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Figure S1: Proportion of HARs, VEs, and CNEs predicted to be active in fetal (left) and adult (right) tissue by ChromHMM from the
Roadmap Epigenomics Project (Kundaje et al., 2015) (Materials and Methods).
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Figure S2: Gene ontology enrichments for genes near HARs, VEs, and CNEs using GREAT (McLean et al., 2010). The top five enriched
terms from the binomial test are plotted.
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Figure S3: ASD-associated genes from the SFARI database (Abrahams et al., 2013) and genes near HARs, VEs, and CNEs are enriched for
low LOEUF scores compared to all genes. Genes that are loss-of-function intolerant have low LOEUF scores (Karczewski et al., 2020).
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Figure S4: Features of caMPRA for HARs, VEs, and CNEs. (A) Proportion of HARs, VEs, and CNEs tested in caMPRA. (B) Distribution of
the length of HARs, VEs, and CNEs. (C) Length and number of sequences captured for HARs, VEs, and CNEs. (D) Distribution of the number
of captured sequences per HAR, VE, and CNE. (E) Normalized ratio of cDNA to plasmid DNA (enhancer activity) for sequences captured from
the same HAR, VE, or CNE. The enhancer activity of captured sequences from the same element is not correlated.
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Figure S5: Enhancer activity in caMPRA of HARs, VEs, and CNEs is well-correlated between replicates and between collection timepoints.

6



D
HAR VE CNE

ca
M

PR
A 

re
su

lts

E

A C
M

ed
ia

n 
cD

N
A

 c
ou

nt
s 

(lo
g 2(T

P
M

))
P

ro
po

rti
on

 o
f a

ct
iv

e 
se

qu
en

ce
s

w
ith

 T
F 

fe
at

ur
e 

(D
ee

pS
E

A
)

Median plasmid DNA counts (log2(TPM))

Proportion of inactive sequences with TF feature (DeepSEA)

CNE 863A

CNE 4505A

CNE 1398A

CNE 6103A

CNE 4523A
CNE 5006A

CNE 5828A

CNE 5045B

3

6

9

12

2.5 5.0 7.5 10.0

−1

0

1

2

3

4

−1 0 1 2 3

M
ed

ia
n 

lo
g2

(T
PM

) r
at

io
 o

f

HAR 618C

HAR 1551A

HAR 1236D

HAR 280H

HAR 395B

HAR 1443A

HAR 853A
HAR 280G

4

8

12

16

4 8 12 16

−2

0

2

4

−1 0 1 2 3 4

M
ed

ia
n 

lo
g 2(T

P
M

) r
at

io
 o

f
cD

N
A

 to
 p

la
sm

id
 D

N
A

 (D
3)

VE 283C

VE 1367A

VE 114B

VE 934B

VE 66D

VE 1761D

VE 1432B VE 838C

4

6

8

4 6 8 10

0

1

2

3

0 1 2 3
Median log2(TPM) ratio of cDNA to plasmid DNA (D1)

0.00

0.05

0.10

0.15

A

HAR VE CNE

P
ro

po
rti

on
 o

f a
ct

iv
e

se
qu

en
ce

s 
in

 c
aM

P
R

A

HAR VE CNE

D1 D3
B

M
ea

n 
fu

nc
tio

na
l s

co
re

(D
ee

pS
E

A
)

inactive active 2−fold activecaMPRA activity:

HAR VE CNE

0.5

1.0

1.5

2.0

2.5

0.0

p < 10−8

p < 10−15

p = 0.081
p < 10−15

p = 0.01
p < 10−11

FOXP2 (SK-N-MC)

YY1 (SK-N-SH_RA)

Sin3Ak−20 (PFSK-1)

TAF1 (PFSK-1)

Pol2-4H8 (SK-N-SH)

FOXP2 (PFSK-1)

Rad21 (SK-N-SH_RA)

USF1 (SK-N-SH_RA)
0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

YY1 (SK-N-SH_RA)

Sin3Ak-20 (PFSK-1)

KAP1 (U2OS)
TAF1 (PFSK-1)

