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Abstract 16 

 17 

The role of gene-environment (GxE) interaction in disease and complex trait architectures is 18 

widely hypothesized, but currently unknown. Here, we apply three statistical approaches to 19 

quantify and distinguish three different types of GxE interaction for a given disease/trait and E 20 

variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 21 

across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by 22 

leveraging polygenic risk scores (PRS) to test for significant PRSxE in a regression of 23 

phenotypes on PRS, E, and PRSxE, together with differences in SNP-heritability across E bins. 24 

Third, we detect genome-wide proportional amplification of genetic and environmental effects as 25 

a function of the E variable by testing for significant PRSxE with no differences in SNP-26 

heritability across E bins. Simulations show that these approaches achieve high sensitivity and 27 

specificity in distinguishing these three GxE scenarios. We applied our framework to 33 UK 28 

Biobank diseases/traits (average N=325K) and 10 E variables spanning lifestyle, diet, and other 29 

environmental exposures. First, we identified 19 trait-E pairs with rg significantly < 1 (FDR<5%) 30 

(average rg=0.95); for example, white blood cell count had rg=0.95 (s.e. 0.01) between smokers 31 

and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant 32 

SNP-heritability differences across E bins; for example, type 2 diabetes had a significant PRSxE 33 

for alcohol consumption (P=1e-13) with 4.2x larger SNP-heritability in the largest versus 34 

smallest quintiles of alcohol consumption (P<1e-16). Third, we identified 15 trait-E pairs with 35 

significant PRSxE with no SNP-heritability differences across E bins; for example, triglyceride 36 

levels had a significant PRSxE effect for composite diet score (P=4e-5) with no SNP-heritability 37 

differences. Analyses using biological sex as the E variable produced additional significant 38 

findings in each of the three scenarios. Overall, we infer a substantial contribution of GxE and 39 

GxSex effects to disease and complex trait variance. 40 

 41 
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Introduction 43 

 44 

Although gene-environment (GxE) interactions have long been thought to impact the 45 

genetic architecture of diseases and complex traits1–4, the overall contribution of these effects 46 

remains unclear. Previous studies have detected GxE at a limited number of specific loci5–7 47 

(including studies that associated genotype to phenotypic variance without knowing the 48 

underlying E variable8–12). Previous studies have also proposed variance components methods 49 

for detecting genome-wide contributions of GxE to disease heritability13–18, but these methods 50 

have not been applied at biobank scale across a broad range of disease/traits. Thus, the overall 51 

contribution of GxE to disease/trait architectures is currently unknown. In addition, the relative 52 

importance of different types of GxE (e.g., locus-specific GxE, genome-wide effects of E on 53 

genetic variance, genome-wide effects of E on both genetic and environmental variance) is 54 

currently unclear. Studies of GxSex interaction face similar challenges19–24. 55 

 56 

Here, we apply three statistical approaches to quantify and distinguish three different 57 

types of GxE interaction for a given disease/trait and E variable. First, we detect locus-specific 58 

GxE interaction by testing for genetic correlation25 (rg) < 1 across E bins. Second, we detect 59 

genome-wide effects of the E variable on genetic variance by leveraging polygenic risk 60 

scores26,27 (PRS) to test for significant PRSxE28,29 in a regression of phenotypes on PRS, E, and 61 

PRSxE, together with differences in SNP-heritability30–34 across E bins. Third, we detect 62 

genome-wide proportional amplification of genetic and environmental effects as a function of the 63 

E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. 64 

We analyze 33 diseases/traits from the UK Biobank35 (average N=325K), quantifying the 65 

contributions of each type of GxE effect across 10 E variables spanning lifestyle, diet, and other 66 

environmental exposures, as well as contributions of GxSex effects. 67 

 68 

Results 69 

 70 

Overview of methods 71 

 72 

We aim to detect genome-wide GxE, i.e., GxE effects aggregated across the genome. We 73 

consider three potential scenarios that give rise to genome-wide GxE for a given disease/trait and 74 

E variable (Figure 1a). In the first scenario (Imperfect genetic correlation), there is an imperfect 75 

genetic correlation across E bins due to different SNP effect sizes in different E bins. In the 76 

second scenario (Varying genetic variance), there are differences in SNP-heritability across E 77 

bins due to uniform amplification of SNP effect sizes across E bins; the environmental variance 78 

may either remain constant or vary across E bins. In the third scenario (proportional 79 

amplification), the genetic and environmental variance vary proportionately across E bins due to 80 

proportionate scaling of SNP effect sizes and environmental effect sizes across E bins, so that 81 

SNP-heritability remains the same across E bins. We conceptualize these three scenarios as 82 

acting at different levels in a hierarchy that leads from genetic variants to pathways to disease 83 

(see Discussion). 84 

 85 

The three scenarios can be formalized under the following model: 86 

 87 
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where ��  denotes the phenotype for individual �, ���  denotes the genotype of individual � at SNP 89 �, �� denotes the effect size of SNP i, ��  denotes SNP-specific GxE effects, ��  denotes the E 90 

variable value for individual �, 	 quantifies the amplification of genetic effects across E values, 91 
�  denotes environmental effects, and � quantifies the amplification of environmental effects 92 

across E values. In Scenario 1, ��  will be nonzero. In Scenario 2, 	 will be nonzero. In Scenario 93 

3, 	 and � will be nonzero and equal. 94 

 95 

In this study, we apply three statistical approaches to UK Biobank data to detect genome-96 

wide GxE,  analyzing 33 diseases/traits (average N=325K) and 10 environmental variables as 97 

well as biological sex (Figure 1b). First, we detect Imperfect genetic correlation (Scenario 1) by 98 

estimating the genetic correlation of effect sizes between sets of individuals binned on their E 99 

variables using cross-trait LD Score regression25 (LDSC) (Methods). For non-binary E 100 

variables, we estimate the genetic correlation between the most extreme quintiles of the E 101 

variable; for binary E variables, we estimate the genetic correlation between individuals in each 102 

E bin. Second, we employ PRSxE regression28,29, defined as a regression of the phenotype on the 103 

PRS26,27 multiplied by the E variable across individuals, to detect both Varying genetic variance 104 

(Scenario 2) and Proportional amplification (Scenario 3) (Methods); we note that PRSxE 105 

regression is not sensitive to changes in environmental variance only (Methods). We use PRS 106 

computed by PolyFun-pred27 for all analyses involving PRS. We do not standardize the E 107 

variables, and we correct for main and interaction effects of several covariates (Methods). 108 

Finally, we distinguish between Scenario 2 and Scenario 3 by estimating the SNP-heritability 109 

within each E bin using BOLT-REML33 and testing for significant differences between E bins 110 

(most extreme quintiles for non-binary E variables; each bin for binary E variables).  111 

 112 

We assign a trait-E pair to Scenario 1 if it has a genetic correlation across E bins < 1 113 

(regardless of whether it differs in SNP-heritability or has a significant PRSxE regression term); 114 

we assign a trait-E pair to Scenario 2 if it has both a significant PRSxE regression term and a 115 

significant difference in SNP-heritability across E bins; finally, we assign a trait-E pair to 116 

