Next, along with the epigenetic 

score for CAIDE and LIBRA (i.e., epi-CAIDE and epi-LIBRA), we employed the 

methylation profile scores (MPSs) of the individual dementia risk factors to generate a 

multivariate methylation risk score (MMRS) for cognitive impairment and dementia. 

 

2. METHODS 

The applied methodology consists of four main steps: (1) the model generation by two 

distinct approaches using the DNA methylation data of the Exeter 10,000 project 

(EXTEND) [21] and the European Medical Information Framework for Alzheimer's 

Disease (EMIF-AD) [22] cohorts (Fig. 1), (2) model validation in the independent test 

set of the EMIF-AD, Parkinson’s Progression Markers Initiative (PPMI) [23] and the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [24] cohorts, (3) model 

interpretation in terms of variable importance, gene ontology (GO) overrepresentation 

analysis, and the influence of genetic variation, and (4) model extension by adding 

genetic and CSF biomarkers to the model.  
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FIGURE 1 Overview of the model generation. The model generation workflow consists of model training 

in the EXTEND and EMIF-AD cohorts using two different approaches. In the first approach, models for 

the prediction of CAIDE and LIBRA were trained in the EXTEND cohort (section 2.3.1.).  Furthermore, 

in approach 2, the EXTEND cohort was used to predict 14 known dementia risk factors. The predicted 

risk scores by these 14 models (i.e., methylation profile scores; MPSs) were used as variables for the 

prediction of AD and MCI status in the training set of the EMIF-AD cohort (section 2.3.2.). Both 

approaches were evaluated in terms of AD and MCI classification performance in the independent test 

set in the EMIF-AD cohort. The model with the best performance was also validated in the PPMI and 

ADNI longitudinal cohorts (section 2.4.).  

 

2.1. Study cohorts  

2.1.1. The EXTEND cohort 

The EXTEND study is a National Institute for Health and Care Research (NIHR) funded 

project aiming to collect blood samples along with extensive health information from 

people with and without health issues [21]. In the current study, a subset of the 

EXTEND cohort, consisting of individuals with available genotyping and blood-derived 
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DNA methylation data (n = 1076) was used. The dataset exclusively comprised 

phenotype data from individuals aged 40 to 75, denoted as the midlife age group. 

 

2.1.2. The EMIF-AD cohort 

The EMIF-AD cohort is a research initiative focused on collecting and collating 

comprehensive medical and health-related information from individuals affected by AD 

and related cognitive disorders [22]. In this study, besides excluding the individuals 

outside the midlife age range (i.e., age < 40 or age > 75), cognitively healthy individuals 

who were recorded to have converted to MCI or AD during the follow-up period (mean 

follow-up time ± sd ≈ 2.3 ± 1.2 years) were also excluded. This process resulted in a 

final dataset of 110 individuals with AD, 293 individuals with MCI, and 220 healthy 

controls with available blood-derived DNA methylation data, genotyping data, and CSF 

protein markers. 

 

2.1.3. The ADNI cohort 

The ADNI cohort [24] contains genetic and blood-derived DNA methylation data of 

cognitively normal individuals as well as individuals diagnosed with MCI and dementia. 

In addition to the DNA methylation data, ADNI has also extensive individual-level 

information on various psychometric biomarkers measured at multiple time points. For 

the validation of the models, we used the baseline DNA methylation data of 223 midlife 

(40 ≤ age ≤ 75) individuals with a Mini Mental State Examination (MMSE) ≥ 26 (i.e., 

cognitively intact) at baseline.  
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2.1.4. The PPMI cohort 

The Parkinson’s Progression Markers Initiative (PPMI) cohort [23] includes the blood-

derived DNA methylation data of individuals recently diagnosed with Parkinson’s 

Disease (PD). Only samples from persons with 40 ≤ age ≤ 75 were included for the 

validation, resulting in 129 samples for which baseline DNA methylation data and the 

cognitive impairment outcome information were available. An overview (i.e., 

description, sample size, and sex and age distribution) of the four cohorts used in the 

current research is provided in Supplementary Table 1.  

 

2.2 Data preprocessing 

2.2.1. Clinical outcomes 

The cognitive status of individuals in the EMIF-AD cohort was defined as described 

previously [22]. In summary, cognitively healthy individuals were defined by a normal 

neuropsychological assessment score. In nine of the EMIF-AD subcohorts, the MCI 

diagnosis was based on the criteria of Petersen [25], while for two subcohorts the 

Winblad et al. criteria [26] was used. Furthermore, AD diagnosis was defined based 

on the criteria of the National Institute of Neurological and Communicative Disorders 

and Stroke–Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) [27].  

