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Figure S1. Data availability flowchart across all four measurement time point
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Supplementary information “computational PVS segmentation” 

 

1. Denoising 

Many de-noising methods rely on the premise that the neighbourhood of a voxel contains 

sufficient information to recover the voxel’s original value—also referred to in the literature as the 

locally adaptive recovery paradigm1 (e.g. mean and median filtering). The NLM filter, on the other 

hand, assumes images are redundant (there are regions within an image that are similar) and 

thus restores the intensity of a voxel based on non-adjacent yet similar regions. Let 𝑓0: 𝛺3 → ℝ 

and 𝑓: 𝛺3 → ℝ be the uncorrupted and corrupted versions of the same input scan and 𝜀~𝒩(0, 𝜎2) 

the additive white Gaussian noise corrupting the measurement, 𝑓 = 𝑓0 + 𝜀. The NLM filter 

restores the intensity of a voxel 𝑥𝑖 ∈ Ω3 via weighted averaging: 

𝑁𝐿(𝑓)(𝑥𝑖) = ∑ 𝑤(𝑥𝑖 , 𝑥𝑗) ∙ 𝑓(𝑥𝑗)

𝑥𝑗∈Ω3

, 
(1) 

where 𝑤(𝑥𝑖 , 𝑥𝑗) determines the weight of the voxel 𝑥𝑗 ∈ Ω3 on 𝑥𝑖 ’s restoration. The weight of each 

voxel in the image is given by: 

𝑤(𝑥𝑖 , 𝑥𝑗) =
1

𝑍𝑖

𝑒
−

‖𝑓(𝑁(𝑥𝑖))−𝑓(𝑁(𝑥𝑗))‖
2

2

2∙𝛽∙𝜎2∙#𝑛(𝑁𝑖) , (2) 

where 𝑍𝑖 ∈ ℝ is a normalising constant ensuring ∑ 𝑤(𝑥𝑖 , 𝑥𝑗) = 1𝑥𝑗
, 𝛽 ∈ ℝ a smoothing parameter, 

and 𝑁(𝑥) the neighbourhood around the voxel 𝑥 ∈ Ω3, and #𝑛(∙) the cardinality operator. Voxels 

with neighbourhoods comparable to that of the voxel of interest contribute more in the weighted 

average (Eq. 1). 

In order to de-noise the input image adequately, a good estimate of the level of noise, given by 

𝜎2, is necessary; otherwise blurring will be insufficient or excessive. Assuming redundancy, we 

can estimate this parameter directly from scans: if 𝑁(𝑥𝑖) ≈ 𝑁(𝑥𝑗) then 

 ‖𝑓0(𝑁(𝑥𝑖)) + 𝜀𝑁(𝑥𝑖) − 𝑓0 (𝑁(𝑥𝑗))‖
2

2

≈ 0 and 𝔼 [‖𝑓(𝑁(𝑥𝑖)) − 𝑓 (𝑁(𝑥𝑗))‖
2

2

] = 𝔼 [‖𝑓0(𝑁(𝑥𝑖)) +

𝜀𝑁(𝑥𝑖) − 𝑓0 (𝑁(𝑥𝑗)) − 𝜀𝑁(𝑥𝑗)‖
2

2

] = 2𝜎2. Because the redundancy assumption does not always hold 

on clinical contexts2, the local noise variance is calculated using a high-pass filtered version of 

the original image. To account for Rician noise typically observed in MRI, is rescaled based on 

image’s signal-to-noise ratio (see2 for more details; code available at: 

https://sites.google.com/site/pierrickcoupe/softwares/denoising/mri-denoising?authuser=0). 