Scenario 3 if it has a significant PRSxE regression term with no significant difference in SNP-117 

heritability across E bins (Figure 1c). We note that for some trait-E pairs, we detected both 118 

locus-dependent GxE (Scenario 1) and non-locus-dependent GxE (Scenario 2 or Scenario 3). We 119 

estimate the excess disease/trait variance explained by genome-wide GxE as follows. In Scenario 120 

1, we transform the estimate of genetic correlation across E bins to the variance scale (Methods; 121 

Supplementary Note). In Scenario 2 and Scenario 3, we approximate the relative amount of trait 122 

variance explained by GxE effects (relative to the genetic variance) as the trait variance 123 

explained by PRSxE effects divided by the trait variance explained by the PRS; this 124 

approximation is valid under a model in which the PRSxE effects are proportional to the GxE 125 

effects (Methods). All reported variances are transformed to the liability scale for disease traits. 126 

We have released open-source software implementing the above approaches (see Code 127 

Availability), as well as their output from this study (see Data Availability). 128 

 129 

Simulations 130 

 131 
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We performed simulations of the three Scenarios to evaluate the properties of the three 132 

statistical approaches. We assigned individuals to one of two E bins and simulated genetic 133 

effects at 10,000 causal SNPs based on the Scenario and E bin. We simulated sample sizes 134 

specific to each statistical approach to match our real data analyses (see below). In Scenario 1, 135 

we set the SNP-heritability to 25% and varied the genetic correlation from 99% to 94%. In 136 

Scenario 2, we set the genetic correlation to 100%, set the SNP-heritability to 25% in one E bin, 137 

and varied the SNP-heritability from 26% to 30% in the other E bin. In Scenario 3, we amplified 138 

the (genetic and environmental components of) phenotypes in one E bin by a range of values 139 

from 1.025  to 1.1. In each Scenario, we report the proportion of significant tests (P<0.05, which 140 

is fairly similar to our significance threshold for real traits; see below) for each of our three 141 

approaches: Genetic correlation (N=67K individuals per E bin), PRSxE regression (training 142 

N=337K, testing N=49K), and SNP-heritability by E (N=67K individuals per E bin). Because 143 

linkage disequilibrium (LD) does not impact GxE effects, we simulated genotypes without LD. 144 

We adjusted the methods used in our simulations accordingly. For Genetic correlation, we used 145 

cross-trait LD score regression in the special case of no LD25. For PRSxE regression, we used a 146 

simple shrinkage estimator in the special case of no LD to compute PRS. For SNP-heritability by 147 

E, we estimated SNP-heritability using LD score regression in the special case of no LD36. 148 

Further details of the simulation framework are provided in the Methods section. 149 

 150 

In Scenario 1, the Genetic correlation approach reported a significant test in 93% of 151 

simulations when the true genetic correlation was 97% or smaller, whereas the PRSxE regression 152 

and SNP-heritability by E approaches were well-calibrated (Figure 2a and Supplementary 153 

Table 1). In Scenario 2, the PRSxE regression approach reported a significant test in 88% of 154 

simulations when the SNP-heritability difference was 4% or larger, and the SNP-heritability by E 155 

approach reported a significant test in more than 88% of simulations when the SNP-heritability 156 

difference was 2% or larger, whereas the Genetic correlation approach was well-calibrated 157 

(Figure 2b and Supplementary Table 1). In Scenario 3, the PRSxE regression approach 158 

reported a significant test in 88% of simulations when the proportional amplification was 1.075 159 

or larger, whereas the Genetic correlation and SNP-heritability by E approaches were well-160 

calibrated (Figure 2c and Supplementary Table 1). In null simulations (heritable trait with no 161 

GxE), all three statistical approaches were well-calibrated (Supplementary Figure 1). 162 

 163 

We compared our framework with GxEMM16, a variance components-based framework 164 

that implements two GxE tests: 1) a test for polygenic GxE under homoskedasticity (GxEMM-165 

Hom), and 2) a test for polygenic GxE under heteroskedasticity (GxEMM-Het). We note that 166 

GxEMM-Hom and GxEMM-Het do not precisely map to the 3 scenarios that we study here. In 167 

addition, because GxEMM is a variance components-based framework, it is currently unable to 168 

scale to biobank-sized datasets. We evaluated the performance of GxEMM on a sample size of 169 

10,000 individuals, as in the simulations of ref. 16. We evaluated our statistical approaches using 170 

matched sample sizes, with 5,000 individuals per binary E bin and 10,000 test individuals for 171 

PRSxE regression. We kept the training data set size the same as in our main simulations 172 

(N=337K). In Scenario 1, the GxEMM-Hom test reported a similar proportion of significant tests 173 

as the Genetic correlation approach, whereas the GxEMM-Het test reported roughly half as many 174 

significant tests (Supplementary Figure 2). In Scenario 2, the GxEMM-Het test was less 175 

powerful than the PRSxE regression and SNP-heritability by E approaches, whereas the 176 

GxEMM-Hom test was well-calibrated (Supplementary Figure 2). In Scenario 3, the GxEMM-177 
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Het test was less powerful than the PRSxE regression approach, whereas the GxEMM-Hom test 178 

was well-calibrated (Supplementary Figure 2). Thus, at sample sizes that permit computational 179 

tractability, GxEMM is generally less powerful than our framework (and cannot distinguish 180 

Scenario 2 and Scenario 3). 181 

 182 

Our framework also estimates the excess disease/trait variance explained by GxE effects, 183 

beyond what is explained by additive effects (for brevity, we refer to this as variance explained). 184 

We determined that estimates of disease/trait variance explained were accurate in each of 185 

Scenario 1 (regression slope = 0.98; Supplementary Figure 3a), Scenario 2 (regression slope = 186 

0.85; Supplementary Figure 3b), and Scenario 3 (regression slope = 1.05; Supplementary 187 

Figure 3c). We note that in both Scenario 2 and Scenario 3, G effects are correlated with GxE 188 

effects, as a correlation between genetic variance (G2) and the E variable implies a correlation 189 

between G and GxE. Current variance components methods do not account for this correlation 190 

and may therefore produce biased estimates of variance explained by GxE; we have verified this 191 

in simulations (Supplementary Table 2). Here, we report the difference in variance explained 192 

by a model including an interaction term (PRS+PRSxE terms) over a base model (PRS only) that 193 

does not include an interaction term, which is robust to this correlation (Methods and 194 

Supplementary Figure 3).  195 

 196 

In summary, our simulations indicate that our statistical approaches attain high sensitivity 197 

and specificity in classifying trait-E pairs into the distinct scenarios of GxE considered here and 198 

produce accurate estimates of excess trait variance explained by GxE. 199 

 200 

Identifying gene-environment interactions across 33 diseases/complex traits and 10 E variables 201 

 202 

We analyzed individual-level data for N=384K unrelated European-ancestry individuals 203 

from the UK Biobank35. We selected 33 highly heritable (z-score for nonzero SNP-heritability36 204 

> 6) and relatively independent (squared genetic correlation25 < 0.5) diseases and traits 205 

(Supplementary Table 3). In addition, we selected 10 relatively independent E variables 206 

spanning lifestyle, diet, and other environmental exposures (r2 < 0.1; primarily from ref. 14; 207 

