
 1 

Aging measures and cancer: Findings from the Health and Retirement Study 

 

Shuo Wang1*, Anne Prizment1*, Puleng Moshele1, Sithara Vivek1, Anne H. Blaes2, Heather H. 

Nelson3, Bharat Thyagarajan1 

1Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 

2Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 

MN 

3 Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 

*Shuo Wang and Anna Prizment contributed equally to this work and are both first authors 

Corresponding author: Anna Prizment (prizm001@umn.edu) 

 

Keywords: cancer mortality, cancer prevalence, cancer incidence, aging, epigenetic clocks, 

phenotypic age, biological age, subjective age, the Health and Retirement Study 

 

 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.20.23295845doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:prizm001@umn.edu
https://doi.org/10.1101/2023.09.20.23295845


 2 

ABSTRACT  

Background 

Compared to cancer-free persons, cancer survivors of the same chronological age (CA) have 

increased physiological dysfunction, i.e., higher biological age (BA), which may lead to higher 

morbidity and mortality. We estimated BA using eight aging metrics: BA computed by Klemera 

Doubal method (KDM-BA), phenotypic age (PhenoAge), five epigenetic clocks (ECs, Horvath, 

Hannum, Levine, GrimAge, and pace of aging (POA)), and subjective age (SA). We tested if 

aging constructs were associated with total cancer prevalence and all-cause mortality in cancer 

survivors and controls, i.e., cancer-free persons, in the Health and Retirement Study (HRS), a 

large population-based study.  

 

Methods 

In 2016, data on BA-KDM, PhenoAge, and SA were available for 946 cancer survivors and 

4,555 controls; data for the five ECs were available for 582 cancer survivors and 2,805 controls. 

Weighted logistic regression was used to estimate the association between each aging construct 

and cancer prevalence (odds ratio, OR, 95%CI). Weighted Cox proportional hazards regression 

was used to estimate the associations between each aging construct and cancer incidence as well 

as all-cause mortality (hazard ratio, HR, 95%CI). To study all BA metrics (except for POA) 

independent of CA, we estimated age acceleration as residuals of BA regressed on CA. 

 

Results  

Age acceleration for each aging construct and POA were higher in cancer survivors than 

controls. In a multivariable-adjusted model, five aging constructs (age acceleration for Hannum, 

Horvath, Levine, GrimAge, and SA) were associated with cancer prevalence. Among all cancer 

survivors, age acceleration for PhenoAge and four ECs (Hannum, Horvath, Levine, and 

GrimAge), was associated with higher all-cause mortality over 4 years of follow-up. PhenoAge, 

Hannum, and GrimAge were also associated with all-cause mortality in controls. The highest HR 

was observed for GrimAge acceleration in cancer survivors: 2.03 (95% CI, 1.58-2.60). In 

contrast, acceleration for KDM-BA and POA was significantly associated with mortality in 

controls but not in cancer survivors. When all eight aging constructs were included in the same 

model, two of them (Levine and GrimAge) were significantly associated with mortality among 

cancers survivors. None of the aging constructs were associated with cancer incidence.  

 

Conclusion   

Variations in the associations between aging constructs and mortality in cancer survivors and 

controls suggests that aging constructs may capture different aspects of aging and that cancer 

survivors may be experiencing age-related physiologic dysfunctions differently than controls. 

Future work should evaluate how these aging constructs predict mortality for specific cancer 

types.  
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INTRODUCTION 

One of the strongest risk factors for cancer occurrence is chronological age (CA), such that older 

individuals are at much higher risk for cancer than younger individuals.1,2 Compared to cancer-

free individuals, cancer survivors have more physiological dysfunctions, which may be caused 

by cancer treatment, the body’s response to cancer (e.g., immunologic), the effects of cancer on 

the body (e.g., cachexia), the presence of unhealthy lifestyle factors, or an interaction between 

these factors.3 Understanding the aging process in cancer survivors may lead to improvements in 

outcomes through interventions that slow down physiological dysfunction (i.e., lifestyle changes 

or pharmacologic treatments).  

