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Figure S1: Detailed TxGNN predictor illustration. (1) TxGNN projects biological concepts into meaningful representa-
tions through knowledge graph neural network message passing on the KG. (2) It then designs a similarity disease search
component to enrich molecularly uncharacterized diseases and it has three modules (2.1) It computes a signature vector for
each disease that captures the disease similarity. (2.2) Based on the signature vector distance, it profiles a set of similar diseases
and retrieves their latent embeddings. (2.3) It then aggregates the different similar diseases into a powerful auxiliary embedding.
(2.4) A gating mechanism is designed to control the effect between the original disease embedding and the auxiliary disease
embedding since many well-characterized diseases have sufficient embeddings and do not need subsidies. (3) A decoder then
maps the query drug and disease representation to predict the outcome. A pretext learning stage is devised to allow TxGNN
to learn an initialized embedding that captures complex biological knowledge.

S2



Disease-Phenotype(+) —

Contra-Indication i

'”dica“O”A—

Figure S2: Distribution of the number of disease neighbor types. Our KG has rich information about diseases. On
median, for diseases that have known indications, a disease node is connected to 5 proteins, 14 phenotypes, 3 other diseases,
and 2 exposures in the network.
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Figure S3: Illustration of TXxGNN graph rewiring perspective. a. For a target disease, we use a disease signature to select
similar disease nodes in the entire network (in the figure, target disease selects disease A and B, not C). We then want to
aggregate the disease module information of these similar disease nodes into the target disease, where this information would
not be available with the classic GNN approach. TkxGNN fuses this information into target disease embedding by aggregating
these remote disease embeddings to the target disease embeddings. After fusing, the disease module information is available in
the target disease node. b. This fusing step happens in the latent embedding space, which is equivalent to adding a network
edge between the target disease node and selected similar diseases. We see that through this network rewiring perspective,
TxGNN conducts a long-range selective aggregation guided by domain prior.
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Figure S4: Detailed illustration of TxGNN explainer. For each edge between node 7 and j with relation r, a weight matrix W .
takes in the node embedding and produces a score z; j .. If the score measures the importance of this edge to the prediction.
If it is larger than some threshold, e.g., 0.5, then the edge is kept and vice versus. Applying this to every edge, we can obtain a
sparse subgraph that depicts the essential connections for predictions. This same subgraph explanation is then converted to
various forms of visualizations such as neighbor nodes, subgraphs, and paths. We study and find that path-based visualization
aligns the best with domain scientists.
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Figure S5: Three types of visual explanations for TxGNN predictions. We categorize instance explanations for GNNs
into three main groups, neighbor nodes (a), subgraphs (b), and paths (c). We compared the three visual explanations and
selected path-based explanations due to their similarity to the clinicians’ reasoning about indications.
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Figure S6: Visualize TXxGNN latent representations. a. To further understand the performance gain of the metric learning
module from a machine learning standpoint, we explore the example of tonsillitis. Diseases similar to tonsillitis (epiglottitis,
peritonsillar abscess, nasopharyngitis, pharyngitis, vulvitis) are initially distant in the embedding space. Thus, by fusing distant
disease embeddings, TXGNN establishes a long-range skip connection to the disease module of these similar diseases and
provides complementary information missing from the local neighborhood around the target disease. This is especially
beneficial in predicting therapeutic use for conditions with few or no treatments and limited molecular understanding.
TxGNN uses disease signatures as a learnable disease look-up catalog to identify the appropriate distant disease information
that can be transferred to the underpowered target disease. b. Visualization of embeddings for all nodes in the KG.
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Figure S7: Prioritizing indications and contra-indications with high accuracy. We generate a list of the top-100

predicted drugs for each disease and calculate the fraction of correct hits in the list (Recall@100). TxGNN performs consistently
better across hold-out sets.
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Figure S8: Ablation study. We conduct a systematic study by modifying individual components of TxGNN to test their
utility on the systematic disease split. First, we remove the entire metric learning procedure, and it degrades to regular GNN
(‘No-Metric’ ). We find TxGNN has a 0.2884 AUPRC increase over the ablation for indication and 0.2008 AUPRC increase for
contraindication. Then, we keep the metric learning procedure but remove pretraining (‘No-Pretrain’). The ablation has 0.030
decrease in AUPRC and retrieves 7.5% fewer hits in the top 100 predictions for indication. We observe similar behaviors for
predicting contraindicated use, where ‘No-Pretrain’ leads to a 0.044 decrease in AUPRC and recalls 7.7% fewer hits, showing
that the biomedical knowledge-grounded pretraining strategy is valuable and leads to positive knowledge transfer. To test
the utility of degree-based aggregation, we use a simple alternative by taking the average between the auxiliary and original
disease embeddings (Avg-Agg’). We find TxGNN has relatively similar performances in indication prediction but improves
contraindication prediction by 0.022 in AUPRC and retrieves 1.8% more hits, showing the usefulness of this component. Lastly,
we experiment with two alternative strategies to calculate the disease signature, one is only using protein nodes to calculate
disease similarity (‘Protein-Sig’), and another is a diffusion-based random walk signature (‘Walk-Sig’). We find TXGNN retrieves
8.4%/5.4% more hits than ‘Protein-Sig’ and 9.6%/6.4% more hits than ‘Walk-Sig’ in indication/contraindication prediction,
respectively, suggesting the importance of signature selection to characterize the similarity among diseases. We find that each
component is indispensable in the success of TXGNN. The deep metric learning module is the key factor that drives TXGNN
performance, corroborating our hypothesis on disease similarity.
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Figure Sg: Sensitivity analysis of )\ in the embedding gating. When updating the original disease embedding with
disease-disease metric learning embedding, we want to give higher weight to the original disease embedding when the disease
node degree is large and vice versus. We use an exponential function on the node degree to approximate this effect. Here, we