Supplementary Figure 4; see Methods). We note that these E variables are all significantly 208 

heritable, although the heritability tends to be low (mean SNP-heritability = 6%, max SNP-209 

heritability = 15%; Supplementary Table 4). We assessed statistical significance using a 210 

threshold of FDR<5% across traits and E variables for a given statistical test (see Methods); in 211 

practice, this FDR threshold corresponded to a P-value threshold of �0.01, which is fairly 212 

similar to our simulations. 213 

 214 

Trait-E pairs assigned to Scenario 1 (Imperfect genetic correlation) are reported in Figure 215 

3a and Supplementary Table 5. We identified 19 trait-E pairs with genetic correlation 216 

significantly less than 1 (FDR<5%; average genetic correlation: 0.95), implicating 12 of 33 traits 217 

and 9 of 10 E variables tested. The implicated traits included 9 blood cell and biochemistry traits, 218 

as well as height, BMI, and asthma. On average, these interactions explained 0.27% of 219 

disease/trait variance across all traits analyzed. The lowest significant genetic correlation was 220 

0.85 (se=0.06) for asthma x time spent watching television, explaining 1.5% of trait variance. 221 

The significant GxE interaction for BMI and smoking status (explaining 0.4% of trait variance) 222 

was consistent with results from ref. 14. Trait-E pairs assigned to Scenario 2 (Varying genetic 223 
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variance) are reported in Figure 3b and Supplementary Table 5. We identified 28 trait-E pairs 224 

with significant PRSxE interaction (FDR<5%) and a significant SNP-heritability by E test 225 

(FDR<5%), implicating 13 of 33 traits and 9 of 10 E variables tested. On average, these 226 

interactions explained 2.6% of disease/trait variance across all traits analyzed; the variance 227 

explained by GxE effects was larger for binary traits than for quantitative traits (see Discussion). 228 

Because standard interaction tests can be anti-conservative due to unmodeled 229 

heteroskedasticity37, we repeated our PRSxE interaction analysis using Huber-White variance 230 

estimators38,39 (Methods). We determined that results were highly concordant with our primary 231 

PRSxE interaction analysis (mean Pearson correlation in p-values for interaction across trait-E 232 

pairs: 97%; Supplementary Table 6), suggesting that our findings are not driven by unmodeled 233 

heteroskedasticity. Trait-E pairs assigned to Scenario 3 (Proportional amplification) are reported 234 

in Figure 3c and Supplementary Table 5. We identified 15 trait-E pairs with significant PRSxE 235 

interaction (FDR<5%) but a non-significant SNP-heritability by E test (FDR<5%), implicating 236 

11 of 33 traits and 9 of 10 E variables tested. On average, these interactions explained 0.13% of 237 

disease/trait variance across all traits analyzed.  238 

 239 

 We checked whether any trait-E pairs were assigned to more than one Scenario. We 240 

determined that 2 trait-E pairs were assigned to both Scenario 1 and Scenario 2 (BMI x alcohol 241 

consumption and BMI x Townsend deprivation index); 0 trait-E pairs were assigned to both 242 

Scenario 1 and Scenario 3; and 0 trait-E pairs were assigned to both Scenario 2 and Scenario 3 243 

(which is not possible based on their definition). We also identified 108 trait-E pairs with a 244 

significant SNP-heritability by E test but non-significant PRSxE interaction (Supplementary 245 

Table 7); our primary interpretation is that this is due to changes in environmental variance 246 

rather than GxE interaction (Methods), but we cannot exclude the possibility that this is due to 247 

GxE interaction that we have incomplete power to detect. 248 

 249 

Examples of trait-E pairs assigned to each scenario are reported in Figure 4 and 250 

Supplementary Table 8. First, white blood cell count x smoking status was assigned to Scenario 251 

1 (Figure 4a). The Genetic correlation approach estimated a genetic correlation between 252 

smokers and non-smokers of 0.95, which is significantly less than 1 (P=6.7e-7; FDR < 5%), 253 

explaining 0.5% of the variance of white blood cell count (vs. SNP-heritability of 30%). On the 254 

other hand, the PRSxE regression approach (P=0.46) and SNP-heritability x E approach (P=0.39) 255 

produced non-significant results. We note that smokers had 0.09 s.d. higher mean white blood 256 

cell count than non-smokers (T-test P<1e-16), as previously reported40. Second, type 2 diabetes x 257 

alcohol consumption was assigned to Scenario 2 (Figure 4b). The PRSxE regression approach 258 

(P=1e-13) and SNP-heritability x E approach (SNP-heritability (liability scale) of 0.45 for 259 

highest E quintile vs. 0.38 for lowest E quintile; P<1e-16) both produced significant results 260 

(FDR < 5%), explaining 18% of the variance of type 2 diabetes (vs. SNP-heritability of 35%). 261 

On the other hand, the genetic correlation approach produced a non-significant result (P=0.15). 262 

We note that the prevalence of type 2 diabetes varied with alcohol consumption (6% in highest E 263 

quintile vs. 3% in lowest E quintile; P<2e-16), as previously reported41. Third, WHRadjBMI x 264 

time spent watching television (TV time) was assigned to Scenario 3 (Figure 4c). The PRSxE 265 

regression approach produced a significant result (P=5e-3; FDR < 5%), explaining 0.95% of the 266 

variance of WHRadjBMI. On the other hand, the genetic correlation approach (P=0.29) and 267 

SNP-heritability x E approach (P=0.08) produced non-significant results. We note that 268 

WHRadjBMI and TV time were correlated (r = 0.08, P<1e-16). 269 
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 270 

In summary, we detected GxE interaction in each of the three scenarios across the 33 271 

diseases/traits and 10 E variables analyzed. We estimate that these GxE effects explain 3.0% of 272 

disease/trait variance across all traits analyzed (s.e. 1.5% across traits), compared to SNP-273 

heritability of 29% (s.e. 3% across traits).  274 

 275 

Identifying gene-sex interactions across 33 diseases/complex traits 276 

 277 

We analyzed the same 33 diseases/traits for GxSex interaction using the same 3 statistical 278 

approaches. Traits assigned to Scenario 1 (Imperfect genetic correlation) are reported in Figure 279 

5a and Supplementary Table 9. We identified 22 traits with cross-sex genetic correlation 280 

significantly less than 1 (FDR<5%; average genetic correlation: 0.92), consistent with previous 281 

results22. On average, these interactions explained 2.6% of trait variance across all traits 282 

analyzed. The lowest significant genetic correlation was 0.66 for WHRadjBMI22, explaining 283 

17% of trait variance. Traits assigned to Scenario 2 (Varying genetic variance) are reported in 284 

Figure 5b and Supplementary Table 9. We identified 12 traits with significant PRSxSex 285 

interaction (FDR<5%) and a significant SNP-heritability by Sex test (FDR<5%). On average, 286 

these interactions explained 1.4% of trait variance across all traits; the variance explained by 287 

GxSex effects was larger for binary traits than for quantitative traits (see Discussion). The 288 

largest PRSxSex interaction was for type 2 diabetes, explaining 0.39% of trait variance. Traits 289 

assigned to Scenario 3 (Proportional amplification) are reported in Figure 5c and 290 

