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Key points:
Question: What is the comparative performance of fine-tuned Segment Anything Model (SAM) against
domain-specific segmentation model on transthoracic echocardiography (TTE) and point-of-care
ultrasound (POCUS)?

Findings: Fine-tuned SAM had excellent performance on EchoNet dataset (SAM vs. EchoNet: DSC
0.911 ± 0.045 vs. 0.915 ± 0.047, p<0.0001) and generalized well on external datasets containing TTE
(Mayo TTE: DSC 0.902 ± 0.032 vs. 0.893 ± 0.090, p<0.0001) and POCUS (DSC 0.857 ± 0.047 vs. 0.667
± 0.279, p<0.0001).

Meaning: The generalization capability of SAM can facilitate the development of AI applications in
echocardiography and POCUS with minimal expert data curation.

Abstract
Importance A recently developed vision foundation model, "Segment Anything (SAM)," promises to
segment any objects in images. However, the performance of SAM on clinical echocardiography images
is yet to be investigated and compared against the domain-specific models.

Objective To evaluate the performance of SAM on transthoracic echocardiography (TTE) and
point-of-care ultrasound (POCUS) images.

Design SAM was fine-tuned on the training set of EchoNet-Dynamic (TTE) and then evaluated on
datasets containing TTE and POCUS images.

Setting Multi-center, retrospective cohort study.

Participants This study used two publicly available datasets (EchoNet-dynamic, Stanford University and
CAMUS, University Hospital of St Etienne). The Mayo Clinic dataset contains a sample of 99
non-duplicated patients (58 TTE and 41 POCUS).

Intervention/Exposure: not applicable.

Main Outcomes and Measures Model segmentation performance: Dice similarity coefficient (DSC).

Results Fine-tuned SAM had promising frame-level performance (SAM vs. EchoNet: DSC 0.911 ± 0.045
vs. 0.915 ± 0.047, p<0.0001), and consistent performance on the external datasets including TTE (Mayo
Clinic: DSC 0.902 ± 0.032 vs. 0.893 ± 0.090, p<0.0001, CAMUS-A4C: DSC 0.897 ± 0.036 vs. 0.850 ±
0.097, p<0.0001, CAMUS-A2C: DSC 0.891 ± 0.040 vs. 0.752 ± 0.196, p<0.0001) and POCUS (DSC
0.857 ± 0.047 vs. 0.667 ± 0.279, p<0.0001).

Conclusions and Relevance Promising segmentation performance was observed after fine-tuning the
SAM model on TTE. The strong generalization capability of SAM can facilitate the development of AI
applications in cardiac ultrasound with less manual data curation.
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Introduction
Echocardiography provides comprehensive anatomy and physiology assessment of the heart and is one of
the most widely available imaging modalities in the field of Cardiology given its non-radiative, safe, and
low-cost nature1–3. Cardiac chamber quantification is one of the fundamental tasks of echocardiography
studies in the current practice4, and the results can have direct effects on clinical decisions such as the
management of heart failure, valvular heart diseases, and chemotherapy-induced cardiomyopathy 5–8.
Although left ventricular (LV) chamber quantification tasks are performed by trained sonographers or
physicians, it is known to be subject to intra- and inter-observer variance which can be up to 7%-13%
across studies9–12. Many artificial intelligence (AI) applications have been applied to address this essential
task and to minimize variations3,13–16.

While established AI systems are potential solutions, the training of segmentation AI models requires
large amounts of training data and their corresponding expert-defined annotations, making them
challenging and expensive to implement17. In recent years, transformers, a type of neural network
architecture with self-attention, have revolutionized the field from natural language processing to
computer vision18–20. Vision transformers (ViT) 18 are a type of transformer specifically designed for
images, which have shown impressive performance with simple image patches and have become a
popular choice for the building of foundation models that can be fine;-tuned for various downstream
computer vision tasks21. Building on this success, Meta AI introduced the "Segment Anything Model”
(SAM), a foundation large vision model that was trained on diverse datasets and that can adapt to specific
tasks. This model achieves “zero-shot” segmentation: segments user-specified objects at different data
resources without needing any training data22.