In the ADNI cohort, we only included the data of cognitively intact (i.e., MMSE ≥ 

26) individuals at baseline to perform the survival analysis based on the longitudinal 

outcome of different cognitive domains (i.e., Alzheimer’s Disease Assessment Scale 

(ADAS), Rey’s Auditory Verbal Learning Test (RAVLT), Wechsler Logical Memory 

Delay (LDELTOTAL), Trail Making Test Part B Time (TRABSCOR), and MMSE scores) 

measured over 4 years. For the MMSE score we defined cognitive impairments by a 
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MMSE < 24, while for the other cognitive outcomes, cognitive impairment status was 

defined by a score of either 2 SD below or above the mean of the control group, 

depending on the direction of the score (Supplementary Table 2).  

Finally, in the PPMI cohort, dementia and MCI diagnosis was based on the 

Movement Disorders Society (MDS) recommended criteria [28, 29] as done previously 

[30]. MCI and dementia individuals who have been recorded to have reverted to a 

cognitively normal status (absence of MCI and dementia) were excluded from the 

analysis. 

 

2.2.2. Dementia risk factors 

In the current study, the dementia risk factors were defined in the EXTEND cohort 

according to Table 1. Particularly, 15 dementia risk factors were used for the 

calculation of the CAIDE and LIBRA scores based on the previously established risk 

factor weights [12, 31] (Supplementary Tables 3 and 4). Additionally, because of the 

small number of kidney disease cases, only 14 dementia risk factors were used as 

target variables for the construction and/or validation of the DNA methylation-based 

risk factor models (section 2.3.2.).  
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TABLE 1 Risk factor definitions in the EXTEND cohort. The risk factors in the EXTEND cohort were used for the calculation of the CAIDE and LIBRA scores and as target 

variables for the training or validation of the DNA methylation-based risk factor models. 

* This column indicates the DNA methylation-based model that was used for the prediction of the corresponding dementia risk factor (approach 2).  

† This column indicates whether the corresponding risk factor was used in the calculation of the LIBRA and CAIDE score (approach 1). See Supplementary Tables 3 and 4 for 

the exact risk factor weights. 

‡ No risk factor model was trained for kidney disease status due to the limited number of cases in the EXTEND cohort (i.e., 17 cases and 1059 controls).

Risk factor Definition 
 

Type Risk factor model * CAIDE † LIBRA † 

Low education A person is defined to be lowly educated if the individual has none of 
the following educational achievements: 
1. College or university degree. 
2. O level, GCSEs, or equivalent. 
3. NVQ, HND, HNC, or equivalent. 
4. A-level, AS-level, or equivalent. 
5. CSEs or equivalent. 
6. Other professional qualifications 
 

Binary Training in EXTEND X  

Physical inactivity A person is defined to be physical inactive if self-reported to do 
exercise with increased pulse more than 2.5 hours per week. 
 

Binary Training in EXTEND X X 

Unhealthy diet Self-reported consumption of three or less fruits/vegetables per day 
 

Binary Training in EXTEND  X 

Depression Self-reported depression status 
 

Binary Training in EXTEND  X 

Type II diabetes Self-reported type II diabetes status 
 

Binary Training in EXTEND  X 

Heart disease Self-reported heart disease status 
 

Binary Training in EXTEND  X 

Sex Sex 
 

Binary Training in EXTEND X  

Systolic blood 
pressure 

 

Mean systolic blood pressure (mmHg) 
 

Continuous Training in EXTEND  X 

Total cholesterol Log-transformed total serum cholesterol levels (mmol/L) 
 

Continuous Training in EXTEND X  

Age Chronological age 
 

Continuous Zhang et al. (2019) model X  

BMI Body mass index 
 

Continuous Hillary & Marioni (2020) model X X 

Smoking Self-reported current smoking status 
 

Binary Hillary & Marioni (2020) model  X 

HDL cholesterol Log-transformed serum HDL cholesterol levels (mmol/L) 
 

Continuous Hillary & Marioni (2020) model  X 

Alcohol intake High alcohol intake is defined by the following criteria: 
1. Once a month, more than 10 alcoholic drinks per day. 
2. 2-4 a month, 5 or more alcoholic drinks per day 
3. 2-3 a week, 5 or more alcoholic drinks per day 
4. 4 or more a week, 3 or more alcoholic drinks per day 
 

Binary Hillary & Marioni (2020) model  X 

Kidney disease ‡ Self-reported chronic kidney disease status 
 

Binary NA ‡   X 
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2.2.3. Cerebral spinal fluid biomarkers 

Three CSF biomarkers scores (amyloid-β (Aβ), phosphorylated tau (p-tau), and total 

tau (t-tau) z-scores) were defined in the EMIF-AD cohort as described previously [22].  