Supplementary Table 9. We identified 8 traits with significant PRSxSex interaction (FDR<5%) 291 

but a non-significant SNP-heritability by Sex test (FDR<5%). On average, these interactions 292 

explained 0.05% of trait variance across all traits analyzed (a very small contribution). Of the 30 293 

traits implicated across three scenarios, we identified 7 traits assigned to both Scenario 1 and 294 

Scenario 2, and 5 traits assigned to both Scenario 1 and Scenario 3 (Supplementary Table 9). 295 

We also identified 2 traits with a significant SNP-heritability x Sex test but non-significant 296 

PRSxSex interaction (Supplementary Table 10); our primary interpretation is that this is due to 297 

changes in environmental variance rather than GxSex interaction (Methods).  298 

 299 

Examples of traits with significant GxSex assigned to each Scenario are reported in 300 

Figure 6 and Supplementary Table 11. First, neuroticism was assigned to Scenario 1 (Figure 301 

6a). The Genetic correlation approach estimated a cross-sex genetic correlation of 0.90, which is 302 

significantly less than 1 (P=3.5e-9; FDR < 5%), explaining 5.0% of the variance of neuroticism. 303 

On the other hand, the PRSxSex regression approach (P=0.58) and SNP-heritability by Sex 304 

approach (P=0.45) produced non-significant results. We note that males had lower prevalence of 305 

neuroticism than females (1.6% vs. 2.3% in top score for neuroticism, P<1e-16), as previously 306 

reported42. Second, All autoimmune disease was assigned to Scenario 2 (Figure 6b). The 307 

PRSxSex regression approach (P=2e-15) and SNP-heritability by Sex approach (SNP-heritability 308 

(liability scale) of 23% for males and 18% for females; P<1e-16) both produced significant 309 

results (FDR < 5%), explaining 4.9% of the variance of All autoimmune disease (vs. SNP-310 

heritability of 19%). On the other hand, the genetic correlation approach produced a non-311 

significant result (P=0.03). We note that males had lower prevalence of All autoimmune disease 312 

than females (7.2% vs. 16%, P<1e-16), as previously reported43. Third, HDL cholesterol was 313 

assigned to Scenario 3 (Figure 6c). The PRSxSex regression approach produced a significant 314 

result (P<2e-16; FDR < 5%), explaining 0.4% of the variance of HDL cholesterol. On the other 315 
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hand, the SNP-heritability by Sex approach (P=0.09) was not significant. However, the genetic 316 

correlation approach estimated a cross-sex genetic correlation of 0.93, which is significantly less 317 

than 1 (P=5e-6; FDR < 5%), explaining 3.5% of the variance of HDL cholesterol (Scenario 1); 318 

this implies that multiple types of GxSex interaction impact HDL cholesterol. We note that 319 

males had 0.83 s.d. lower HDL cholesterol than females (P<1e-16). 320 

 321 

In summary, we detected GxSex interaction in each of the three scenarios across the 33 322 

diseases/traits analyzed. We estimate that these GxSex effects explain 4.0% of disease/trait 323 

variance across all traits analyzed (s.e. 1.1% across traits), compared to SNP-heritability of 29% 324 

(s.e. 3%).  325 

 326 

Discussion 327 

 328 

We have applied three statistical approaches to detect, quantify, and distinguish the genome-329 

wide contributions of three different types of GxE interaction (Figure 1a) across 33 UK Biobank 330 

diseases/traits, analyzing 10 E variables spanning lifestyle, diet, and other environmental 331 

exposures as well as biological sex. We determined that GxE interactions (involving these E 332 

variables) and GxSex interactions each explained a significant fraction of phenotypic variance, 333 

representing an appreciable contribution to disease/trait architectures. It is possible that GxE 334 

interactions involving E variables not studied here could explain even more phenotypic variance. 335 

 336 

Our finding of distinct explanations underlying GxE interactions (Figure 1a) motivates a 337 

unified model consistent with this finding. We propose a model in which GxE occurs at different 338 

levels of a hierarchy that leads from genetic variants to pathways to disease (Supplementary 339 

Figure 5). In this model, Scenario 1 (Imperfect genetic correlation) occurs when an E variable 340 

modifies the effects of individual variants (or sets of variants), differentially impacting different 341 

parts of the genome; Scenario 2 (Varying genetic variance) occurs when an E variable modifies 342 

all of the pathways underlying genetic risk, uniformly impacting genetic variance; and Scenario 343 

3 (Proportional amplification) occurs when an E variable modifies all aspects of disease biology, 344 

proportionately impacting both genetic and environmental variance. Under this model, an E 345 

variable can modify any point along the hierarchy from genetic variants to pathways to disease. 346 

Further investigation and validation of this model is a direction for future research. 347 

 348 

Our study represents an advance over previous studies investigating genome-wide GxE. 349 

First, we distinguish three different types of GxE interaction: Imperfect genetic correlation, 350 

Varying genetic variance, and Proportional amplification (Figure 1a; also see Supplementary 351 

Figure 5). Second, most variance components methods for detecting genome-wide GxE13–15,17,18 352 

cannot detect genome-wide GxE unless SNP-heritability varies across E bins (Scenario 2). An 353 

exception is GxEMM16, which detects other types of GxE by explicitly modeling genetic and 354 

environmental variance that varies with the E variable; however, GxEMM is less 355 

computationally tractable and generally less powerful than our framework (Supplementary 356 

Figure 2). Third, variance components methods that assume independence between G and GxE 357 

effects are susceptible to bias if G and GxE effects are correlated, but our statistical approaches 358 

are robust to this possibility (Supplementary Figure 3. Fourth, previous methods have not been 359 

applied at biobank scale across a broad range of disease/traits; the statistical approaches that we 360 

propose are computationally scalable to very large data sets (see Methods), enabling our 361 
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biobank-scale analyses implicating 60 trait-E pairs with significant GxE and 30 traits with 362 

significant GxSex. Fifth, a recent study reported that GxSex acts primarily through 363 

amplification24 (Scenario 2 and Scenario 3), but our analyses of GxSex determined that 364 

Imperfect genetic correlation (Scenario 1) explained a larger proportion of trait variance than 365 

amplification; in addition, ref. 24 did not estimate contributions to trait variance and did not 366 

distinguish between Scenario 2 and Scenario 3, as we do here. 367 

 368 

Our study has several implications. First, our results narrow the search space of disease/traits 369 

and E variables for which genome-wide association studies of GxE interactions are most likely to 370 

be fruitful; in particular, trait-E pairs with substantial trait variance explained by Scenario 1 371 

(Imperfect genetic correlation) (Supplementary Table 5) should be prioritized for locus-specific 372 

analyses, in preference to trait-E pairs with trait variance explained by Scenario 2 or Scenario 3. 373 

Second, our results imply that there is broad potential to improve polygenic risk scores (PRS) by 374 

leveraging information on E variables in training and/or test samples44. Third, there is broad 375 

potential to prioritize individuals for which a lifestyle intervention to modify an E variable would 376 

be most effective based on their genetic profile. Fourth, previous work has suggested that 377 

population-specific causal effect sizes in functionally important regions may be caused by 378 