However, while the zero-shot performance of SAM on natural image datasets has been promising22, its
performance on complex image datasets, such as medical images, has not been fully investigated. While
not specifically including echocardiography images, one study tested SAM on different medical image
datasets including ultrasound, and the zero-shot performance was not optimal23. Recently, MedSAM was
introduced as a universal tool for medical image segmentation, however, ultrasound or echocardiography
were less represented in the training set24. In this context, we aim to study the zero-shot and fine-tuned
performance of SAM in echocardiography images and represent a comparative performance with a
state-of-the-art segmentation model trained with a domain-specific dataset (EchoNet).

We hypothesized that SAM has suboptimal zero-shot segmentation performance on echocardiography
images given the domain differences and the datasets’ complexity. We also anticipate that fine-tuning
SAM can adapt it to the domain of echocardiography for better segmentation performance. Within the
echocardiography domain, images obtained from different institutions and modalities (with different
image qualities) were used to evaluate the generalization capability of SAM performance.

Method

Population and Data Curation
The EchoNet-Dynamic dataset is publicly available (https://echonet.github.io/dynamic/); details of the
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dataset have been described previously 3. In brief, the dataset contains 10,030 apical-4-chamber (A4C)
TTE videos at Stanford Health Care in the period of 2016-2018. The raw videos were preprocessed to
remove patient identifiers and downsampled by cubic interpolation into standardized 112 × 112-pixel
videos. Videos were randomly split into 7,465, 1,277, and 1,288 patients, respectively, for the training,
validation, and test sets3. In this study, the cases without ground truth labels were excluded from this
analysis (5 from the train set, 1 from the test set)(Supplemental Table 1).

A dataset from Mayo Clinic (Rochester, MN) that includes 99 randomly selected patients (58 TTE in
2017-2018 and 41 point-of-care ultrasound studies (POCUS) in 2022) was used as the external validation
dataset. The A4C videos were reviewed by a clinical sonographer (RW) and a cardiologist (JMF). 52 (33
TTE and 19 POCUS) out of the total 100 cases were traced by both of the annotators to select and
segment the end-diastolic and end-systolic frames. The tracings were done manually on commercially
available software (MD.ai, Inc., NY). The Cardiac Acquisitions for Multi-structure Ultrasound
Segmentation (CAMUS) dataset contains 500 cases from the University Hospital of St Etienne (France)
with detailed tracings on both A4C and A2C views 25.

Segment Anything Model (SAM)
The Segment Anything Model (SAM) is an image segmentation foundation model trained on a dataset of
11 million images and 1.1 billion masks26. It can generate object masks from input prompts like points or
boxes. SAM's promptable design enables zero-shot transfer to new image distributions and tasks,
achieving competitive or superior performance compared to fully supervised methods26. In brief, the
model comprises a VisionEncoder, PromptEncoder, MaskDecoder, and Neck module, which collectively
process image embeddings, point embeddings, and contextualized masks to predict accurate segmentation
masks.

Data Preprocessing
Each EchoNet-Dynamic video (112 × 112 pixels, in avi format) was exported into individual frames
without further resizing. End-diastolic and end-systolic frames of each case were extracted, which
corresponded to the human expert traced, frame-level ground truth segmentation coordinates in the
dataset. Ground truth segmentation masks were generated according to the coordinates and saved in the
same size (112 × 112 pixels). The labeled frames of Mayo TTE and POCUS images were exported from
the MD.ai platform, and followed a similar preprocessing method to remove patient identifiers, then
horizontally flipped and resized to 112 × 112 pixels3. The CAMUS images were rotated for 270 degrees
and resized to be consistent with the EchoNet format. When importing to the SAM model, all the raw
images were resized with the built-in function “ResizeLongestSide.”26

Zero-shot Performance
The original SAM ViT-base model (model type “vit_b”, checkpoint “sam_vit_b_01ec64.pth ”) was used
to evaluate zero-shot performance on the datasets. The larger versions of SAM (ViT Large and ViT Huge)
were not used as they did not offer significant performance improvement despite higher computational
demands26. Bounding box coordinates of each left ventricle segmentation tracing were generated from the
ground truth segmentations and used as the prompt for SAM22.