In summary, the t-tau and p-tau z-scores were defined by their local p-tau levels as 

measured by center-specific ELISAs, standardized within assay according to mean 

and standard deviation of the healthy controls. Furthermore, the Aβ z-score were 

specified to be standardized scores for amyloid pathology. Specifically, this score was 

standardized within assay according to the mean and standard deviation of the control 

group and was based on CSF Aβ42/40 ratio, local CSF-Aβ42, and the standardized 

uptake value ratio (SUVR) on an amyloid PET scan. 

 

2.2.4. Whole blood DNA Methylation profiling 

Sample filtering was performed as a first step of the DNA methylation data pre-

processing pipeline and includes the removal of samples with a median bisulfite 

conversion rate below 80 percent, incorrect sex labels, and a low median 

(un)methylated intensity according the minfi package’s guidelines (i.e., median log2 

unmethylated intensity + median log2 methylated intensity ≤ 21) [32]. 

In the normalization procedure, the combination of Noob (minfi package 

(v1.46.0) [32]) and BMIQ (wateRmelon package (v2.6.0) [33]) normalization was 

applied. This pipeline has previously been shown to be a high-performing method for 

reducing type I/type II bias and enhancing reproducibility [34]. Furthermore, both Noob 

and BMIQ are within-sample normalization methods, which avoid information leakage 

from the training to the test set. 

Before model training in the EXTEND cohort, previously reported cross-reactive 

probes [35, 36], probes with a detection P value > .01 in at least one sample, sex-
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chromosomal probes, and probes with single nucleotide polymorphisms (SNPs) at the 

single base extension and/or CpG interrogation site were removed. Next, density plots 

and principal component analysis (PCA) score plots were constructed to assess the 

quality of the pre-processing and to identify possible outliers. Lastly, β-values were 

converted to M-values to account for the inherently heteroscedastic nature of 

methylation data. The M-values were used for the subsequent feature selection and 

machine learning pipeline. 

It should be noted that not all features that are incorporated in the generation of 

the risk factor models passed the described probe filtering steps in the other cohorts. 

Therefore, when applying the risk factor models in a different cohort, low-quality probes 

(i.e., detection P value > .1) were imputed using the imputePCA function from the 

missMDA package (v1.8) [37]. This function uses a regularized iterative PCA algorithm 

to impute missing values. Specifically, this algorithm first imputes all missing values 

with the feature’s mean after which it iteratively performs PCA and imputes each 

missing value using the low-rank representation until convergence is reached (i.e., a 

difference of less than 10-6 between iterations). The optimal number of principal 

components (PCs) for the low-rank representation was found by removing and 

imputing 100 random values and choosing the number of PCs that yields the lowest 

mean absolute error (MAE). This iterative PCA imputation method has previously been 

shown to be among the best-performing and computationally efficient algorithms for 

missing value imputation of DNA methylation data [38].  

 

2.2.5. Polygenic score generation 

The genomics data from the EMIF-AD cohort was pre-processed as described 

previously [39]. In short, this pre-processing pipeline includes filtering of strand-
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ambiguous SNPs, aligning alleles to the human genome assembly GRCh37/hg19, 

phasing, imputation based on the HRC reference panel, pre- and post-imputation 

quality control (QC), and filtering of SNPs with a minor allele frequency (MAF) < 0.01. 

 The genomics data of the EXTEND cohort underwent a similar pre-processing 

pipeline including SNP filtering and alignment using the HRC/100G imputation 

preparation and checking pipeline (v4.2.7) [40], imputation using the Michigan 

Imputation Server with the 1000Genomes reference panel (phase 3 v5 hg19, 

Population: EUR, Phasing: Eagle, R-squared filter: 0.3) [41], and post-imputation SNP 

filtering (MAF < 0.01, Hardy-Weinberg equilibrium (HWE) P value < 10-4, missing call 

rated > 0.1). 

Subsequently, the LDAK tool (v5.2) [42] was applied to calculate the polygenic 

(risk) scores (PGSs) for 11 dementia risk factors as well as AD status (including the 

APOE region) using the HapMap reference panel and the summary statistics of 12 

genome-wide association studies (GWASs) [43-53] (Supplementary Table 5). In 

short, LDAK splits the summary statistics in pseudo training and test summary statistics 

and then uses a variational Bayes approach to estimate the regression coefficients of 

the SNPs [42]. For the hyperparameter optimization, multiple models are trained and 

evaluated on the test summary statistics for different combinations of prior distribution 

parameters. This methodology is available for six model types (i.e., bayesR, bayesR-

shrink, lasso, lasso-sparse, ridge, and bolt regression models) that differ in the form of 

the prior distribution for the SNP effect sizes. As the bayesR is the recommended 

method for PGS generation by the developers of LDAK, all PGSs were generated using 

the bayesR approach. 
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2.3. Model generation 

The model generation consists of two approaches; the prediction of the CAIDE and 

LIBRA scores in the EXTEND cohort as well as the prediction of MCI and AD status in 

the EMIF-AD cohort by 14 methylation profile scores of dementia risk factors (Fig. 1). 