GxE45, motivating efforts to partition the imperfect genetic correlations across E bins that we 379 

have identified across functionally important regions. Fifth, the significant contribution of GxE 380 

to disease/trait architectures—even when restricting to the limited set of E variables that we 381 

analyzed here—implicates GxE effects as a factor in “missing heritability”, defined as the gap 382 

between estimates of SNP-heritability30 and estimates of narrow-sense heritability46 (e.g. from 383 

twin studies47); although GxE effects are not included in the definition of narrow-sense 384 

heritability, they can inflate twin-based estimates of narrow-sense heritability, analogous to GxG 385 

effects48. All of these implications motivate directions for future research. 386 

 387 

Our study has several limitations. First, our analyses assess GxE and GxSex interaction for 388 

binary traits on the observed scale (and then transform estimates to the liability scale), consistent 389 

with prevailing approaches for variance component analysis of binary traits31–34. This approach 390 

leads to much larger variance explained by GxE and GxSex for binary traits vs. quantitative traits 391 

in Scenario 2 (Supplementary Table 12; also see Figure 3b and Figure 5b). These statistical 392 

interactions may not be indicative of biological interactions, as previously noted in the context of 393 

both GxE interaction2 and GxG interaction49. Directly modeling GxE interaction on the liability 394 

scale50,51 is an important direction for future research, and may produce different findings. 395 

Second, the E variables that we analyzed comprise an extremely limited subset of the set of E 396 

variables that may contribute to GxE effects (and their values may be subject to measurement 397 

error); even when GxE effects are detected, the implicated E variable may be tagging an 398 

unmeasured causal E variable with larger GxE effects. Third, our use of PRSxE regression to 399 

detect GxE is limited by the accuracy of PRS and may require larger training sample sizes 400 

(enabling more accurate PRS) to be well-powered, particularly for less heritable diseases/traits. 401 

The average accuracy of the PRS across traits in the held-out set of 49K individuals was 9.2%, as 402 

measured by r2 between predicted and true phenotypes (Supplementary Table 3). Fourth, our 403 

estimates of the trait variance explained by GxE effects detected via PRSxE analyses assume that 404 

PRSxE effects extrapolate linearly to GxE effects (Methods); we believe that this is a reasonable 405 

assumption, but we cannot formally exclude the possibility that genetic effects captured by PRS 406 

interact differently with an E variable than genetic effects not captured by PRS. Fifth, most of the 407 
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E variables that we study are weakly heritable (Supplementary Table 4), raising the possibility 408 

of GxG (rather than GxE) effects; we consider GxG to be an unlikely explanation given the E 409 

variables’ low SNP-heritabilities, but we cannot formally exclude this possibility. Sixth, our use 410 

of PRSxE regression to detect GxE may be anti-conservative due to unmodeled 411 

heteroskedasticity37; however, we obtained nearly identical results using Huber-White variance 412 

estimators (also known as robust regression38,39) (Supplementary Table 6), suggesting that this 413 

does not impact our findings. We note that we observe many instances of differences in trait 414 

variance across E variables (Supplementary Table 7), but these alone are not indicative of GxE 415 

interactions. Seventh, our use of PRSxE regression to detect GxE may produce false positives if 416 

there is a nonlinear relationship between E and trait value; we included an E2 term in PRSxE 417 

regressions to ameliorate this possibility but determined that inclusion or exclusion of the E2 418 

term had little impact on our results (Supplementary Table 13), suggesting that nonlinear 419 

effects do not greatly impact our findings. Eighth, we have analyzed British-ancestry samples 420 

from the UK Biobank, but an important future direction is to extend our analyses to cohorts of 421 

diverse genetic ancestry52,53, which may differ in their distributions of E variables, tagging of 422 

causal E variables by measured E variables, and/or causal GxE effects (analogous to differences 423 

in main G effects45,54). Eighth, we do not analyze GxAge interaction (and we note the limited age 424 

variation in UK Biobank samples; age = 55 � 8 years), but we highlight GxAge interaction and 425 

longitudinal data as important directions for future research51,55,56. Despite these limitations, our 426 

work quantifies and distinguishes three different types of GxE interaction across a broad set of 427 

diseases/traits and E variables. 428 

 429 

Code Availability 430 

 431 

Cross trait LDSC: https://github.com/bulik/ldsc 432 

BOLT-LMM: https://alkesgroup.broadinstitute.org/BOLT-LMM/downloads/ 433 

PRSxE regression: Will be added upon publication. 434 

Code to reproduce analysis: Will be added upon publication. 435 

 436 

Data Availability 437 

 438 

We will make the results of the three statistical approaches we use here publicly available upon 439 

publication.  440 
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 454 

We used data from the UK Biobank in all our analyses. For polygenic score-based analyses that 455 

required a training and testing dataset, we used a set of 337K unrelated white British individuals 456 

for training27. For testing, we used a set of 49K European individuals who are unrelated to each 457 

other and to the training cohort27. Note that while “testing” typically refers to a setting where the 458 

ultimate goal is to assess PRS accuracy, here we use it to refer to the set of samples we in which 459 

we run a regression of phenotype on PRSxE and covariates. We used polygenic scores generated 460 

by ref. 27. We used the linear scoring function in Plink v1.957 to compute polygenic scores in the 461 

set of 49K test individuals.  462 

 463 

Choice of diseases/traits and environmental variables 464 

 465 

We chose a set of 33 diseases/traits with SNP heritability Z scores > 6 and squared genetic 466 

correlation less than 0.5 (Supplementary Table 3, Supplementary Table 4). We chose a set of 467 

10 E variables, including 5 previously analyzed E variables from ref. 14 and 5 additional E 468 

variables (Air pollution, time spent napping, sleeplessness, Diet, wheat consumption) 469 

(Supplementary Figure 4).  470 

 471 

To compute the Diet variable, we performed PCA on a covariance matrix consisting of several 472 

diet variables: cooked vegetable intake, salad intake, fresh fruit intake, processed meat intake, 473 

poultry intake, beef intake, pork intake, coffee intake (Supplementary Figure 6). We used the 474 

function prcomp in R and extracted the first PC. 475 

 476 

Genetic correlation approach to detecting GxE 477 

 478 

We performed GWAS using BOLT-LMM26 within bins of E variables. Then, we used bivariate 479 

LD Score regression36 to estimate the genetic correlation between the top and bottom quintiles of 480 

E variables; for binary E variables, we estimated the genetic correlation between individuals in 481 

each E bin. We used imputed SNPs with MAF > 0.01% and used the --no-intercept option to 482 

increase our power. Computed a Z score testing against the null hypothesis that the genetic 483 

correlation is 1 as: 484 

 485 

� �  1 � ����� �  

 486 

PRSxE regression approach to detecting GxE 487 

 488 

Our PRSxE regression takes the following form:  489 

 490 � � �� � � � �� ! � � "#  
 491 

where Y is the trait value, PRS is the polygenic score for the trait (see Data sources and 492 

preprocessing), E is the environment variable, and C is a set of covariates. For all analyses, we 493 

correct for the following covariates: age, sex, 10 genetic PCs computed in the held-out set, the 494 

squared E variable: E2 , age*sex, E*age, E*sex. We carried out this regression using the Python 495 

package statsmodels v0.14. We also compute a ‘base’ model, which is the same regression 496 
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without the PRSxE term. We use the p-value associated with the PRSxE term in the interaction 497 

model to assess significance.  498 

 499 

To test whether our results were driven by heteroskedasticity, we performed the same analysis 500 

using robust standard errors as implemented in statsmodels using the ‘H1’ covariance matrix 501 