 

2.The Frangi filter: a multiscale Hessian-based filter 

PVS segmentation often relies on Hessian analysis, which enables distinguishing between tubular 

structures and round or flat ones3–5. The operation of Hessian-based filters can be split into four 

major steps5.  

https://sites.google.com/site/pierrickcoupe/softwares/denoising/mri-denoising?authuser=0
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First, we convolve each input scan, 𝑓: 𝛺3 → ℝ, with a family of Gaussian kernels, 

{𝒢𝜎𝑖
2  | 𝒢𝜎𝑖

2: 𝛺3 → ℝ ˄ 𝜎𝑖  ∈ [𝜎𝑚𝑖𝑛 , 𝜎𝑚𝑎𝑥]}. Second, for each voxel and each kernel, we compute the 

Hessian matrix, (𝐻(𝑓 ∗ 𝒢𝜎𝑖
2))

𝑖𝑗
=

𝜕2(𝑓 ∗ 𝒢𝜎𝑖
2)

𝜕𝑥𝑖𝜕𝑥𝑗
⁄ . Third, we find the corresponding 

eigenvalues, 𝜆𝜎𝑖

(1)
, 𝜆𝜎𝑖

(2)
, 𝜆𝜎𝑖

(3)
∈ ℝ, with |𝜆𝜎𝑖

(1)
| ≤  |𝜆𝜎𝑖

(2)
| ≤  |𝜆𝜎𝑖

(3)
|. From here on, we exclusively examine 

regions with concave hypointense structures5, i.e. where 𝜆𝜎𝑖

(2)
, 𝜆𝜎𝑖

(3)
> 0 in both T1w and FLAIR to 

rule out mistaking WMH for ePVS. Fourth, we compute the vesselness response function, which 

filters structures by sphericity, flatness, and contrast (Figure S1). 

 

 

 

 

 

 

 

 

 

 

Figure S2. Geometrical constraints that facilitate the search of PVS candidates. To enhance 

tubular structures, Hessian-based filters capitalise on geometrical and visual properties encoded 

derived from the Hessian matrix, such as saliency, sphericity, and flatness. The Hessian matrix 

can be decomposed into its eigenvalues, 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 ∈ ℝ, with |𝝀𝟏| ≤  |𝝀𝟐| ≤  |𝝀𝟑| and eigenvectors, 

which geometrically describe the length and orientation of the axes of an ellipsoid, respectively. 

The search for PVS candidates is often limited to locations where |𝝀𝟏| → 𝟎 and |𝝀𝟏| √|𝝀𝟐𝝀𝟑|⁄ → 𝟎 

(i.e. containing elongated as opposed to spherical structures) and |𝝀𝟐| |𝝀𝟑|⁄ → 𝟏 (i.e. containing 

linear as opposed to planar structures). 

 

The Frangi filter3—a popular Hessian-based filtering method5—examines sphericity, 𝑅𝛽 =

|𝜆𝜎𝑖

(1)
| √|𝜆𝜎𝑖

(2)
𝜆𝜎𝑖

(3)
|⁄ , flatness, 𝑅𝛼 = |𝜆𝜎𝑖

(2)
| |𝜆𝜎𝑖

(3)
|⁄ , and contrast, 𝑆 = √𝜆𝜎𝑖

(1)2
+ 𝜆𝜎𝑖

(2)2
+ 𝜆𝜎𝑖

(3)2
 jointly in the 

so-called vesselness response function3,5: 

𝑉𝑚𝑢𝑙𝑡𝑖𝑠𝑐𝑎𝑙𝑒(𝑓; 𝛼, 𝛽, 𝛾, 𝜎𝑚𝑖𝑛,  𝜎𝑚𝑎𝑥)

= 𝑚𝑎𝑥
𝜎∈[𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥]

{
0 if 𝜆𝜎𝑖

(2)
< 0 or 𝜆𝜎𝑖

(3)
< 0,

(1 − 𝑒−𝑅𝛼
2 2⁄ ) ∙ (𝑒−𝑅𝛽

2 2⁄ ) ∙ (1 − 𝑒−𝑆2 2𝛾2⁄ ) otherwise,
 

(3) 

where 𝛼, 𝛽, and 𝛾 ∈ ℝ+ determine the sensitivity of the filter to each of these geometrical and 

visual cues and 𝜎𝑚𝑖𝑛 , 𝜎𝑚𝑎𝑥 ∈ ℝ+ relate to the size of the structures of interest (code available at: 

https://de.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-

filter). We set up these five parameters to 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 to be half the value of the 

https://de.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
https://de.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
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maximum Hessian norm, in line with the parameters suggested in the seminal work3, and 𝜎𝑚𝑖𝑛 =

0.1 to 𝜎𝑚𝑎𝑥 = 5 to allow for the detection of structures of a wide range of sizes6—the distance 

between the zero-crossings of the Laplacian of the Gaussian kernel increases with 𝜎, which 

permits enhancing larger objects of interest. 