HDAC2 (H1-hESC)

NRSF (SK-N-SH)

Max (H1-hESC)

RFX5 (H1-hESC)

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

YY1 (SK-N-SH_RA)
FOXP2 (SK-N-MC)

Sin3Ak-20 (PFSK-1)

Sin3Ak-20 (SK-N-SH)

TAF1 (SK-N-SH)

NRSF (SK-N-SH)

KAP1 (U2OS)

EZH2 (Dnd41)

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

F

0.00

0.05

0.10

0.15

0.20

HAR VE CNE

P
ro

po
rti

on
 o

f a
ct

iv
e

el
em

en
ts

 in
 c

aM
P

R
A

0.25
p = 0.002

p = 0.008

Figure S6: HARs, VEs, and CNEs display enhancer activity in a capture-based Massively Parallel Reporter Assay (caMPRA). (A) Proportion
of captured sequences that are active in caMPRA for HARs, VEs, and CNEs when assessed one (D1) or three (D3) days after transfection. (B)
Proportion of HARs that have enhancer activity in at least one captured sequence in the D1 caMPRA is significantly lower than VEs or CNEs
by the chi-square test after FDR correction. (C) Sequences captured from HARs, VEs, and CNEs are classified as inactive, active, or 2-fold
active from the D1 caMPRA experiment and compared to their mean functional score from DeepSEA (average of −log10(e − value) for every
feature) (Zhou and Troyanskaya, 2015). The level of activity in caMPRA is correlated with the predicted mean functional score from DeepSEA.
P-values were determined with the hypergeometric test and adjusted by FDR correction. (D) Normalized cDNA counts vs normalized plasmid
counts for sequences captured from HARs, VEs, and CNEs from the D1 caMPRA experiment. Sequences with significant enhancer activity are
in orange. (E) TF features were predicted by DeepSEA for each captured sequence. TF features significantly enriched in active sequences in the
D1 caMPRA experiment are shown in orange. Representative TF features are marked in the format: TF (cell type). (F) The enhancer activity of
captured sequences between the D1 and D3 caMPRA experiments is highly correlated.
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Figure S7: Single nucleotide variants can modulate enhancer activity. (A) Number of variants per mutagenized sequence (barcode). (B)
Number of barcodes tested per probe. There are at least two designed probes (elements) per HAR. (C) Volcano plot of fold change in expression
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Figure S8: Enhancer activity in caMPRA of random mutagenesis of HARs is well-correlated between replicates.
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Figure S9: Odds ratios for rare, recessive variants at conserved bases in cases versus controls in HMCA cohort are consistent across allele
frequencies (A) and sexes (B). (B) is assessed at allele frequency (AF) < 0.005.
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Figure S10: Odds ratios for rare, recessive variants at conserved bases in cases versus controls in the NIMH cohort for (A) males and females
(autosomes only), (B) males and females separately (autosomes and X chromosome), and (C) by family structure and sex (autosomes and
X chromosome). All are assessed at allele frequency (AF) < 0.001.
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Figure S11: Odds ratios for rare, recessive variants at conserved bases in cases versus controls in NIMH cohort are consistent across allele
frequencies (AF).
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Figure S13: Analysis of patient-enriched variants identified in the HMCA and NIMH cohorts. (A) Protein-protein interactions of genes near
HARs, VEs, and CNEs in the HMCA cohort and HARs and VEs in the NIMH cohort that have a numerical excess of variants found in cases
compared to controls (Materials and Methods). Genes associated with ASD (Abrahams et al., 2013) are colored red, and genes that are loss-of-
function intolerant (pLI > 0.9) (Lek et al., 2016) are colored blue. The thickness of network edges indicates the strength of data supporting the
interaction, and only networks with >5 proteins were included. (B) The number of variants found in more cases than controls (patient-enriched
variants) and the number of HARs, VEs, and CNEs that they are found in (elements) are plotted for genes near at least 3 patient-enriched variants.
Only patient-enriched variants where the HAR, VE, or CNE they are located in has more patient-enriched than control-enriched variants are