(Supplementary Table 12). 502 

 503 

We note the PRSxE regression test is not expected to produce a significant finding if the 504 

environmental variance changes as a function of E but the genetic variance does not change as a 505 

function of E, because the PRS does not measure changes in environmental variance. 506 

 507 

SNP-heritability by E approach to detecting GxE 508 

 509 

We used BOLT-REML33 v2.3.6 to compute heritability in bins of E variables.  510 

To test for a significant difference in heritability between two bins, we computed a Z score as: 511 

  512 

� �  #�
� � #�

�

$%�
� � %�

�
 

where 1 and 2 index the E bins. 513 

 514 

False Discovery Rate (FDR) control 515 

 516 

We chose a 5% FDR control separately for each statistical approach (Genetic correlation, PRSxE 517 

regression, and SNP-heritability by E) using the qvalue R package58. We ensured our one-sided 518 

test against a null genetic correlation of 1 did not produce a skewed P-value distribution, which 519 

could indicate improper choice of a one-sided test. We chose to control the FDR separately for 520 

GxE and GxSex analyses because we expected the proportional of truly null tests to be different 521 

between GxE and GxSex. In particular, we expected to find more truly positive GxSex tests 522 

given previous studies22,24. Consistent with this, we found the qvalue procedure for estimating 523 

the proportion of truly null hypotheses failed in the GxSex analyses and we had to set the 524 

proportion of true null tests (&�) to 1, which is equivalent to the Benjamini-Hochberg 525 

procedure59. Story and Tibshirani60 argue this is much more conservative than the qvalue 526 

procedure. Our choice to control each E variable together is conservative, but accounts for non-527 

zero correlations between E variables.  528 

 529 

Classification of trait-E pairs into Scenarios 530 

 531 

We combined the results of the three statistical approaches to classify trait-E pairs into 3 distinct 532 

scenarios. We classified trait-E pairs into Scenario 1 if the Genetic correlation was significantly 533 

less than 1. We classified trait-E pairs into Scenario 2 if the SNP-heritability by E and PRSxE 534 

regression approaches were significant. We classified trait-E pairs into Scenario 3 if the PRSxE 535 

regression approach was significant but the SNP-heritability by E approach was not significant. 536 

It is possible that the SNP-heritability by E approach is significant but the PRSxE regression 537 

approach is not significant, which should not be viewed as an instance of GxE because the SNP-538 

heritability difference may be driven by changes to the environmental variance rather than the 539 

genetic variance. In addition, it is possible for trait-E pairs to be classified into both Scenario 1 540 
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and Scenario 2, or both Scenario 1 and Scenario 3, but not both Scenario 2 and Scenario 3 541 

because significance or non-significance of the SNP-heritability by E approach are mutually 542 

exclusive.  543 

 544 

Scalability of statistical approaches 545 

 546 

We consider the scalability of the three statistical approaches we use here. First, there is the 547 

computational cost of producing the input to our statistical approaches. For the genetic 548 

correlation test, this consists of running GWAS in bins of E variables. There are many scalable 549 

approaches for this, including BOLT-LMM26, regenie61, and fastGWA62. For PRSxE regression, 550 

this consists of computing PRS weights. There are many scalable approaches for this including 551 

BOLT-LMM26,  PRScs63, SBayesR64, and LDpred265. SNP-heritability by E does not require 552 

generating additional input. In these analyses, we use BOLT-LMM for GWAS, which has a 553 

runtime that scales with O(MN), where M is the number of SNPs and N is the sample size of 554 

individuals. For PRSxE regression we use weights computed by Weissbrod et al 202227, who did 555 

not publish an analysis of runtime. Second, there is the computational cost of the statistical 556 

approaches themselves. For genetic correlation, we use cross-trait LDSC25, which runs in 557 

seconds (< 30s for the SNP sets that we analyze here). For PRSxE regression, we use a multiple 558 

regression, which also runs in seconds (< 30s for the sample size that we analyze here). For SNP-559 

heritability by E, we use BOLT-REML33, which has a runtime that scales with O(MN). 560 

 561 

Simulations 562 

 563 

To test the power of each approach, we simulated 1,000 replicates of each scenario. In all cases, 564 

we simulated two E bins and varied the parameters according to the respective generative 565 

models. For each replicate, we simulated M=10,000 causal SNPs with effect sizes drawn from a 566 

specified distribution. We generated unlinked genotypes with binomial sampling from an allele 567 

frequency of 0.5.  568 

 569 

We simulated causal effect sizes for each scenario as follows: 570 

 571 

Scenario 1 572 

'�� ��
( ) * +,00. , /%�

�/1 �/1�/1 %�
�/123 

 573 

We simulated %�
� � 0.25 and varied � to produce genetic correlations 574 �� 7 81, 0.99, 0.98, 0.97, 0.96, 0.95, 0.94>. 575 

 576 

Scenario 2 577 

'�� ��
( ) * +,00. , / %�,�

� /1 %��%��/1%��%��/1 %�,�
� /1 23 

 578 

 579 

We simulated %��
� =0.25 and set %��

�  to produce a difference in heritability: 580 80, 0.01, 0.02, 0.03, 0.04, 0.05> . Our choice of covariance ensures the genetic correlation is one. 581 
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 582 

Scenario 3 583 

 584 

'�� ��
( ) * +,00. , /%�

�/1 % �
� /1% �

� /1 % �
� /123 

 585 

We set %�
� � 0.25. To simulate proportional amplification, we multiplied the phenotypes for 586 

individuals in environment 2 by a constant: 81.0,1.025,1.05,1.075,1.1>. 587 

 588 

Using the simulated causal effect sizes, we simulated GWAS effect size estimates as: 589 

��
@ ) *���, �1 � #�

��/1* � 

 590 ��
@ ) *���, 	�
��

��/�

�
) 591 

 592 

where 1 and 2 index the environments and N denotes GWAS sample size. We estimate #�
�  from 593 

the simulated causal effect sizes by first computing the A�statistic (A� B * ! �C�), then 594 

computing #�
� � �

�
�DA� � 1E, where � denotes the mean computed over the independent 595 

SNPs25.  596 

We compute the genetic correlation as: 597 

�� � �C�
��C�

F ̂#�,�
� !  ̂#�,�

�

 

 598 

where T denotes the transpose. We compute standard errors for the estimates using a jackknife 599 

over SNPs, where we leave out one SNP at a time because they are independent. 600 

 601 

To simulate PRSxE, we first simulated causal effect sizes for 10,000 independent SNPs. Then, 602 

we compute PRS weights analytically as: 603 

 604 

���� � H #�
�

#�
� � 1*I  �.J  

 605 

This simple shrinkage estimator can be interpreted as the posterior mean causal effect size under 606 

a normal prior (in the special case of no LD), and is similar to the posterior mean causal effect 607 

size under a point-normal prior (in the special case of no LD) when the genetic architecture is 608 

highly polygenic66, as simulated here.  609 

 610 

We estimate #�
� without knowledge of the E bins, mimicking estimation of SNP-heritability 611 

across the 337K individuals; we estimate #�
� as the sum of squared standardized effect sizes 612 