3. Consensus map 

Though theoretically feasible, PVS segmentation using only T1w or T2w imaging is not ideal as 

WMH are likely to be mistakenly classified as PVS because their vesselness response exceeds 

that of PVS. Such classification errors bias subsequent analyses and interpretations, hindering 

determining the involvement of PVS alone on brain health function7. We, therefore, opted for a 

more conservative approximation in which we used both FLAIR and T1w imaging to better discern 

between these two neuroradiological features8: PVS appear concave and hypointense in both 

FLAIR and T1w images, whereas WMH appear convex and hyperintense in FLAIR and concave 

and hypointense in T1w images8. Mathematically speaking, we limited our search to voxels where 

|𝜆1| ≈ 0 and  𝜆2 ≈ 𝜆3 ≫ 0 in T1w and FLAIR. We kept the now-filtered T1w-based vesselness 

response as a reference for subsequent binarisation. 

4. Spatial processing for marginal modelling 

We registered all PVS segmentation maps to a DELCODE-specific Multi-Brain (MB) toolbox 

template9 (code available at: https://github.com/WTCN-computational-anatomy-group/mb) and 

adjusted for local volume changes introduced by normalisation in PVS segmentation maps by 

modulation with Jacobian determinants10,11. PVS maps were smoothed with Gaussian kernels (6 

mm full width at half maximum). Model was aligned with regional marginal models12 (PVS ~ 

Time*AT profile + Age + Age² + Sex + Years of Education + Total Brain Volume). 

5. Quantification limitations  

This multimodal approximation to segment PVS and better discern them from WMH is 

conservative. We were able to demonstrate that our computational estimates resonated well with 

the clinical assessments (clinical visual ratings and manual counts; Figure 1). 

Strikingly, we found a trend in the Bland-Altmann plots for PVS in the white matter: differences 

between computational and manual counts increased with more PVS. Such biases were also 

reported elsewhere13,14 and are entirely methodologically driven: long tubular structures tend to 

be split into several segments, resulting in greater counts of PVS7. Although widespread, the 

accuracy of the Frangi filter can vary depending on the characteristics (vascular load) of the study 

population; other filters might yield better segmentation results in different scenarios7. Optimizing 

the automatic quantification of PVS hence still remains a matter for future research. 

While useful, the multimodal method has drawbacks. First, its applicability depends on whether 

the sequences being jointly analysed have similar resolutions, given that differences in voxel size 

disallow visualising and quantifying PVS7. Second, sensitivity differences, co-registration errors 

as well as motion artefacts may compromise PVS identification, particularly when small7,15. Yet, 

https://github.com/WTCN-computational-anatomy-group/mb
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the good stability of estimates we here achieved opposes such corruption. However, the selection 

of study-specific threshold values is nonetheless advisable. All in all, the development of 

automatic methods that can accurately identify different markers of cerebral small vessel 

alterations accurately requires more research. High-resolution multimodal techniques, as well as 

a reliable and comprehensive ground truth, may aid in reaching this goal. We emphasise that, for 

the time being, computerised segmentation offers a decent estimate of PVS burden, but its clinical 

assessment and validation remain essential. 
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Figure S3. PVS quantification and analysis pipeline. (A) We segmented PVS based on 
baseline T1w and FLAIR scans. We then integrated PVS over basal ganglia and centrum 
semiovale and used R to study regional fractional PVS volume in relation to clinical variables and 
time. (B) Four key steps made up our PVS segmentation strategy. First, we used non-local means 
(NLM) to reduce the level of noise on T1w and FLAIR images. Second, we applied the Frangi 
filter to all images to enhance tubular structures. Third, to better distinguish between PVS and 
WMH, we fused the information provided by T1w and FLAIR imaging. Fourth, to finally produce 
PVS segmentation maps, we binarise the consensus maps. (C) Without our multimodality PVS 
segmentation approximation, (focal) WMH would be erroneously flagged as PVS if based solely 
on T1w scans (referred to as "Original map" in C). 
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Table S4. Linear mixed effect modelling for temporal trajectories of hippocampal volume, 

showing different effects of time, of age, sex and years of education. Models with correlated 

slope and random intercept: hippocampal volume ~ age + age² + time + sex + years of education 

+ (1+ time | subject). 