 

Because individuals with the same CA may have very different physiologic and psychosocial 

dysfunctions, the term biological age (BA) has been introduced. BA estimates the extent of 

accumulation of physiological damage in individuals with the same CA. To estimate BA, 

multiple aging constructs have been developed including epigenetic clocks (ECs) based on DNA 

methylation profiles,4-7 proteomic aging clocks (using circulating proteins),8,9 transcriptomic 

clocks (using gene expression data),10-12 and multidomain aging constructs comprised of 

biochemical/hematological/physical markers. Consistent with the hypothesis that cancer 

survivors have increased physiological dysfunction, several recent studies have found that 

compared to similarly aged people without cancer, BA was higher among cancer survivors. For 

instance, two ECs developed by Horvath and Hannum were higher among cancer survivors in 

NHANES13 and an EC developed by Levine was higher among survivors of breast cancer in the 

Thinking and Living with Cancer (TLC) study.14 Higher EC has also been associated with an 

increased risk of mortality.13,15 In addition, different ECs adjusted for CA, were associated with 
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incidence of cancer, including total,16,17 lung,5,18 breast,19,20 and pancreatic cancers,21 but the 

associations were inconsistent across aging metrics and different studies.  

 

In addition to ECs, two multidomain measures-based aging constructs: a BA metrics based on 

biomarker and physiological measures and estimated by the Klemara Doubal algorithm (KDM-

BA)22-24 and phenotypic age (PhenoAge) based on biomarkers associated with mortality5,24-27 

have been developed, though their utility among cancer survivors has not been evaluated in 

previous studies. In UK Biobank, a large prospective cohort study, age-adjusted KDM-BA and 

PhenoAge have been associated with the risk of total, lung and colorectal cancers, while 

PhenoAge was additionally associated with breast cancer risk.24 In addition to biomarker-based 

aging measures, subjective age (SA), which estimates how old people feel, i.e., an individual’s 

self-perception of their own age,28-30 was 2% higher than CA in people diagnosed with cancer 

and 8% younger than CA among cancer-free controls.31 Moreover, higher SA was shown to be 

correlated with worse qualify of life in cancer survivors.30,31 In our prior work, we have shown 

that higher SA is associated with adverse biomarker profiles,29 and other studies have reported 

that SA is associated with negative health outcomes including higher mortality in the general 

population.28,32,33 

 

Although measures of BA, such as PhenoAge, KDM-BA, ECs, and SA, are correlated with each 

other, they likely estimate different aspects of the underlying age-related physiological 

dysfunction. However, to date, there has been limited data to evaluate the relative utility of the 

various measures of BA in cancer survivors. Hence, we examined whether eight aging metrics 

including KDM-BA, PhenoAge, SA, and five ECs (Horvath, Hannum, Levine, GrimAge, and 
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pace of aging (POA)) were higher in cancer survivors compared to cancer-free individuals in the 

Health and Retirement Study (HRS), a large population-based study. We also examined the 

associations of these measures with all-cause mortality among cancer survivors and cancer-free 

individuals. Finally, we conducted an exploratory analysis to evaluate whether any of these 

aging constructs were associated with total incident cancer risk in participants followed for four 

years. 

 

METHODS 

Study Population 

The HRS study is an ongoing biennial longitudinal study of a nationally representative sample of 

individuals over 50 years old in the United States, starting from 1992. At each survey, 

participants had either a face-to-face interview or an interview over the phone to report their 

demographics, lifestyle, and medical history. SA data was obtained by responding to the question 

“How old do you feel?” for half of all participants in 2014 and for the other half in 2016. The 

biomarker data used to compute KDM-BA and PhenoAge were measured in blood samples 

collected from participants who completed a survey and blood collection in 2016 (N = 9,193). 