(averaged across E bins). 613 

 614 
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We also evaluated the performance of GxEMM in detecting GxE in Scenarios 1, 2, and 3. We 615 

followed the simulation framework in the original publication and simulated 1,000 causal SNPs 616 

and 10,000 individuals. We simulated a binary E variable and drew SNP effects according to 617 

each Scenario. We performed two tests within the GxEMM framework: 1) IID versus Hom, 618 

which tests for polygenic GxE under homoscedasticity, and 2) Free versus Hom, which test for 619 

polygenic GxE allowing for heteroskedasticity. We performed a Wald test as implemented in 620 

GxEMM and compared the point estimates of heritability in the free model to the simulated 621 

heritability in each of the environments. We performed 100 simulation replicates.  622 

 623 

To compare GxEMM with our tests, we simulated data under the same framework with matched 624 

sample sizes. Specifically, for genetic correlation and SNP-heritability x E, we simulated 5,000 625 

individual per E bin (total N=10,000). For PRSxE, we used a training set sample size of 337K, 626 

which matches the real data, and a held out set of N=10,000.  627 

 628 

Estimation of trait variance explained 629 

 630 

For trait-E pairs in Scenario 1, we compute the trait variance explained by GxE as �1 � ���/2 for 631 

binary E variables (where rg is the genetic correlation between the two E bins) (Supplementary 632 

Note) and 
�
��

��
 for continuous E variables (where rg is the genetic correlation between the top 633 

and bottom quintiles of E values). To obtain the transformation for continuous E variables, we 634 

used our simulations (see above) to examine the relationship between estimated genetic 635 

correlation and the variance explained by GxE. We found when we binned the E variable into 5 636 

bins and computed the genetic correlation between the top and bottom bins, the transformation 637 

�
��

��
 produced accurate estimates of the variance explained by GxE. For trait-E pairs in Scenarios 638 

2 or 3, we divide the variance explained by the PRSxE regression term by the variance explained 639 

by the PRS and multiply by the SNP-heritability. We verified these scaling procedures produce 640 

accurate estimates of the excess variance explained by GxE in simulations (Supplementary 641 

Figure S3). For Scenario 1, we simulated a continuous E variable with mean 0 and variance 1 642 

for 337K individuals. We simulated main genetic effects drawn from a normal distribution with 643 

mean 0 and variance 0.25 and environment interaction effects from a normal distribution with 644 

mean 0 and variance across a range of parameters (1e-1 to 1e-5) for 5,000 SNPs. We binned 645 

individuals into 5 bins and ran a GWAS in the top and bottom bins and compute the genetic 646 

correlation between the bins. Then, we scaled the estimates according to the formula above 647 

(Supplementary Figure S3a). For Scenarios 2 and 3, we simulated 1,000 causal SNPs from a 648 

normal distribution with mean 0 and variance 0.25. We simulated a continuous E variable with 649 

mean 0 and variance 1 for 49K individuals. We set the amplification parameter to 0.1 and 650 

generated phenotypes according to Eq. 1 (Overview of methods). We performed GWAS and 651 

estimated PRS weights as in the Simulations section. Then, we ran the PRSxE test and computed 652 

the variance explained. We then compared this to the true variance explained (Supplementary 653 

Figure S3b, S3c). This scaling assumes that PRSxE effects linearly extrapolate to GxE effects. 654 

We do not use the estimates of differences in SNP-heritability by E to estimate the variance 655 

explained by GxE. When reporting average variance explained per trait, we computed the R2 for 656 

each trait using a model including all marginally significant (FDR < 5%) interaction terms for 657 

that trait (Supplementary Table 14). 658 
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 659 

Figure 1. Overview of 3 GxE Scenarios and statistical approaches to detect and distinguish 660 

between them. (a) Relative values of genetic (blue) and environmental (orange) variance in each 661 

Scenario. (b) Statistical approaches to detect and distinguish between each Scenario. (c) Flow 662 

chart for classifying results into Scenarios. 663 
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 664 

Figure 2. Detecting and distinguishing between 3 Scenarios of GxE interaction in 665 

simulations. Rows denote 3 Scenarios (1-3), and columns denote 3 statistical approaches. (a) 666 

Proportion of significant tests for Scenario 1 (Imperfect genetic correlation) across 3 statistical 667 

approaches. (b) Proportion of significant tests for Scenario 2 (varying genetic variance) across 3 668 

statistical approaches. (c) Proportion of significant tests for Scenario 3 (proportional 669 

amplification) across 3 statistical approaches. Error bars denote standard deviations across 100 670 

simulation replicates. Numerical results are reported in Supplementary Table 1. 671 
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 672 

Figure 3. Detecting, quantifying, and distinguishing between 3 Scenarios of GxE 673 

interaction across 33 diseases/traits and 10 E variables. Diseases/traits are reported on the y-674 

axis and estimates of excess variance explained by GxE are reported on the x-axis. Only 675 

significant results are reported (FDR < 5% across traits and E variables, computed separately for 676 

each Scenario). For diseases/traits with multiple significant E variables in a given Scenario, 677 

results for each significant E variable are reported separately using bars with smaller thickness. 678 

(a) Results for trait-E pairs in Scenario 1: Imperfect genetic correlation. (b) Results for trait-E 679 

pairs in Scenario 2: Varying genetic variance; we note that BMI has significant GxE for 680 

Townsend deprivation (red), physical activity (purple), and alcohol consumption (black). (c) 681 

Results for trait-E pairs in Scenario 3: Proportional amplification. Numerical results are reported 682 

in Supplementary Table S5.  683 
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 684 

Figure 4. Examples of 3 Scenarios of GxE interaction. (a) White blood cell count x smoking 685 

status is consistent with Scenario 1: Imperfect genetic correlation. (b) Type 2 diabetes x alcohol 686 

consumption is consistent with Scenario 2: Varying genetic variance. (c) Waist-to-hip ratio 687 

adjusted for BMI x  Time spent watching TV is consistent with Scenario 3: Proportional 688 

amplification. Numerical results are reported in Supplementary Table S8. 689 

 690 

 691 

 692 
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 693 

Figure 5. Detecting, quantifying, and distinguishing between 3 Scenarios of GxSex 694 

interaction across 33 diseases/traits. Diseases/traits are reported on the y-axis and estimates of 695 

excess variance explained by GxSex are reported on the x-axis. Only significant results are 696 

reported (FDR < 5% across traits, computed separately for each Scenario). (a) Results for traits 697 

in Scenario 1: Imperfect genetic correlation. (b) Results for traits in Scenario 2: Varying genetic 698 

variance. (c) Results for traits in Scenario 3: Proportional amplification. Numerical results are 699 

reported in Supplementary Table S9.  700 

 701 

 702 
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 703 

Figure 6. Examples of 3 Scenarios of GxSex interaction. (a) Neuroticism x Sex is consistent 704 

with Scenario 1: Imperfect genetic correlation. (b) All autoimmune disease x Sex is consistent 705 

with Scenario 2: Varying genetic variance. (c) HDL Cholesterol x Sex is consistent with 706 