Model Fine-tuning
The same ViT-base model was used for fine-tuning with a procedure (MedSAM fine-tuning) described by
Ma et al (https://github.com/bowang-lab/MedSAM)24. We used the training set cases (n=7,460) of the
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EchoNet-Dynamic as our customized dataset without further data augmentation. The same bounding box
was used as the prompt, as described above. We used a customized loss function, which is the unweighted
sum of Dice loss and cross-entropy loss24,27. Adam optimizer28 was used (weight decay= 0), with an initial
learning rate of 2e-5 (gradually decreased to 3e-6 over 27 epochs). The batch size was 8. The model was
fine-tuned on a node on the Stanford AI lab cluster with a 24 GB NVIDIA RTX TiTAN GPU.

Validation and Generalization
The fine-tuned SAM was tested on the test set of the EchoNet-Dynamic dataset. To test the generalization
capacity of SAM, we used external validation samples from the CAMUS dataset (both A2C and A4C) 25

and a Mayo Clinic dataset including the A4C view of cases of TTE and POCUS devices.

Statistical Model Performance Evaluation
The model segmentation performance was directly evaluated by Intersection over Union (IoU) and the
Dice similarity coefficient (DSC) against human ground truth labels29. Two-tailed, paired t-tests were
conducted to assess the statistical significance of the differences between models (zero-shot vs. fine-tuned
SAM, and EchoNet vs. fine-tuned SAM), with p<0.05 as significant. The summation of disks method was
used to calculate the LV ejection fraction (LVEF) from the end-diastolic and end-systolic segmentation
masks. LVEF was finally calculated with the following formula.

𝐿𝑉𝐸𝐹(%) =  𝐸𝐷𝑉− 𝐸𝑆𝑉
𝐸𝐷𝑉 ×100%

While the model was not trained for LVEF prediction, the model-derived LVEF measurements were
compared to the ground truth-derived LVEF by R-square and mean absolute error (MAE).

Results

Patient Characteristics
The EchoNet-Dynamic patient characteristics have been described in detail 3. The mean left ventricular
ejection fraction of the EchoNet-dynamic dataset was 55.8±12.4%, 55.8±12.3%, and 55.5±12.2%, for the
training, validation, and test set, respectively3. In the Mayo Clinic data set (n=99), the mean age was 47.5
± 17.8 years, 58 (58.6%) were male, and coronary artery disease, hypertension, and diabetes were found
in 20 (20.2%), 42 (42.4%), and 15 (15.2%) of patients, respectively. The dataset contains an apical
four-chamber view of 58 TTE cases and 41 POCUS cases, the LVEF was 61.7 ± 7.5% for TTE and 63.2 ±
11.9% for POCUS cases. The CAMUS cohort had a mean age of 65.1 ± 14.4 years, 66% male, and a
mean LVEF of 44.4 ± 11.9%.

SAM’s zero-shot performance on echocardiography and POCUS
Overall, the zero-shot performance on the EchoNet-dynamic test set had a mean DSC of 0.863 ± 0.053.
In terms of individual cardiac phase performance, end-diastolic frames were better than end-systolic
frames (mean DSC 0.878 ± 0.040 vs. 0.849 ± 0.060). On the Mayo Clinic dataset, the mean DSC was
0.882 ± 0.036 and 0.861 ± 0.043 for TTE and POCUS, respectively. On the CAMUS dataset, we observed
mean DSC of 0.866 ± 0.039 and 0.852 ± 0.048 on A4C and A2C views, respectively (Table 1 and
Supplemental Table 2). When compared to the ground truth LVEF, the calculated LVEF had an MAE of
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11.67%, 6.28%, and 6.38%, on EchoNet, Mayo-TTE, and Mayo-POCUS data, respectively
(Supplemental Table 3).