DNA methylation profiles were measured in a nonrandom subsample of participants (N = 4,018) 

who attended the HRS 2016 Venous Blood Study.34 A detailed description of the blood sample 

collection and processing is available on the HRS study website.34 

 

Biological age constructs 

Biological Age estimated using Klemera-Doubal method (KDM-BA) 

KDM-BA was calculated using 10 clinical markers that represent the decline in age-related 

physiological functioning and susceptibility to disease in old age (Supplemental Table 1).22 
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These 10 markers include systolic blood pressure (SBP), total cholesterol, fasting glucose, 

cytomegalovirus infection (CMV), C-Reactive Protein (CRP), serum creatinine, blood urea 

nitrogen (BUN), alkaline phosphatase, albumin, and peak flow measurement.22 The KDM-BA in 

this study was computed using R package “BioAge” and the in-built “kdm_calc” function.35  

 

Phenotypic Age (PhenoAge) 

PhenoAge was computed as a weighted sum of nine biomarkers (albumin, creatinine, glucose, 

log-transformed CRP (log CRP), lymphocyte percent, mean cell volume, red blood cell 

distribution width, alkaline phosphatase, and white blood cell count) as well as a person’s CA 

(all the variables were modeled as continuous)5,25 (Supplemental Table 1). PhenoAge in this 

study was computed using R package “BioAge” and the in-built “phenoage_calc” function.35  

 

Epigenetic Clocks (ECs) 

Thirteen published ECs were calculated in HRS.36 Among those 13 ECs, we selected five ECs 

that are commonly used in cancer studies: Horvath,37 Hannum,4 and Levine ECs,5 GrimAge17, 

and pace of aging (POA), which is measured using DunedinPoAm387 (Supplemental Table 1). 

Horvath, Hannum, and Levine ECs, and GrimAge were expressed in years while POA was 

measured in “years of physiological decline occurring per 12 months of calendar time”7 

(Supplemental Table 1).   

 

Ascertainment of cancer and mortality 

Cancer survivors were defined as participants who answered “yes” to the question “Has a doctor 

ever told you that you have cancer or a malignant tumor, excluding minor skin cancer?” on the 
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2016 survey. Participants who answered “no” to the above question were considered as controls, 

i.e., participants without cancer. The self-reported cancer-related information collected in the 

2016 survey was supplemented with information on site and diagnosis date that were reported in 

all surveys conducted from 1992 to 2016. Among controls in 2016, we used the 2018 and 2020 

surveys to identify incident cancer cases up to 2020. Participants who reported a new cancer 

diagnosis in either the 2018 or 2020 surveys were further asked to report the month and year of 

their most recent cancer diagnosis. The earlier date reported at either survey was considered as 

the date of cancer diagnosis. For all participants, month and year of death was derived from 

interviews provided by household members. 

 

Characteristics of interest 

The following characteristics were obtained from the 2016 survey: CA (in years), sex 

(female/male), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, Hispanic White, 

Hispanic Black, or Other), and smoking status (self-reported; current, former, or never smokers). 

A comorbidity index was constructed using seven self-reported conditions diagnosed by a 

physician. These conditions included hypertension, lung disease, cardiac disorders, stroke, 

arthritis, diabetes, and psychiatric problems. The measure of CMV seroprevalence was described 

previously34 and was reported as nonreactive [<0.5 COI (cutoff interval)), borderline (0.5 to <1.0 

COI), or reactive (≥1.0 COI]. In this study, CMV infection was used as a binary variable, with 

the borderline and nonreactive CMV groups combined. Height was reported in inches and weight 

was reported in pounds. Height and weight data were obtained for half of all participants in 2014 

and for the other half in 2016. BMI was calculated as Weight in lbs/ (Height in inches)2 *703. 
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Statistical Analysis 

The analyses described below were conducted using SAS version 9.4. All the analyses were 

adjusted for survey weights to yield nationally representative estimates. 

 

The analyses were conducted in two samples: Sample A included participants with the data on 

SA, KDM-BA, and PhenoAge, and Sample B included participants with data on ECs. Sample A 

excluded participants with missing values for any clinical biomarker that comprised KDM-BA or 

PhenoAge, as well as those who did not answer questions about SA and those without survey 

weights, characteristics of interest, cancer status, or vital status. This resulted in 5,501 

participants, which included 946 cancer survivors and 4,555 controls, in Sample A. Sample B 

excluded participants without data on ECs, and those without survey weights, characteristics of 

interest, cancer status, or vital status. This resulted in 3,387 participants, which included 582 

cancer survivors and 2,805 controls, in Sample B. 

 

Because these aging constructs, except for POA, were correlated with CA (Supplemental Tables 

2 and 3), we estimated age acceleration (abbreviated as Accel) for each of aging construct as 

residuals after regressing aging construct on CA to evaluate the effects of aging construct 

independent of age. The distributions of aging constructs and characteristics of interest were 

examined as weighted mean (standard deviation (SD)) or weighted percent across cancer status 

in 2016.  