 

2.3.1. Approach 1: Generation of methylation risk scores for CAIDE and LIBRA 

In the first approach, we aimed at constructing an epigenetic model for the prediction 

of the LIBRA score (i.e., epi-LIBRA model) and CAIDE score (i.e., epi-CAIDE model). 

However, before constructing these models, we evaluated multiple supervised and 

unsupervised feature selection methods to investigate which method is suitable for 

reducing the large dimensionality of the DNA methylation data and found superior 

performance of the “correlation-based feature selection method” (see Supplementary 

Text 1 for a more detailed description of the applied methodology and results). In short, 

in the correlation-based feature selection method, the 10,000 CpGs that have the 

highest absolute Spearman correlation coefficient with the target variable in the training 

set were selected for model training. 

Hence, for the prediction of both the CAIDE and LIBRA scores, we trained an 

ElasticNet and Random Forest model on the 10,000 features selected by correlation-

based feature selection as well as an ElasticNet model trained on all CpGs that passed 

QC (Table 2). Accordingly, 5-repeated 5-fold cross-validation was applied to find the 

optimal hyperparameter values that yield the minimal MAE (the searched 

hyperparameter space is shown in Supplementary Table 6).  

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.27.23296143doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.27.23296143


16 
 

2.3.2. Approach 2: Generation of multivariate methylation risk scores  

For the second approach, we aimed at predicting 14 known dementia risk factors that 

are included in the CAIDE and/or LIBRA scoring systems (Table 1). Specifically, for 

the prediction of smoking, alcohol consumption, HDL cholesterol, and BMI, the 

corresponding DNA methylation-based models from Hillary and Marioni (2020) [54] 

were used, while the epigenetic clock model from Zhang et al. (2019) [55] was used 

for the prediction of age. For each of the nine remaining risk factors (i.e., low education, 

physical inactivity, unhealthy diet, depression, type II diabetes, heart disease, sex, 

systolic blood pressure, and total cholesterol), five models were trained in the EXTEND 

cohort corresponding to different combinations of feature selection and machine 

learning algorithms (Table 2). These include an ElasticNet model without prior feature 

selection, an ElasticNet and Random Forest model with correlation-based feature 

selection, as well as an ElasticNet and Random Forest model trained on the CpGs that 

reached genome-wide significance in previously performed epigenome-wide 

association studies (Supplementary Table 7). 

Accordingly, for each of these five models, 5-repeated 5-fold cross-validation 

was applied to find the optimal hyperparameter values that yield the maximal area 

under the receiver operating characteristic curve (AUROC) (for discrete risk factors) or 

minimal MAE (for continuous risk factors) (the searched hyperparameter space is 

shown in Supplementary Table 6). From the five models per risk factor, the model 

that achieved the highest AUROC or R2 over all folds was considered as the best-

performing risk factor model. 
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TABLE 2 The applied feature selection and machine learning methods. For the prediction of nine dementia 

risk factors and the CAIDE and LIBRA scores in the EXTEND cohort, different combinations of feature selection 

and machine learning methods were used. 

Feature selection method Machine learning method CAIDE/LIBRA  Dementia risk factors  

None ElasticNet x x 

Correlation-based * Random Forest x x 

Correlation-based * ElasticNet x x 

Literature-based † Random Forest  x 

Literature-based † ElasticNet  x 

 

* In the correlation-based feature selection method, the 10,000 CpGs that have the highest absolute Spearman 

correlation coefficient with the target variable (i.e., predicted dementia risk factor) in the training set were selected 

for model training (Supplementary Text 1). 

† In the literature-based feature selection method, the CpGs that reached genome-wide significance in a previously 

performed epigenome-wide association study (Supplementary Table 7) for the corresponding risk factor were 

selected for model training.  

 

Subsequently, the predicted risk scores of each risk factor model (for binary 

variables this is defined as log(1/1-p), where p is the estimated class probability), 

referred to as methylation profile scores (MPSs), were used as variables for the 

construction of a multivariate methylation risk score (MMRS) for the prediction of ‘MCI 

versus control’ (i.e., MMRS-MCI model) and ‘AD versus control’ (i.e., MMRS-AD 

model) in the training set of the EMIF-AD cohort. For this, the Kennard-Stone algorithm 

[56] was first applied to the MPSs to split the data into a training (n = 436) and an 

independent test set (n = 187) (Supplementary Table 8). Accordingly, an ElasticNet 

(EN), sparse partial least squares-discriminant analysis (sPLS-DA), and Random 

Forest model with recursive feature elimination (RF-RFE) models were trained by 5-

repeated 5-fold cross-validation to find the optimal hyperparameter combination that 

yields the highest AUROC (the searched hyperparameter space is shown in 

Supplementary Table 9). 
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2.4. Model validation 

In this step, besides the estimation of the model’s performance in the independent test 

set of the EMIF-AD cohort, the validation of our best-performing model includes the 

survival analysis of cognitive impairments in the PPMI and ADNI longitudinal cohorts.  