Annotations. σ2 = residual variance; τ00 = random intercept variance; τ11 = random slope 
variance; ρ01 = covariance between random slope and intercept. 

 

  

  Hippocampal volume 

Predictors B SE CI p 

(Intercept) 0.20 0.06 0.09 – 0.31 <0.001 

age (linear) -0.37 0.03 -0.43 – -0.30 <0.001 

age (quadratic) -0.04 0.03 -0.11 – 0.02 0.160 

time -0.08 0.00 -0.08 – -0.07 <0.001 

sex -0.43 0.07 -0.56 – -0.30 <0.001 

years of education 0.11 0.03 0.04 – 0.17 0.001 

σ2 0.01 

τ00  0.64 Subject 

τ11  0.00 Subject.time_ind 

ρ01 0.54 Subject 

ICC 0.99 

N  527 Subject 

Observations 1927 

Marginal R2 / Conditional R2 0.229 / 0.992 
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Table S5. Linear mixed effect modelling for CSF IL-6 effects in presumably healthy 

subsample (CN and SCD). Models with correlated slope and random intercept: PVS ~ time x 

CSF IL-6 + age + age² + sex + years of education (1+ time | subject). 

Annotations. σ2 = residual variance; τ00 = random intercept variance; τ11 = random slope variance; ρ01 = 

covariance between random slope and intercept. 

  CSO-PVS BG-PVS 

Predictors B SE CI p B SE CI p 

(Intercept) -1.99 0.18 -2.34 – -1.63 <0.001 -1.06 0.12 -1.29 – -0.82 <0.001 

age (linear) 0.03 0.08 -0.13 – 0.19 0.706 0.12 0.05 0.01 – 0.23 0.028 

age (quadratic) 0.07 0.09 -0.10 – 0.23 0.439 -0.05 0.06 -0.16 – 0.06 0.382 

Years of education 0.07 0.08 -0.08 – 0.22 0.339 -0.01 0.05 -0.11 – 0.09 0.845 

sex -0.24 0.15 -0.54 – 0.05 0.108 0.16 0.10 -0.03 – 0.36 0.099 

time  0.02 0.05 -0.07 – 0.11 0.712 -0.01 0.02 -0.05 – 0.02 0.448 

CSF IL-6 -0.02 0.14 -0.30 – 0.25 0.869 0.08 0.10 -0.12 – 0.28 0.423 

Time x CSF IL-6 0.07 0.04 -0.02 – 0.16 0.118 0.03 0.02 -0.01 – 0.07 0.094 

Random Effects 

σ2 0.16 0.02 

τ00 0.50 Subject 0.24 Subject 

τ11 0.02 Subject.time_ind 0.00 Subject.time_ind 

ρ01 0.25 Subject 0.40 Subject 

ICC 0.76 0.92 

N 114 Subject 113 Subject 

Observations 422 416 

Marginal R2 / Conditional R2 0.052 / 0.773 0.064 / 0.926 



 
 9 

Table S6. Linear mixed effect modelling for CSO-PVS and BG-PVS in full sample, showing 

different trajectories over time, effects of age, sex and years of education. Models with 

correlated slope and random intercept: PVS ~ age + age² + time + sex + years of education + (1+ 

time | subject). 

Annotations. σ2 = residual variance; τ00 = random intercept variance; τ11 = random slope variance; ρ01 = 
covariance between random slope and intercept. 