Table 1. Comparison of zero-shot SAM, fine-tuned SAM and EchoNet model

Dataset Phase DSC IoU
SAM

(zero-shot)
SAM

(fine-tuned)
EchoNet p-value* p-value** SAM

(zero-shot)
SAM

(fine-tuned)
EchoNet p-value* p-value**

EchoNet-tes
t

Overall 0.863 ±
0.053

0.911 ±
0.045

0.915 ±
0.047 <0.0001 0.0012

0.763 ±
0.077

0.840 ±
0.071

0.847 ±
0.072 <0.0001 0.0003

ED 0.878 ±
0.040

0.929 ±
0.030

0.903 ±
0.052 <0.0001 <0.0001

0.784 ±
0.062

0.868 ±
0.050

0.826 ±
0.078 <0.0001 <0.0001

ES 0.849 ±
0.060

0.894 ±
0.050

0.928 ±
0.038 <0.0001 <0.0001

0.742 ±
0.084

0.812 ±
0.077

0.868 ±
0.059 <0.0001 <0.0001

Mayo- TTE Overall 0.882 ±
0.036

0.902 ±
0.032

0.893 ±
0.090 <0.0001 0.3167

0.790 ±
0.056

0.822 ±
0.051

0.814 ±
0.093 <0.0001 0.3720

ED 0.889 ±
0.037

0.916 ±
0.024

0.916 ±
0.031 <0.0001 0.9409

0.802 ±
0.058

0.846 ±
0.040

0.846 ±
0.051 <0.0001 0.9991

ES 0.875 ±
0.033

0.887 ±
0.032

0.870 ±
0.119 0.0039 0.3055

0.779 ±
0.052

0.799 ±
0.050

0.782 ±
0.113 0.0039 0.3114

Mayo-
POCUS

Overall 0.861 ±
0.043

0.857 ±
0.047

0.667 ±
0.279 0.4469 <0.0001

0.758 ±
0.066

0.753 ±
0.070

0.554 ±
0.265 0.4695 <0.0001

ED 0.876 ±
0.032

0.878 ±
0.036

0.717 ±
0.255 0.7355 0.0002

0.781 ±
0.051

0.785 ±
0.056

0.607 ±
0.253 0.7097 <0.0001

ES 0.846 ±
0.048

0.836 ±
0.047

0.617 ±
0.295 0.2080 <0.0001

0.735 ±
0.072

0.720 ±
0.069

0.501 ±
0.270 0.1994 <0.0001

CAMUS-
A2C

Overall 0.852 ±
0.048

0.891 ±
0.040

0.752 ±
0.196 <0.0001 <0.0001

0.745 ±
0.069

0.805 ±
0.062

0.633 ±
0.196 <0.0001 <0.0001

ED 0.860 ±
0.042

0.897 ±
0.037

0.754 ±
0.196 <0.0001 <0.0001

0.756 ±
0.062

0.815 ±
0.059

0.635 ±
0.197 <0.0001 <0.0001

ES 0.845 ±
0.052

0.885 ±
0.041

0.751 ±
0.196 <0.0001 <0.0001

0.734 ±
0.073

0.795 ±
0.064

0.632 ±
0.196 <0.0001 <0.0001

CAMUS-
A4C

Overall 0.866 ±
0.039

0.897 ±
0.036

0.850 ±
0.097 <0.0001 <0.0001

0.766 ±
0.059

0.815 ±
0.058

0.749 ±
0.117 <0.0001 <0.0001

ED 0.873 ±
0.037

0.904 ±
0.033

0.850 ±
0.098 <0.0001 <0.0001

0.776 ±
0.056

0.827 ±
0.054

0.749 ±
0.119 <0.0001 <0.0001

ES 0.860 ±
0.041

0.889 ±
0.038

0.850 ±
0.096 <0.0001 <0.0001

0.756 ±
0.061

0.803 ±
0.060

0.749 ±
0.115 <0.0001 <0.0001

*Zero-shot vs. fine-tuned SAM. **Fine-tuned SAM vs. EchoNet model. A2C: apical 2 chamber view, A4C: apical 4 chamber view,
CAMUS: Cardiac Acquisitions for Multi-structure Ultrasound Segmentation, DSC: Dice Similarity Score, ED: end-diastolic, ES:
end-systolic, IoU: Intersection over Union, SAM: segment anything model, TTE: transthoracic echocardiography, POCUS:
point-of-care ultrasound. Data expressed as mean± standard deviation.

SAM’s fine-tuned performance on echocardiography and POCUS
Fine-tuning generally improved the performance of SAM, with a mean DSC of 0.911 ± 0.045 on the
EchoNet-dynamic test set (Table 1 and Supplemental Table 2). Similar improvement was also observed
in Mayo TTE data, with an overall mean DSC of 0.902 ± 0.032. In contrast, no significant improvement
was observed on the POCUS data (DSC 0.857 ± 0.047), while the performance was numerically
improved when compared with the ground truth of the second observer (DSC 0.876 ± 0.038), as
summarized in Table 2. The EchoNet model had a significant performance drop, especially on
Mayo-POCUS and CAMUS A2C datasets (Table 1, Figure 1). When compared to the ground truth
LVEF, the calculated LVEF had an MAE of 7.52%, 5.47%, and 6.70%, on EchoNet, Mayo-TTE, and
Mayo-POCUS data, respectively (Supplemental Table 2).
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Table 2. Zero-shot vs. Fine-tuned SAM performance on TTE and POCUS (against the second
observer).