Based on the risk scores calculated by our best-performing model among the 

epi-LIBRA, epi-CAIDE and MMRS models, the individuals of the ADNI and PPMI 

cohorts were categorized into three equally sized risk categories; low- (n = 74 for ADNI, 

n = 43 for PPMI), intermediate- (n = 75 for ADNI, n = 43 for PPMI), and high-risk (n = 

74 for ADNI and n = 43 for PPMI). We accordingly assessed the statistical significance 

of the difference in time-dependent conversion to cognitive impairments (as defined in 

section 2.2.1.) by comparing the low- and high-risk groups using the log-rank test and 

a Cox regression model (survival package (v3.5.5) [57]).  Furthermore, a Kaplan-Meier 

curve was constructed to visualize the probability of cognitive impairments over time 

for each of the three risk categories. Please note that in the ADNI cohort, not all 

cognitive measures were available for each individual and, hence, the number of 

samples per risk category was different per cognitive outcome (Supplementary Table 

2).  

 

2.5. Model interpretation 

2.5.1. Variable importance 

The importance of the best-performing model’s variables was evaluated using mean 

absolute SHapley Additive exPlanations (SHAP) values of the test set samples in the 

EMIF-AD cohort as calculated with the DALEX package (v2.4.3) [58]. Notably, to make 

the SHAP values comparable between models, the values were normalized such that 
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the absolute sum equals one. The scaled mean absolute SHAP values can therefore 

be interpreted as the average proportional contribution to the predicted score. 

 

2.5.2. GO overrepresentation analysis 

The missMethyl package (v1.34.0) [59] was used to perform GO overrepresentation 

analysis on the union of the most important features of the risk factor models that are 

used for the prediction by the best-performing model. For the ElasticNet models, the 

most important features are the CpGs with a non-zero coefficient, while for the Random 

Forest models, the 1000 CpGs with the largest Gini index were considered as the most 

important variables.  

 

2.5.3. Influence of genetic variation  

To test the extent to which the variation in the methylation status of the model’s CpGs 

can be explained by genetic variation, the joint and individual variation explained (JIVE) 

method (r.jive package (v2.4) [60]) was performed on the risk factor model’s most 

important features and the corresponding methylation quantitative trait loci (mQTLs) 

(clumped cis- and trans-mQTLs, P value < 1e-5, GoDMC database [19]). The joint 

variation, as quantified by the JIVE method, of the risk factor model’s CpG β-values 

and their mQTLs was recorded. 

In addition, colocalization analysis (coloc package (v5.2.2) [61]) was performed 

for each of the model’s most important features to assess whether its methylation 

status and Alzheimer’s disease status share a common genetic variant. For this, the 

GWAS summary statistics of Alzheimer’s disease from Marioni et al. (2018) [45] and 

the mQTL data (non-clumped cis-mQTLs, P value < 1e-5) from the GoDMC database 

[19] were used. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.09.27.23296143doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.27.23296143


20 
 

2.6. Model extension 

Finally, we performed training in the EMIF-AD cohort using the 14 MPSs with 12 PGSs 

(Supplementary Table 5) and/or three CSF biomarkers (i.e., Aβ, t-tau, and p-tau z-

scores) as additional variables. For this, the same machine learning strategy as 

described in section 2.3.2. was applied. 

 

 

3. RESULTS 

3.1. Generation and validation of the epi-CAIDE and epi-LIBRA 

scores (approach 1) 

While the CAIDE score could be relatively well predicted by the Random Forest model 

with a cross-validation R2 ≈ 0.47, the LIBRA score was poorly predicted with a maximal 

cross-validation R2 ≈ 0.04 by the Random Forest model (Supplementary Table 10).  

Interestingly, in the EMIF-AD cohort, the epi-CAIDE score was found to be 

highly correlated with chronological (R2 ≈ 0.45) and epigenetic (R2 ≈ 0.55) age, 

indicating that age is the main driver of the epi-CAIDE score. Nevertheless, with an 

AUROC ≤ 0.61, both the epi-CAIDE and epi-LIBRA scores as predicted by the best-

performing Random Forest models were shown to be poor estimators of both MCI and 

AD status in the independent test set of the EMIF-AD cohort (Fig. 2 and 

Supplementary Table 11).  

