Supplemental lable 1. Description of aging constructs				
Aging constructs	How was the aging construct created in published paper?	Number of biomarkers	Unit	Reference
SA	Participants responded to the question "How old do you feel?"	NA	Years	
Clinical marker-based aging constructs				
KDM-BA	Klemara Doubal algorithm was applied to train 10 fairly standard clinical markers in order to constructs KDM- BA. Those 10 markers, which were significantly correlated with age (r>0.1) in the third National Health and Nutrition Examination Survey (NHANES III), were selected from a group of 21 biomarkers known to play a role in the aging process.	10 clinical markers	Years	Levine [2013] ¹
PhenoAge	Cox penalized regression was applied to train clinical biomarkers and age against mortality.	9 clinical markers and age	Years	Levine [2018] ²
Enigenetic clocks (ECs)				
Hannum EC	Elastic net regression combined with bootstrap approaches was applied to train DNA methylation (DNAm) sites, gender, and body mass index (BMI) against age. First generation EC.	71 CpGs	Years	Hannum [2013] ³
Horvath EC	Elastic net regression was applied to train DNAm sites against age. First generation EC.	353 CpGs	Years	Horvath [2013] ⁴
Levine EC	Elastic net regression was applied to train DNAm sites against PhenoAge. Second generation EC.	513 CpGs	Years	Levine [2018] ²
GrimAge	Elastic net Cox regression was applied to train a DNAm-based composite constructs for seven plasma proteins, smoking pack-years, age and gender against mortality. Second generation EC.	1030 CpGs	Years	Lu [2019] ⁵
РОА	Elastic net regression was applied to train DNA methylation sites against the change in 18- biomarker Pace of Aging. Third generation EC.	46 CpGs	Years of physiological decline per one chronological age	Belsky [2020] ⁶

Supplemental Table 1. Description of aging construct

References:

1. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? *J Gerontol A Biol Sci Med Sci*. Jun 2013;68(6):667-74. doi:10.1093/gerona/gls233

2. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. *Aging* (*Albany NY*). 04 2018;10(4):573-591. doi:10.18632/aging.101414

3. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. *Mol Cell*. Jan 2013;49(2):359-367. doi:10.1016/j.molcel.2012.10.016

4. Horvath S. DNA methylation age of human tissues and cell types. *Genome Biol.* 2013;14(10):R115. doi:10.1186/gb-2013-14-10-r115

5. Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging (Albany NY)*. 01 2019;11(2):303-327. doi:10.18632/aging.101684

6. Belsky DW, Caspi A, Arseneault L, et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. *Elife*. 05 2020;9doi:10.7554/eLife.54870