 
 

  CSO-PVS BG-PVS 

Predictors B SE CI p B SE CI p 

(Intercept) -1.72 0.06 -1.83 – -1.60 <0.001 -0.78 0.04 -0.85 – -0.70 <0.001 

age (linear) 0.07 0.04 -0.00 – 0.15 0.052 0.17 0.02 0.13 – 0.22 <0.001 

age (quadratic) -0.03 0.04 -0.10 – 0.04 0.377 -0.07 0.02 -0.11 – -0.02 0.003 

time 0.09 0.01 0.07 – 0.11 <0.001 0.04 0.00 0.03 – 0.05 <0.001 

Years of education 0.02 0.04 -0.05 – 0.09 0.629 -0.05 0.02 -0.10 – -0.01 0.018 

sex  -0.19 0.07 -0.33 – -0.04 0.012 -0.06 0.05 -0.15 – 0.02 0.156 

Random Effects 

σ2 0.16 0.03 

τ00 0.60 Subject 0.24 Subject 

τ11 0.03 Subject.time_ind 0.00 Subject.time_ind 

ρ01 0.24 Subject 0.22 Subject 

ICC 0.79 0.89 

N 522 Subject 531 Subject 

Observations 1887 1920 

Marginal R2 / Conditional R2 0.033 / 0.801 0.122 / 0.907 
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Table S7. Linear mixed effect modelling for modulating effect of CSF IL-6 levels on CSO-PVS rates of change in dependence of biomarker profile. 
Main model considered A+T+ as reference group (left). Subsequent analysis considered A-T- as reference group (right). Models with correlated slope and 
random intercept: CSO-PVS ~ age + age² + time + sex + years of education + AT + CSF IL-6 + CSF IL-6 x time x AT + (1+ time | subject). 
 

  CSO-PVS CSO-PVS (A+T+ reference) CSO-PVS (A-T- reference) 

Predictors B SE CI p B SE CI p B SE CI p 

(Intercept) -2.03 0.16 -2.34 – -1.72 <0.001 -1.61 0.21 -2.03 – -1.19 <0.001 -2.11 0.17 -2.44 – -1.78 <0.001 

age (linear) 0.12 0.07 -0.02 – 0.26 0.095 0.08 0.07 -0.06 – 0.23 0.269 0.08 0.07 -0.06 – 0.23 0.269 

age (quadratic) 0.02 0.07 -0.13 – 0.16 0.830 0.03 0.07 -0.12 – 0.17 0.720 0.03 0.07 -0.12 – 0.17 0.720 

Years of education 0.09 0.07 -0.04 – 0.22 0.188 0.08 0.07 -0.06 – 0.21 0.253 0.08 0.07 -0.06 – 0.21 0.253 

time  -0.10 0.14 -0.36 – 0.17 0.468 -0.12 0.14 -0.39 – 0.15 0.398 -0.12 0.14 -0.39 – 0.15 0.398 

sex 0.02 0.04 -0.05 – 0.09 0.585 0.02 0.04 -0.05 – 0.09 0.533 0.02 0.04 -0.05 – 0.09 0.533 

CSF IL-6 0.12 0.11 -0.09 – 0.34 0.258 0.12 0.11 -0.09 – 0.33 0.265 0.12 0.11 -0.09 – 0.33 0.265 

time × CSF Il-6 0.07 0.03 0.00 – 0.13 0.043 0.12 0.05 0.02 – 0.21 0.016 0.05 0.04 -0.02 – 0.12 0.188 

A-T- 
    

-0.50 0.18 -0.86 – -0.14 0.006 
    

A+T- 
    

-0.49 0.21 -0.90 – -0.08 0.019 0.01 0.16 -0.31 – 0.32 0.970 

A+T+ 
        

0.50 0.18 0.14 – 0.86 0.006 
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time × CSF Il-6 x A-T- 
    

-0.07 0.05 -0.16 – 0.02 0.137 
    

time × CSF Il-6 x A+T- 
    

-0.04 0.06 -0.15 – 0.07 0.477 0.03 0.04 -0.06 – 0.12 0.513 

time × CSF Il-6 x A+T+ 
        

0.07 0.05 -0.02 – 0.16 0.137 

Random Effects 

σ2 0.17 0.17 0.17 

τ00 0.61 Subject 0.58 Subject 0.58 Subject 

τ11 0.02 Subject.time_ind 0.02 Subject.time_ind 0.02 Subject.time_ind 

ρ01 0.19 Subject 0.16 Subject 0.16 Subject 

ICC 0.79 0.79 0.79 

N 168 Subject 168 Subject 168 Subject 

Observations 617 617 617 

Marginal R2 / Conditional R2 0.051 / 0.804 0.088 / 0.804 0.088 / 0.804 

Annotations. σ2 = residual variance; τ00 = random intercept variance; τ11 = random slope variance; ρ01 = covariance between random slope and intercept. 
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Table S8. Linear mixed effect modelling for modulating effect of CSF IL-6 levels on BG-PVS rates of change in dependence of biomarker profile. Main 