 

We used weighted logistic regression to estimate weighted odds ratios (ORs) and 95% 

confidence intervals (CIs) for the associations between each aging construct and cancer 
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prevalence (cancer survivors vs. controls). We applied weighted Cox proportional hazard 

regression to examine association between each aging construct and all-cause mortality among 

cancer survivors and among controls. The follow-up for mortality started from the date of blood 

collection in 2016 and ended on either death or December 31, 2020, whichever occurred first. 

The proportional hazard assumption, examined by including an interaction term between follow-

up time and each of the aging construct was not violated in any of the models. In all main 

analyses, we constructed two models. Model 1 was adjusted for age and Model 2 was 

additionally adjusted for sex, race/ethnicity, BMI, smoking status, comorbidity index, and CMV 

infection. To ensure that active cancer treatment or undiagnosed cancer at the time of blood draw 

was not a major contributor to our findings, we conducted a sensitivity analysis that excluded 

participants whose cancer diagnosis was within two years of the blood collection.  

 

We also performed three exploratory analyses. In the first exploratory analysis, we investigated 

whether the association with mortality in cancer survivors was modified by sex or time since 

cancer diagnosis. We examined the associations with mortality among cancer survivors, 

stratified by sex and time since cancer diagnosis (<2 years, 2 to 5 years, and >5 years). We did 

not examine associations stratified by race/ethnicity due to the limited number of deaths in 

Hispanic White and Non-Hispanic and Hispanic Black participants. In the second exploratory 

analysis, we investigated the associations with total cancer incidence among controls, i.e., 

cancer-free participants in 2016, by applying weighted Cox proportional hazard regression. The 

follow-up for incident cancer started from the date of blood collection in 2016 and ended on the 

date of cancer diagnosis, death, loss to follow up, or December 31, 2020, whichever occurred 

first. Finally among participants who were in both Sample A and Sample B, we explored the 
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correlations between each aging construct and CA, and between the age acceleration for each 

construct and CA. Subsequently, we included all aging constructs in a single model 

simultaneously and evaluated their associations with mortality in cancer survivors and controls 

who were in both Sample A and Sample B.  

 

 

RESULTS 

Distributions of participant characteristics  

Table 1 shows the distributions of participants’ characteristics by cancer status. Compared to 

controls, cancer survivors were more likely to be chronologically older. Cancer survivors also 

tended to be Non-Hispanic White and former smokers and to have a higher comorbidity index 

(Table 1). The correlations between aging constructs and CA were 0.03-0.92 while the age 

acceleration for each aging construct was not correlated with CA (Supplemental Tables 2 and 3). 

 

Associations between aging constructs and cancer prevalence  

Age acceleration for each aging construct and POA was higher in cancer survivors than in 

controls (Table 1). In the fully adjusted model (Model 2), age acceleration for SA [OR (95% CI) 

per 1 SD=1.12 (1.03-1.21)], Hannum [1.24 (1.12-1.38)], Levine [1.14 (1.01-1.28)], and GrimAge 

[1.31 (1.13-1.52)] was significantly associated with cancer prevalence, but not for KDM-BA, 

PhenoAge, Horvath or POA (Table 2).  

 

Associations between aging constructs and all-cause mortality in cancer survivors and 

controls 
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By 2020, 122 cancer survivors and 249 controls died in Sample A and 103 cancer survivors and 

213 controls died in Sample B. In the fully adjusted model, PhenoAgeAccel, HannumAccel, and 

GrimAgeAccel were associated with mortality in both cancer survivors and controls with a 

higher HR estimate observed in cancer survivors (Table 3). For example, for GrimAge: hazard 

ratio (HR) (95% CI) per 1 SD=2.13 (1.52-2.99) in cancer survivors and 1.45 (1.19-1.78) in 

controls (Table 3). HorvathAccel [1.26 (1.02-1.55)] and LevineAccel [1.58 (1.29-1.94)] were 

significantly associated with mortality among cancer survivors only, while KDM-BA-Accel 

[1.32 (1.10-1.59)] and POA [1.31 (1.14-1.52)] were significantly associated with morality among 

controls only (Table 3). SA-Accel was not associated with mortality in either cancer survivors or 

controls (Table 3). 