 

3.2. Generation and validation of MMRS models (approach 2) 

Besides age (R2 ≈ 0.92) and sex (AUROC = 1), the best-predicted dementia risk factors 

by blood-derived DNA methylation data in the EXTEND cohorts include smoking 
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(AUROC ≈ 0.91), type II diabetes (AUROC ≈ 0.89), and heart disease status (AUROC 

≈ 0.80) (Supplementary Tables 12 and 13). The performance of 9 MPSs could also 

be validated in the EMIF-AD cohort, demonstrating a mostly lower but statistically 

significant predictive performance. Just as in the EXTEND cohort, age (R2 ≈ 0.87), sex 

(AUROC = 1), smoking (AUROC ≈ 0.80), and heart disease status (AUROC ≈ 0.67) 

were found to be the best predicted risk factors in the EMIF-AD cohort 

(Supplementary Table 12). 

 As shown in Fig. 2 and Supplementary Table 11, our MMRS models, which 

use the 14 MPSs as variables, could not be used to significantly predict AD status in 

the independent test set of the EMIF-AD cohort (AUROC ≤ 0.60). Nevertheless, our 

MMRS model (RF-RFE) for MCI was able to significantly predict MCI status with an 

AUROC of 0.68 (P value ≈ .002, adjusted for age and sex) and significantly improve 

upon the MCI prediction by epigenetic age (DeLong’s P value ≈ 8.0e-3). 
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(A) AD vs control 

 

 
 

(B) 
 

MCI vs control 
 

 
FIGURE 2 ROC curves of AD and MCI prediction in the independent test set of the EMIF-AD 

cohort. The MMRS models (red) are trained on the 14 MPSs for the prediction of AD (A) and MCI (B). 

The epi-LIBRA and epi-CAIDE scores (blue) are both predicted by the Random Forest model with 

correlation-based feature selection method (i.e., the best performing model) from the EXTEND data. 

The 95% confidence intervals of the AUROC values are indicated between brackets. 
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3.3. Validation in longitudinal dementia cohorts 

To validate our best-performing MMRS model, we performed survival analysis in the 

ADNI and PPMI longitudinal cohorts. Specifically, for each cohort, we divided the 

individuals into three equally sized risk categories based on the baseline risk score 

predicted by the MMRS-MCI (RF-RFE) model and recorded their conversion to 

cognitive impairments over time. 

The Kaplan-Meier curve in Fig. 3A shows that, in the PPMI cohort, there is more 

conversion to cognitive impairments (i.e., MCI or dementia) within the high-risk group 

as compared to the low-risk category (log-rank test P value ≈ 6.0e-4, AUROC ≈ 0.67, 

hazard ratio (HR) [95% confidence interval (CI)] ≈ 3.72 [1.66-8.33]), suggesting that 

the baseline risk score predicted by the MMRS-MCI model in this Parkinson’s disease 

cohort is predictive of the onset of cognitive impairments. Furthermore, in the ADNI 

cohort, we also see more conversion to cognitive impairments as measured by several 

cognitive tests, reaching statistical significance for RAVLT - learning (log-rank test P 

value ≈ .02, AUROC ≈ 0.62, HR [95% CI] ≈ 2.11 [1.08-4.11]) and TRABSCOR (log-

rank test P value ≈ .04, AUROC ≈ 0.60, HR [95% CI] ≈ 1.94 [1.01-3.73]) (Fig. 3B, 

Supplementary Table 14, and Supplementary Fig 1.).   
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(A) PPMI 
Dementia/MCI 

 

 

(B) ADNI 
 

RAVLT - Learning (Learning) TRABSCOR (Executive function) 

  
ADAS-Q4 (Memory) MMSE (Global cognition) 

  
 
 

FIGURE 3 Kaplan-Meier curves of cognitive impairments in the ADNI and PPMI cohorts. The risk 

categories were defined based on the baseline score predicted by the MMRS-MCI (RF-RFE) model. 

The shaded area around the line indicates the 95% confidence interval.
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3.4. Model interpretation 

The best performing MMRS-MCI (RF-RFE) model uses only 10 of the 14 MPSs for its 

prediction. Furthermore, the mean absolute SHAP values indicate that the MMRS is 

mainly driven by the depression, HDL cholesterol, physical inactivity, and low 

education MPSs (Fig. 4). The distribution of the MPSs among the diagnostic groups is 

shown in Supplementary Fig 2. 

Interestingly, ‘AMPA glutamate receptor clustering (GO:0097113)’ is the most 

overrepresented GO term by the union of the CpGs used in these 10 risk factor models 

(7571 CpGs, unadjusted P value ≈ 4.2e-4) (Supplementary Table 15). Notably, the 

model’s CpGs that are associated with this GO term are located in the untranslated 

region (UTR) or gene body of the APOE, DLG, NLGN1, SHANK3, SHISA6, SHISA7, 

SLC7A11, and SSH1 genes (Supplementary Fig. 3). However, JIVE indicates that 

there is only minimal joint information captured by the model’s CpGs and their mQTLs. 