included. Genes associated with ASD (Abrahams et al., 2013) are colored red, and genes that are loss-of-function intolerant (pLI > 0.9) (Lek
et al., 2016) are colored blue. (C) Genomic interval including HAR3162 and nearby genes. (D) HAR3162 cloned upstream of a minimal promoter
driving the lacZ gene was integrated at the safe-harbor H11 locus and analyzed for lacZ expression at E11.5 (Materials and Methods). HAR3162
drives lacZ expression in the ventral telencephalon (representative embryo shown here).
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Figure S14: Enhancer reporter assay of HAR3091 and HAR3094 in transgenic mice. Enhancer reporter constructs containing the human
or chimpanzee versions of HAR3091 and HAR3094 cloned upstream of a minimal promoter driving lacZ expression were injected into mouse
embryos and analyzed at E14.5 (Materials and Methods). Embryos were genotyped for the lacZ gene from tail clips. There were 16 PCR-positive
embryos for the human version of HAR3091, 14 PCR-positive embryos for the chimpanzee version of HAR3091, 15 PCR-positive embryos for
the human version of HAR3094, and 10 PCR-positive embryos for the chimpanzee version of HAR3094. All embryos with any visible lacZ
staining are displayed. Images are of bisected embryos, unless there was no internal lacZ staining. The table shows the percentage of embryos
with lacZ expression that have expression in the telencephalon (filled arrowhead), olfactory bulb (unfilled arrowhead), or midbrain (asterisk).
Visible lacZ staining is taken as a proxy that the full construct was integrated and is assessable in an embryo. Given the mosaic and random
nature of integration events in this experiment, tissue regions where the tested sequences can drive enhancer activity will show staining in multiple
embryos.
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Figure S15: CRISPRi targeting the IL1RAPL1 promoter, HAR3091, and HAR3094. We tested three non-targeting control (NTC) gRNAs
(gray), two gRNAs targeting the IL1RAPL1 promoter (green), 3 gRNAs targeting HAR3091 (yellow), and 3 gRNAs targeting HAR3094 (pink).
Compared to the NTC gRNAs, only the gRNAs IL1RAPL1 TSS-1 (adjusted p = 0.0002) and HAR3094-7 (adjusted p = 0.002) were statistically
significant.
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Figure S16: Luciferase assays of patient variants in HAR3091 (A) and HAR3094 (B). Within each replicate experiment, each patient se-
quence was compared to the luciferase expression from the control sequence with the Wilcoxon rank-sum test. P-values were adjusted using the
Benjamini-Hochberg correction. * : adjusted p < 0.1, ** : adjusted p < 0.01.
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Figure S17: Enhancer reporter assay of hs576 (VE854) in E11.5 transgenic mice. Enhancer reporter constructs containing hs576 with or
without the two ASD patient variants upstream of a minimal promoter driving lacZ expression were injected into mouse embryos, screened for
stable integrants at the safe-harbor H11 locus, and analyzed at E11.5 (Materials and Methods). All embryos with homozygous insertions at the
H11 locus are shown.
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Figure S18: Odds ratios for the number of rare, recessive variants at conserved bases in ASD cases compared to controls at allele frequency
< 0.005 in the HMCA cohort for the set of HARs analyzed in this study (HAR) and two recently identified sets of HARs, zooHARs (Keough
et al., 2023) and human linARs (Bi et al., 2023). Given the moderate overlap between linARs and the HARs analyzed in this study, we also
assessed HARs that overlap linARs (HAR and human linAR) and those that did not (HAR but not human linAR).
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Figure S19: De novo variants are not enriched in cases versus controls in SSC for (A) males and females (autosomes only) or (B) males and
females separately (autosomes and X chromosome).
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Supplemental Tables

Table S1: Coordinates (hg19), TF motif enrichments, GREAT gene ontology results of HARs, VEs, and CNEs
Table S2: caMPRA results for HARs, VEs, and CNEs
Table S3: caMPRA results from random mutagenesis of HARs
Table S4: Rare, recessive variants at conserved bases in ASD cohorts
Table S5: Oligos used in this study
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