 

In the sensitivity analysis, after excluding participants who developed cancer within two years of 

blood collection, the results for the associations with cancer prevalence and mortality were 

comparable to the results in our main analyses (Supplemental Tables 4 and 5). 

 

In the exploratory analysis of interaction, gender statistically modified the association between 

GrimAgeAccel and mortality in cancer survivors (p-interaction = 0.002), with a stronger 

association observed in females (Supplemental Table 6). Time since cancer diagnosis did not 

modify the associations between any of the aging constructs and mortality in cancer survivors 

(Supplemental Table 7). In the exploratory analysis of cancer incidence, cancer diagnoses were 

self-reported by 182 participants in Sample A and by 122 participants in Sample B. None of the 

eight aging constructs were associated with cancer risk (Supplemental Table 8). In the last 

exploratory analysis, among the participants who were in both Sample A and Sample B, the 
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correlations between eight aging constructs were 0.06-0.84 and the correlations between age 

acceleration for the aging constructs were 0.004-0.63 (Supplemental Table 9). When including 

all eight aging constructs in the same model, LevineAccel and GrimAgeAccel were significantly 

associated with mortality among cancer survivors and KDM-BA-Accel was significantly 

associated with mortality among controls (Supplemental Table 10).  

 

DISCUSSION  

This study examined the association of BA, a measure of accumulated life course changes in 

biological systems, with cancer prevalence and all-cause mortality in a large nationally 

representative sample. A recent review38 summarized the common biomarkers used to estimate 

BA in cancer survivors such as P16Ink4a, telomere length, ECs, or allostatic load. In our study, we 

tested eight well-validated aging constructs that have been used in previous studies: BA 

estimated by the Klemara Doubal algorithm (KDM-BA), phenotypic age (PhenoAge), SA, as 

well as five ECs including Horvath, Hannum, Levine, GrimAge, and POA.  

 

Our study found that cancer survivors had higher age acceleration and POA than controls and 

age acceleration for four metrics (SA, Hannum EC, Levine EC, and GrimAge) was significantly 

associated with cancer prevalence in the fully adjusted model. Among cancer survivors, age 

acceleration for PhenoAge and four ECs (Hannum, Horvath, Levine, and GrimAge) was 

associated with higher all-cause mortality over 4 years of follow-up. Cancer survivors may 

experience accelerated aging due to both cancer itself and cytotoxic cancer treatment, 

particularly radiation therapy and chemotherapy, which may cause epigenetic changes and 

cellular senescence features such as telomere shortening and alterations in DNA repair genes.39,40 
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In turn, these changes individually or in combination contribute to accelerated aging phenotypes 

in cancer survivors such as PhenoAge, KDM-BA or ECs. Consistent with our results, the 

Melbourne Collaborative Cohort study showed that per 5-year increment in age acceleration for 

Horvath and Hannum ECs was significantly associated with a 4-6% increased risk of all-cause 

death in cancer survivors.15 Further, a recent NHANES study reported an increased risk of all-

cause death associated with the upper quartile of the Levine EC (HR=3.04, 95%CI: 2.31-4.00).13 

The physiological changes among cancer survivors along with stress of managing cancer, 

worries about cancer recurrence, life changes, job and family issues resulting from having cancer 

may contribute to a greater SA in cancer survivors. Consistent with the mechanism, our study 

found cancer survivors on average had age acceleration for SA of 1.09 years, while controls on 

average had age acceleration for SA of -0.27 years. In our study, SA, which is a non-biomarker-

based measure, was correlated with CA (r=0.61) and with other biomarker-based aging 

constructs (r=0.06-0.52), but these correlations were weaker than for the biomarker-based 

constructs. We also found that age acceleration for SA was associated with cancer prevalence in 

a fully adjusted model, however, there was no association with mortally in cancer survivors. To 

our knowledge, there were no studies examining association between SA and mortality in cancer 

survivors. It is likely that SA captures different aspects of aging than biomarker-based aging 

constructs and may not accurately predict mortality in cancer survivors because they have a 

milieu of different age- and cancer-related issues that may not be captured by a one-time 

question about how one feels. 