Particularly, for each risk factor model, less than three percent of the variance in DNA 

methylation data is explained by genetic variation (Supplementary Fig. 4). Finally, the 

colocalization analysis shows that only a few CpGs are likely to share a genetic variant 

with AD status, including cg19514613 in the 5’UTR of the APOE gene (posterior 

probability > 0.99) and cg08374890 located approximately 2 kb upstream of the 

BCKDK gene (posterior probability ≈ 0.94) (Supplementary Fig. 5). Together, these 

results indicate that our best performing model encompasses information unique to 

DNA methylation data with only a limited genetic influence. 
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FIGURE 4 Radar chart of the scaled mean absolute SHAP values. The scaled mean absolute SHAP 

values indicate the variable importance of the 14 MPSs in the three MMRS-MCI models. 
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3.5. Model extension 

Although most PGSs are significantly associated with their corresponding risk factor in 

the EXTEND and EMIF-AD cohorts, their predictive power is relatively low with an R2 

≤ 0.1 and AUROC ≤ 0.67 (Supplementary Table 16). In addition, most of the PGSs 

and their corresponding MPSs have only low correlations (i.e., Pearson correlation 

coefficient < 0.1) (Supplementary Fig. 6). 

Furthermore, with an AUROC of 0.69, the addition of 12 PGSs to the 14 MPSs 

as additional features did not yield a significant improvement in MCI predictive 

performance above the prediction by MPSs only (Fig. 5). However, the addition of CSF 

biomarkers to the 14 MPSs could increase the MCI predictive performance to an 

AUROC of 0.88.  
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FIGURE 5 ROC curves of MCI prediction. MCI status was predicted in the independent test set of the 

EMIF-AD cohort using the MPSs, PGSs, and/or CSF biomarkers as variables. 
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4. DISCUSSION 

In this study, we used whole-blood-derived DNA methylation data quantified in a 

general population of individuals at midlife stage (EXTEND) to create a molecular score 

as a proxy for CAIDE and LIBRA dementia risk scores (referred to as the epi-CAIDE 

and epi-LIBRA models, respectively). Alternatively, we generated individual MPSs for 

14 modifiable and non-modifiable risk factors contributing to the formation of CAIDE 

and LIBRA scores. Next, along with epi-CAIDE and epi-LIBRA scores, we trained 

MMRS models using the 14 MPSs in the EMIF-AD training set to predict the AD and 

MCI status. Subsequently the performance of each model was evaluated in an 

independent test set. Although our epi-CAIDE and epi-LIBRA models were shown to 

perform poorly for both AD and MCI prediction in the EMIF-AD cohort, the MMRS 

model was demonstrated to significantly predict MCI status with an AUROC of 0.68. 

The potential of this model was further demonstrated by its usefulness for prospectively 

predicting the onset of cognitive impairments in two independent cohorts of AD (ADNI) 

and PD (PPMI) as well as improving upon its cross-sectional prediction in combination 

with established genetic and CSF biomarkers in the EMIF-AD cohort.  

The poor performance of our epi-CAIDE and epi-LIBRA models might be 

explained by the fact that the risk factor’s weights in the CAIDE and LIBRA scores do 

not consider the extent to which the risk factors can be estimated by DNA methylation 

data, whereas an ideal epigenetic model would give more weight to the factors best 

predicted by the DNA methylation data. In addition, some people may have the same 

CAIDE or LIBRA score but different contributing risk factors. For example, one can 

have a high CAIDE score because of having a high BMI and low physical activity, while 

another person may have the same CAIDE score but because of having a high age. 

These difference in contribution to the total scores may not be effectively captured by 
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our molecular-based epi-CAIDE and epi-LIBRA models, possibly explaining their poor 

performance. 

Similarly, our MMRS model – a model generated from 14 dementia risk factor 

models – could neither be used to significantly predict AD status in the independent 

test set of the EMIF-AD cohort (Fig. 2). This poor performance might be explained by 

the fact that many of the risk factors included in our analysis are cardiovascular-related 

risk factors (e.g., BMI, systolic blood pressure, heart disease, type II diabetes, physical 

activity, diet, smoking, as well as HDL and total cholesterol) which might be more 

predictive of MCI and non-AD types of dementia, like vascular dementia, than AD. 

Nevertheless, the MMRS model for MCI, was demonstrated to be able to 

significantly predict MCI status with an AUROC of up to 0.68 (Fig. 2) as well as to 

prospectively predict cognitive impairments in two external cohorts (Fig. 3). 