model considered A+T+ as reference group (left). Subsequent analysis considered A-T- as reference group (right). Models with correlated slope and random 

intercept: BG-PVS ~ age + age² + time + sex + years of education + AT + CSF IL-6 + CSF IL-6 x time x AT + (1+ time | subject). 

  BG-PVS BG-PVS (A+T+ reference) BG-PVS (A-T- reference) 

Predictors B SE CI p B SE CI p B SE CI p 

(Intercept) -0.91 0.09 -1.09 – -0.72 <0.001 -0.84 0.13 -1.09 – -0.59 <0.001 -0.84 0.10 -1.03 – -0.64 <0.001 

age (linear) 0.12 0.04 0.04 – 0.21 0.003 0.14 0.04 0.06 – 0.23 0.001 0.14 0.04 0.06 – 0.23 0.001 

age (quadratic) -0.10 0.04 -0.18 – -0.01 0.022 -0.10 0.04 -0.18 – -0.01 0.021 -0.10 0.04 -0.18 – -0.01 0.021 

Years of education -0.02 0.04 -0.09 – 0.06 0.693 -0.03 0.04 -0.11 – 0.05 0.501 -0.03 0.04 -0.11 – 0.05 0.501 

sex  0.07 0.08 -0.08 – 0.23 0.344 0.04 0.08 -0.12 – 0.20 0.619 0.04 0.08 -0.12 – 0.20 0.619 

time -0.01 0.01 -0.04 – 0.02 0.523 -0.01 0.01 -0.04 – 0.02 0.556 -0.01 0.01 -0.04 – 0.02 0.556 

CSF IL-6 -0.00 0.07 -0.13 – 0.13 0.958 -0.01 0.07 -0.14 – 0.12 0.867 -0.01 0.07 -0.14 – 0.12 0.867 

time × CSF Il-6  0.03 0.01 0.00 – 0.06 0.022 0.05 0.02 0.01 – 0.09 0.009 0.02 0.01 -0.00 – 0.05 0.078 

A-T- 
    

0.00 0.11 -0.22 – 0.22 0.989 
    

A+T- 
    

-0.19 0.13 -0.44 – 0.06 0.137 -0.19 0.10 -0.38 – 0.00 0.050 

A+T+ 
        

-0.00 0.11 -0.22 – 0.22 0.989 
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time × CSF Il-6× A-T- 
    

-0.03 0.02 -0.06 – 0.01 0.146 
    

time × CSF Il-6 × A+T- 
    

-0.02 0.02 -0.07 – 0.02 0.324 0.00 0.02 -0.03 – 0.04 0.809 

time × CSF Il-6 × A+T+ 
        

0.03 0.02 -0.01 – 0.06 0.146 

Random Effects 

σ2 0.03 0.03 0.03 

τ00 0.23 Subject 0.22 Subject 0.22 Subject 

τ11 0.00 Subject.time_ind 0.00 Subject.time_ind 0.00 Subject.time_ind 

ρ01 0.37 Subject 0.38 Subject 0.38 Subject 

ICC 0.90 0.90 0.90 

N 167 Subject 167 Subject 167 Subject 

Observations 614 614 614 

Marginal R2 / Conditional R2 0.081 / 0.907 0.103 / 0.908 0.103 / 0.908 

Annotations. σ2 = residual variance; τ00 = random intercept variance; τ11 = random slope variance; ρ01 = covariance between random slope and intercept. 
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Figure S9. Relations between CSF IL-6 levels and WMH at baseline. Spearman correlations 
are shown for WMH in (A) CSO and (B) BG. WMH volumes were corrected for linear and 
quadratic age effects, sex and years of education.  

 

 