 

In our study, among controls, age acceleration for four aging constructs (KDM-BA, PhenoAge, 

Hannum EC, and GrimAge) as well as POA was associated with greater all-cause mortality. In 
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agreement with our findings, higher KDM-BA and PhenoAge were associated with worse 

mortality in the NHANES and UK Biobank studies.24,26,41 We also found an increased HR for 

mortality associated with SA but not statistically significant. Increased HR in controls in our 

study is in line with several previous studies that reported associations between older SA and 

mortality in the general population.32,33,42,43   

 

In our study, age acceleration for three constructs, PhenoAge, Hannum EC, and GrimAge, was 

associated with mortality in both cancer survivors and controls. The lack of associations with 

KDM-BA and POA in cancer survivors may be explained by a smaller sample size in cancer 

survivors than controls. However, we also found associations with mortality for the Horvath and 

Levine ECs in cancer survivors but not in controls, and the associations for the Hannum EC and 

GrimAge were stronger in cancer survivors. Stronger associations between aging constructs and 

mortality in cancer survivors support the conclusion from the recent NHANES study of 

PhenoAge in cancer survivors and controls in relation to all-cause mortality.13  Our findings 

suggest that different aging constructs may predict mortality differently in cancer survivors and 

in controls. 

 

To compare relative performance of aging constructs, we included all eight aging constructs in a 

single model simultaneously. We found that Levine EC and GrimAge were independently 

associated with mortality among cancer survivors and KDM-BA was independently associated 

with mortality among controls. These results along with the low correlations between age 

acceleration of aging constructs (r=0.004-0.63) suggest that different aging constructs may 

capture different aspects of BA.  
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Aging and cancer may have a bidirectional association. Not only do cancer survivors have 

greater BA but persons with higher BA may be at increased cancer risk most likely because both 

cancer and aging result from genetic and epigenetic damage accumulation,44 inflammation, 

oxidative stress, and other damage.45-47 Contrary to the consistent associations of various aging 

constructs with prevalent cancer and mortality, there was no association with cancer incidence 

for any aging construct in our study. These findings do not agree with several previous studies 

that found associations of different ECs, such as Hannum, Horvath, GrimAge and Levine, with 

the incidence of total cancer,17,48 breast,20,49-51 lung,18 male colon cancer49 (summarized in a 

recent review52). Positive associations have been also reported of KDM-BA and PhenoAge with 

the incidence of total, lung and colorectal cancer in UK Biobank, a large prospective study.24 In 

that study, PhenoAge was also associated with breast cancer risk.24 Most likely, in our study, 

there was no association with the cancer risk due to a limited power and the inability to evaluate 

individual cancer types.  

 

Limitations in our study include a self-reported information about cancer diagnosis and other 

cancer characteristics. However, a recent validation study found that, compared to Medicare data, self-

report first incident cancer diagnoses in HRS had 73.2% sensitivity and 96.29% specificity.53 In addition, 

we have a limited sample size to examine associations in cancer survivors especially for ECs that 

have been measured in a smaller sample. The strengths included the population-based 

longitudinal study, the detailed information about various risk factors and comorbidities, and the 

assessment of different aging measures in the same study in both cancer survivors and controls. 

Estimating BA in cancer survivors is particularly important because it may serve as a marker of 

survivor’s ability to manage the rigors of cancer treatment and their physiological function. BA 
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may be a better marker than CA that is commonly used for cancer therapy guidelines because 

cancer survivors of the same CA have very different ability to tolerate treatment. Our study also 

suggests that, compared to a single aging construct, including multiple aging constructs may 

more comprehensively capture the global age-related dysfunction seen among cancer survivors 

and should be examined in the future studies.  
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Table 1. Distribution of characteristics by cancer status in 2016 after adjusted for survey weights, HRS 

Sample Aa (N = 5,501) 

Characteristics 
Controlsb 

(N = 4,555) 