Noteworthily, despite not being trained in the PPMI cohort, the performance of our best 

performing MMRS model in prospectively predicting cognitive impairments in this 

cohort (AUROC ≈ 0.67) was even better than the previously reported prediction by 

genetic and epigenetic variables (AUROC ≈ 0.64) [30].  

Furthermore, compared to using only CSF biomarkers as variables, the 

combination of the CSF biomarkers and the 14 MPSs resulted in a consistent 

improvement in the prediction of MCI status (Fig. 5). This combination outperforms 

previously reported MRI-based classification of MCI in late-life depression [62] and at 

midlife [63] which have been shown to yield an AUROC of 0.77 and 0.85, respectively. 

However, the addition of the PGSs as additional features to the 14 MPSs, did not lead 

to a significant improvement in predictive performance. This is, however, not 

unforeseen given the relatively poor performance of the PGSs in predicting their 

corresponding risk factors (Supplementary Table 16) and MCI status (Fig. 5). 
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Although the addition of PGSs yielded only limited improvement in MCI predictive 

performance, matching pairs of PGSs and MPSs were found to have only a relatively 

low correlation (Supplementary Fig. 6), meaning that the overlapping information 

between matching pairs of MPSs and PGSs is very limited. Furthermore, JIVE and the 

colocalization analysis also suggested relatively little influence of genetic variation on 

the model’s prediction (Supplementary Fig. 4-5). Finally, the fact that the addition of 

MPSs to the PGSs and/or CSF biomarkers consistently improves the model’s 

performance (Fig. 5), indicates that the MPSs provide unique information on top of the 

already established genetic and CSF biomarkers. 

The ‘AMPA glutamate receptor clustering (GO:0097113)’ term was shown to be 

the most significantly overrepresented GO term by the union of the CpGs included in 

our best-performing MMRS model (Supplementary Table 15). Interestingly, AMPA 

glutamate receptors are known to play an important role in synaptic transmission, and 

Alzheimer’s disease pathology has previously been shown to be associated with an 

enhanced removal of these receptors from the post-synaptic membrane [64]. Although 

the methylation changes in these processes were measured in the blood, they may 

resemble the alterations that occur in an AD-affected brain. Specifically, the model’s 

CpGs associated with this GO term are located in known dementia-related genes, 

including APOE [65], DLG1 [66], NLGN1 [67], SHANK3 [68], SHISA6 [69], SHISA7 

[70], and SSH1 [71]. Hence, this AMPA receptor-associated process might be one way 

by which the model is able to estimate a person’s dementia risk.  

Besides the validation of our blood-derived DNA methylation-based model in 

multiple independent cohorts, a strength of the present study is the use of 14 MPSs as 

variables for dementia risk prediction. Particularly, our approach utilizes the large-scale 

nature of a general population cohort to reduce the dimensionality of the DNA 
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methylation data into 14 interpretable latent features (i.e., the 14 MPSs), allowing for 

the construction of a robust and replicable model and overcoming the lack of replication 

of CpG-level models as described previously [20]. In addition, the MPSs have a clear 

biological meaning which is in contrast to the more difficult-to-interpret latent features 

generated by other commonly used dimensionality reduction methods such as (s)PLS, 

PCA, and autoencoders. This way, our model can provide direct information about 

which risk factors contribute to an (elevated) dementia risk. As the DNA methylation 

profile has previously been shown to be modifiable through lifestyle changes (e.g., 

smoking cessation [72] and weight restoration [73], alcohol withdrawal [74], and 

physical activity [8]), the information provided by our model possibly allows for targeted 

intervention strategies, aiming at maximally reducing the patient-specific risk scores. 

However, to which extent and how these MPSs can be best modified by, for example, 

lifestyle interventions could be investigated in future studies. 

Furthermore, it should be noted that, although MCI is a well-established 

dementia risk factor, it is not a perfect predictor of the future onset of dementia. 

Specifically, a significant proportion of MCI individuals revert to a cognitively healthy 

status [75]. So, instead of using the cross-sectional MCI status as the dependent 

variable, modeling the prospective cognitive outcome (e.g., the trajectory of cognitive 

decline) may result in a better model for the prediction of the future onset of cognitive 

impairments. The lack of large-scale prospective data, however, makes this approach 

currently impossible, and it is up to future initiatives to collect such data for more 

sophisticated analyses. 

Nevertheless, our established MMRS model may act as a starting point for 

future studies, aiming at further improving the model’s predictive performance by 

testing novel feature selection and machine learning methods, incorporating more 
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omics layers, as well as performing model training on larger (prospective) datasets. In 

the end, this might bring us closer to the establishment of a reliable blood-based model 

for the early identification of people at risk of developing dementia, an essential 

requirement for successful intervention strategies. 
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