show that the model performance is not sensitive to the exponential function parameter A where larger \ gives a more steep
increase of weight as the node degree becomes smaller. The y-axis on the left side panel is AUPRC and y-axis on the right side
panel is Recall@io0o. The metric is calculated using systematic split with five independent data splits.
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Figure S10: Interface used in the usability study of TxGNN. We compare path-based explanations with a non-explanation
baseline. For each prediction, participants decided whether the predicted drug can be used for treating a certain disease and
reported their confidence levels using a 5-point Likert scale (1=not confident at all, s=completely confident).

Su



Supplementary Tables

Drug name Active ingredient Disease ‘ Approval FDA Number Orphan|TxGNN Percentile
Vabysmo  Faricimab Macular degeneration 01/28/2022 BLA761235 No 0.938 2.25%
Welireg Belzutifan von Hippel-Lindau disease 08/13/2021 NDA215383  Yes 0.720 4.11%
Mounjaro Tirzepatide Type 2 diabetes mellitus 05/13/2022 NDA215866  No 0.286 12.50%
Ztalmy Ganaxolone CDKLs disorder 03/18/2022 NDA215904  Yes 0.335 18.73%
Leqvio Inclisiran sodium  Familial hypercholesterolemia |12/22/2021 NDAz21401z2  No 0.301 19.32%
Tezspire  Tezepelumab-ekko Asthma 12/17/2021 BLA761224 No 0.233 32.41%
Vtama Tapinarof Psoriasis 05/23/2022 NDAz215272  No 0.261 32.70%
Adbry Tralokinumab Atopic dermatitis 12/27/2021 BLA76180  No 0.040  50.37%
Vonjo Pacritinib citrate ~ Myelofibrosis 02/28/2022 NDA208712  Yes 0.011 63.14%
Livtencity Maribavir Cytomegalovirus infection 11/23/2021 NDA215596  Yes 0.033 66.37%

Table S1: Evaluation of TxGNN on recently approved therapies. To demonstrate that TxGNN was not driven by
confirmation bias from indications and contraindications already present in the knowledge graph, we considered ten therapies
that were approved by the FDA after TxGNN'’s dataset and model development were completed (June 2021). None of these
therapies had direct relationships between their drug-disease nodes in the TXGNN dataset. We then asked TXGNN to make
predictions for those diseases without any prompting for the recently approved drug and observed that TxGNN consistently
ranked newly introduced drugs highly, with the recently approved drugs found in the first third (30.19%) of the full-length
prediction list on average. Occasionally, TxGNN ranked the approved drug in the top 5% of therapeutic candidates, such
as faricimab to treat macular degeneration (top 2.25%) and belzutifan to treat von Hippel-Lindau disease (top 4.1%). In one
case, TxGNN ranked maribavir in the bottom two-thirds of the prediction list for treating cytomegalovirus infections in
patients post-transplantation, likely because TxGNN'’s knowledge graph did not contain information about the host-pathogen
interactions that inform the treatment pathway.
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Node Type Count Percent (%)

Biological process 28,642 22.1
Protein 27,671 21.4
Disease 17,080 13.2
Phenotype 15,311 1.8
Anatomy 14,035 10.8
Molecular function 11,169 8.6
Drug 7,957 6.2
Cellular component 4,176 3.2
Pathway 2,516 1.9
Exposure 818 0.6
Total number of nodes 129,375 100.0

Table S2: Statistics on nodes in the therapeutics-centered knowledge graph.
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Relation Count Percent (%)

Anatomy - Protein (present) 3,036,406 37.5
Drug - Drug 2,672,628 33.0
Protein — Protein 642,150 7.9
Disease — Phenotype (positive) 300,634 3.7
Biological process — Protein 289,610 3.6
Cellular component — Protein 166,804 2.1
Disease — Protein 160,822 2.0
Molecular function - Protein 139,060 17
Drug - Phenotype 129,568 1.6
Biological process — Biological process 105,772 1.3
Pathway — Protein 85,292 11
Disease — Disease 64,388 0.8
Drug - Disease (contraindication) 61,350 0.8
Drug - Protein 51,306 0.6
Anatomy - Protein (absent) 39,774 0.5
Phenotype — Phenotype 37,472 0.5
Anatomy — Anatomy 28,064 0.3
Molecular function — Molecular function 27,148 0.3
Drug - Disease (indication) 18,776 0.2
Cellular component — Cellular component 9,690 0.1
Phenotype — Protein 6,660 0.1
Drug - Disease (off-label use) 5,136 0.1
Pathway — Pathway 5,070 0.1
Exposure — Disease 4,608 0.1
Exposure — Exposure 4,140 0.1
Exposure — Biological process 3,250 <o.1
Exposure — Protein 2,424 <o.1
Disease — Phenotype (negative) 2,386 <o.1
Exposure — Molecular function 90 <o.1
Exposure — Cellular component 20 <o.1
Total number of edges 8,100,498 100.0

Table S3: Statistics on edges in the therapeutics-centered knowledge graph.
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