Cancer survivorsb 

(N = 946) 
P-value 

Chronological age (CA), years (SD) 67.43 (0.23) 71.01 (0.44) <0.0001 

KDM-BA-Accel, years (SD)  -0.28 (0.06)  -0.11 (0.15) 0.37 

PhenoAgeAccel, years (SD)  -0.60 (0.15) 0.21 (0.27) 0.02 

SA-Accel, years (SD)  -0.27 (0.20) 1.09 (0.34) 0.0007 

Female, % 54.11 53.38 0.75 

Race/ethnicity, %    

    Non-Hispanic White 82.58 87.88 

0.0047 

    Non-Hispanic Black 7.59 6.16 

    Hispanic White 4.52 2.45 

    Hispanic Black 0.18 0.03 

    Other 5.13 3.48 

Body mass index (BMI), kg/m2 (SD) 29.73 (0.11) 29.90 (0.23) 0.47 

Smoking status, %    

    Current smoker 10.24 8.18 

0.0011     Former smoker 42.86 50.69 

    Never smoker 46.90 41.13 

Comorbidity Indexc, score (SD) 1.87 (0.03) 2.25 (0.05) <0.0001 

Positive CMV infection, % 59.38 61.12 0.52 

Sample Ba (N = 3,387) 

Characteristics 
Controlsb 

(N = 2,805) 

Cancer survivorsb 

(N = 582) 
P-value 

CA, years (SD) 67.90 (0.27) 71.67 (0.51) <0.0001 

HannumAccel, years (SD)  -0.12 (0.11) 1.00 (0.28) 0.0002 

HorvathAccel, years (SD)  -0.04 (0.15) 0.77 (0.37) 0.047 

LevineAccel, years (SD)  -0.17 (0.20) 0.87 (0.33) 0.014 

GrimAgeAccel, years (SD)  -0.46 (0.12) 0.72 (0.24) <0.0001 

POA, years of physiological decline per one 

chronological year (SD) 
1.06 (0.002) 1.08 (0.005) 0.007 

Female, % 54.35 52.31 0.46 

Race/ethnicity, %    

    Non-Hispanic White 77.50 83.34 

0.004 

    Non-Hispanic Black 10.12 10.35 

    Hispanic White 6.01 3.08 

    Hispanic Black 0.24 0.00 

    Other 6.13 3.23 

BMI, kg/m2 (SD) 29.97 (0.13) 29.88 (0.32) 0.76 

Smoking status, %    

    Current smoker 11.25 9.24 

0.02     Former smoker 42.92 51.14 

    Never smoker 45.83 39.62 

Comorbidity Indexc, score (SD) 1.98 (0.04) 2.44 (0.08) <0.0001 

Positive CMV infection, % 62.04 65.58 0.29 
aSample A includes participants who had data on KDM-BA, PhenoAge, and SA. Sample B includes participants 

who had data on ECs. 
bControls are participants without a history of cancer in 2016. Cancer survivors are participants with a history of 

cancer in 2016. 
cComorbidity index was assessed as a score of coexisting conditions, including hypertension, lung disease, 

cardiac disorders, stroke, arthritis, diabetes, and psychiatric problems, ranged from 1 to 7. 
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Table 2. Associations between aging constructs and cancer prevalence in 2016, HRS 

Sample Aa 

Aging constructs 
No. of cancer 

survivorsb  
No. of controlsb  

OR (95% CI) per 1 SD increase in aging constructs 

Model 1c Model 2d 

KDM-BA-Accel (SD = 3.83 years) 

946 4,555 

1.04 (0.94, 1.14) 0.99 (0.89, 1.10) 

PhenoAgeAccel (SD = 7.12 years) 1.12 (1.02, 1.22) 1.06 (0.96, 1.16) 

SA-Accel (SD = 10.36 years) 1.15 (1.06, 1.25) 1.12 (1.03, 1.21) 

Sample Ba 

Aging constructs 
No. of cancer 

survivorsb  
No. of controlsb  

OR (95% CI) per 1 SD increase in aging constructs 

Model 1c Model 2d 

HannumAccel (SD = 5.22 years) 

582 2,805 

1.26 (1.13, 1.40) 1.24 (1.12, 1.38) 

HorvathAccel (SD = 6.39 years) 1.14 (1.00, 1.30) 1.12 (0.98, 1.28) 

LevineAccel (SD = 6.77 years) 1.17 (1.04, 1.31) 1.14 (1.01, 1.28) 