Scenario 1 and Scenario 3. Numerical results are reported in Supplementary Table S11. 707 

  708 
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 850 

Supplementary Material 851 

 852 

 853 

Figure S1 Results of 3 statistical approaches for detecting GxE in null simulations with no 854 

GxE. (a) Proportion of significant tests for genetic correlation across 3 scenarios. (b) Proportion 855 

of significant tests for PRSxE regression across 3 scenarios. (c) Proportion of significant tests for 856 

SNP-heritability by E across 3 scenarios. Error bars denote standard deviations across 100 857 

simulation replicates.  858 

 859 

 860 

 861 

Figure S2 Comparison of three statistical approaches for detecting GxE to ExEMM in 862 

simulations. a) Scenario 1 with varying true genetic correlation across E, b) Scenario 2 with 863 

varying heritability in the second environment, c) Scenario 3 with phenotypic amplification 864 

across E bins.  865 
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 867 

Figure S3 Accuracy of estimates of excess trait variance explained by GxE interaction in 868 

simulations. a) genetic correlation in Scenario 1, b) PRSxE in Scenario 2, and c) PRSxE in 869 

Scenario 3. For all plots, the black line corresponds to the y=x line and the x and y axes are both 870 

on a log scale. 871 

 872 
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 873 

Figure S4 Phenotypic correlations between E variables. X denotes non-significant 874 

comparisons at a p-value threshold of 0.05/11. 875 
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876 

Figure S5 Conceptual model linking three scenarios of GxE. Scenario 1 can be 877 

conceptualized as E variables modifying the effects of independent loci. Scenario 2 can be 878 

conceptualized as modifying pathways which aggregate the genetic effects of many loci, 879 

resulting in a scaling of genetic effects. Finally, Scenario 3 can be conceptualized as modifying 880 

the total genetic liability.  881 

 882 
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 883 

Figure S6 Phenotypic correlations of diet variables used to construct a composite Diet 884 

variable. Each cell in the heatmap shows the correlation between the measured diet variable on 885 

the X axis and the measured diet variable on the Y axis. All correlations are significant at a 886 

Bonferroni corrected p-value threshold of 0.05. 887 

 888 

Supplementary Table 1 Numerical results of Detecting and distinguishing between 3 889 

Scenarios of GxE interaction in simulations. For each statistical approach and scenario, we 890 

report the proportion of significant tests and standard deviation across replicates. 891 
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Supplementary Table 2 Simulations showing bias induced by correlated G and GxE effects. 893 

We tested the impact of correlated G and GxE effects on variance component estimates when 894 

assuming that G and GxE effects are not correlated. We set the true variance of G effects to 0.1 895 

and the true variance of GxE effects to 0.1. We varied the correlation of the G and GxE effects 896 
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and simulated values for 100,000 individuals. We estimate the variance explained by G and GxE 897 

using ANOVA in R and report the bias (estimated effect - true effect).  898 

 899 

Supplementary Table 3 Description of the 33 UK Biobank traits analyzed. For each trait we 900 

report a detailed name, the GWAS sample size (including number of cases for binary traits), the 901 

SNP-heritability (liability scale for binary traits), and the PRS accuracy (R2; observed scale for 902 

binary traits).  903 

 904 

Supplementary Table 4 SNP-heritability of E variables studied here. We estimated SNP-905 

heritability using LDSC. For the composite diet variable, we report the SNP-heritability for each 906 

of the underlying variables that make up the composite diet variable. P-values test against a null 907 

of zero SNP-heritability.  908 

 909 

Supplementary Table 5 Numerical results of Detecting, quantifying, and distinguishing 910 

between 3 Scenarios of GxE interaction across 33 diseases/traits and 10 E variables. For 911 

each trait-E pair (A, B), we report (C) the excess variance explained by PRSxE and (D) the 912 

associated q value, (E) the difference in heritability between the top and bottom bins of the E 913 

variables and (F) the associated q value, (G) the genetic correlation between the top and bottom 914 

bin of the E variable and (H) the associated q value. We also assign each trait-E pair to the three 915 

scenarios (I, J, K). 916 

 917 

Supplementary Table 6 P-values using robust regression in PRSxE regression analysis 918 

compared to P-value from the main PRSxE regression analysis. For each trait-E pair, we 919 

report (A) p-value and (B) effect size for the main PRSxE regression and (C, D) using the Huber-920 

White variance estimator (robust regression). 921 

 922 

Supplementary Table 7 SNP-heritability differences for trait-E pairs with no PRSxE 923 

interaction. For each trait-E pair with a significant difference in SNP-heritability and no 924 

significant PRSxE interaction we report the SNP-heritability difference and q-value at 5% FDR 925 

control.  926 

 927 

Supplementary Table 8 Numerical results of Examples of 3 Scenarios of GxE interaction. 928 

We report detailed results for 3 trait-E pairs reported in Figure 4. For each trait-E pair (A, B), we 929 

report (C) the genetic correlation and (D) p-value, (E) PRSxE regression coefficient and (F) p-930 

value, (G, H, I, J, K) SNP-heritability across bins of the E variable with associated standard error 931 

and (L) the p-value testing for a difference between the top and bottom bins of the E variable. 932 

 933 

Supplementary Table 9 Numerical results of Detecting, quantifying, and distinguishing 934 

between 3 Scenarios of GxSex interaction across 33 diseases/traits. For each trait  (A, B), we 935 

report (C) the excess variance explained by PRSxSex and (D) the associated q value, (E) the 936 

difference in heritability between males and females and (F) the associated q value, (G) the 937 

genetic correlation between males and females and (H) the associated q value. We also assign 938 

each trait-E pair to the three scenarios (I, J, K). 939 

 940 

Supplementary Table 10 SNP-heritability differences for trait-sex pairs with no PRSxSex 941 

interaction. For each trait-sex pair with a significant difference in SNP-heritability and no 942 
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significant PRSxSex interaction we report the SNP-heritability difference and q-value at 5% 943 

FDR control.  944 

 945 

Supplementary Table 11 Numerical results of Examples of 3 Scenarios of GxSex 946 

interaction. We report detailed results for 3 trait-sex pairs reported in Figure 4. For each trait (A, 947 

B), we report (C) the genetic correlation and (D) p-value, (E) PRSxE regression coefficient and 948 

(F) p-value, (G, H, I, J, K) SNP-heritability across sex  with associated standard error and (L) the 949 

p-value testing for a difference between the top and bottom bins of the E variable. 950 

 951 

Supplementary Table 12 Average variance explained by binary and quantitative traits. For 952 

each scenario, we report the average trait variance explained by binary, quantitative, and all traits 953 

for both GxE and GxSex interactions.  954 

 955 

Supplementary Table 13 PRSxE regression results including a non-linear E term. For each 956 

trait-E pair, we report (A) P-value and (B) effect size including E2 as a covariate and (C, D) not 957 

including E2 as a covariate.  958 

 959 

Supplementary Table 14 Trait variance explained by GxE interactions with multiple E 960 

variables. For traits with multiple marginally significant E variable interactions, we report the 961 

variance explained by a joint model with all marginally significant E variables. 962 

 963 

Supplementary Note for “Distinct explanations underlie gene-environment interactions in 964 

the UK Biobank”  965 
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