GrimAgeAccel (SD = 4.65 years) 1.28 (1.14, 1.44) 1.31 (1.13, 1.52) 

POA (SD =  0.09 years of physiological decline per one 

chronological year) 
1.17 (1.03, 1.33) 1.15 (0.99,1.33) 

aSample A includes participants who had measures of KDM-BA, PhenoAge, and SA. Sample B includes participants who had data on ECs. 
bControls are participants without a history of cancer in 2016. Cancer survivors are participants with a history of cancer in 2016. 
cModel 1 was adjusted for chronological age. 
dModel 2 was adjusted for chronological age, sex, race/ethnicity, BMI, smoking status, comorbidity index, and CMV infection. 
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Table 3. Associations between aging constructs and mortality among cancer survivors and controls after adjusted for survey weights, HRS (2016-2020) 

Sample Aa 

Cancer survivors (N = 946)b 

Aging constructs No. of deaths  Total person-year  
HR (95% CI)c per 1 SD increase in aging constructs 

Model 1c Model 2d 

KDM-BA-Accel (SD = 4.07 years) 

122 3,775 

1.18 (0.99, 1.39) 1.14 (0.95, 1.37) 

PhenoAgeAccel (SD = 7.22 years) 1.47 (1.17, 1.85) 1.47 (1.14, 1.90) 

SA-Accel (SD = 10.29 years) 0.98 (0.68, 1.41) 0.93 (0.64, 1.33) 

Controls (N = 4,555)b 

Aging constructs No. of deaths  Total person-year  
HR (95% CI)c per 1 SD increase in aging constructs 

Model 1c Model 2d 

KDM-BA-Accel (SD = 3.78 years) 

249 18,861 

1.39 (1.20, 1.60) 1.32 (1.10, 1.59) 

PhenoAgeAccel (SD = 7.09 years) 1.43 (1.27, 1.61) 1.37 (1.19, 1.58) 

SA-Accel (SD = 10.37 years) 1.22 (0.96, 1.54) 1.18 (0.96, 1.45) 

Sample Ba 

Cancer survivors (N = 582)b 

Aging constructs No. of deaths  Total person-year  
HR (95% CI)c per 1 SD increase in aging constructs 

Model 1c Model 2d 

HannumAccel (SD = 5.48 years) 

103 2,270 

1.24 (1.07, 1.43) 1.33 (1.15, 1.53) 

HorvathAccel (SD = 7.01 years) 1.19 (0.98, 1.49) 1.26 (1.02, 1.55) 

LevineAccel (SD = 6.88 years) 1.49 (1.25, 1.77) 1.58 (1.29, 1.94) 

GrimAgeAccel (SD = 4.68 years) 2.03 (1.58, 2.60) 2.13 (1.52, 2.99) 

POA (SD = 0.09 years of physiological decline per one 

chronological year) 
1.38 (1.12, 1.71) 1.27 (0.97, 1.67) 

Controls (N = 2,805)b 

Aging constructs No. of deaths  Total person-year  
HR (95% CI)c per 1 SD increase in aging constructs 

Model 1c Model 2d 

HannumAccel (SD = 5.14 years) 

213 11,439 

1.20 (1.03, 1.40) 1.19 (1.01, 1.41) 

HorvathAccel (SD = 6.25 years) 1.07 (0.88, 1.31) 1.05 (0.85, 1.30) 

LevineAccel (SD = 6.74 years) 1.14 (0.95, 1.37) 1.09 (0.90, 1.33) 

GrimAgeAccel (SD = 4.63 years) 1.57 (1.37, 1.82) 1.45 (1.19, 1.78) 

POA (SD = 0.09 years of physiological decline per one 

chronological year) 
1.45 (1.27, 1.67) 1.31 (1.14, 1.52) 

aSample A includes participants who had measures of KDM-BA, PhenoAge, and SA. Sample B includes participants who had data on ECs. 
bControls are participants without a history of cancer in 2016. Cancer survivors are participants with a history of cancer in 2016. 
cModel 1 was adjusted for chronological age. 
dModel 2 was adjusted for chronological age, sex, race/ethnicity, BMI, smoking status, comorbidity index, and CMV infection. 
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