TTE (n=33) POCUS (n=19)

Zero-shot Fine-tuned p-value Zero-shot Fine-tuned p-value
Mean IoU (overall) 0.776 ± 0.063 0.828 ± 0.061 <0.0001 0.755 ± 0.067 0.781 ± 0.059 0.0551
Mean DSC (overall) 0.873 ± 0.040 0.905 ± 0.038 <0.0001 0.859 ± 0.046 0.876 ± 0.038 0.0591

Mean IoU (ED) 0.781 ± 0.057 0.864 ± 0.033 <0.0001 0.773 ± 0.051 0.799 ± 0.052 0.1964
Mean DSC (ED) 0.876 ± 0.037 0.927 ± 0.019 <0.0001 0.871 ± 0.033 0.887 ± 0.032 0.2037
Mean IoU (ES) 0.771 ± 0.068 0.793 ± 0.062 0.1065 0.738 ± 0.078 0.763 ± 0.061 0.1721
Mean DSC (ES) 0.869 ± 0.043 0.883 ± 0.039 0.1044 0.847 ± 0.055 0.864 ± 0.041 0.1794

IoU: intersection over union, DSC: Dice similarity score, ED: end-diastolic, ES: end-systolic. Data expressed as
mean± standard deviation.

Discussion

The major contributions of this work include 1) demonstrating the good zero-shot performance of SAM
on echocardiography images on the EchoNet-Dynamic, Mayo Clinic, and CAMUS datasets which does
not require any training data, and 2) demonstrating the generalization capability of fine-tuned SAM with
excellent performance on domain-specific datasets across different institutions and ultrasound modalities.
To the best of our knowledge, this is the first work that specifically evaluated the performance of SAM on
real-world TTE and POCUS images. Foundation models like SAM are data-efficient options that have the
potential to facilitate the development of clinical AI solutions in cardiovascular imaging.

SAM’s Zero-shot and fine-tuned performance on echocardiography/POCUS
Echocardiography, like other ultrasound modalities, is generally considered an imaging modality with
more challenges due to its operator dependency and low signal-to-noise ratio3,30–32. Additionally, objects
could often have weak border linings or be obstructed by artifacts on ultrasound/echocardiography
images, which posed specific challenges for echocardiography segmentation tasks3,23. Compared to other
non-cardiac ultrasound images23, SAM seems to have a relatively better performance on
echocardiography with DSC above 0.85 across datasets.

The zero-shot performance of SAM on echocardiography images was good (DSC 0.863 ± 0.053) and was
close to the performance of the EchoNet model3. On the EchoNet-dynamic dataset, both zero-shot and
fine-tuned SAM had a slightly better performance on end-diastolic frames, which was opposite to the
original EchoNet model. This could be a result of the fact that end-diastolic frames usually have better
visualized left ventricular endocardial borders, and SAM does not depend on the intermediate frames as
the video-based EchoNet-Dynamic model3. While the frame-based approach does not consider
consecutive inter-frame changes and spatio-temporal features of echocardiogram, fine-tuned SAM
achieved superior frame-level segmentation performance on non-EchoNet datasets compared to the
original video-based EchoNet model3. Furthermore, there is no video-based foundation model that
handles segmentation tasks like SAM. Importantly, there were cases with suboptimal image quality and
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imperfect human labels (Figure 2) in the EchoNet-dynamic data set3,33, which can limit the model
performance.

The fine-tuned SAM model demonstrated strong generalization capability, with about a 1% and 5% drop
in performance on unseen TTE and POCUS data (Table 1 and Figure 1), respectively. The comparable
performance on CAMUS A2C and A4C views also indicated SAM’s generalization capability, as it was
only fine-tuned on A4C images. Interestingly, the fine-tuned model did not demonstrate an overall
superior performance on POCUS images compared to zero-shot performance. This is likely due to
inter-observer variation as we observed numerical improvement of the model performance on the other
observer’s tracings (Table 2). Furthermore, on qualitative analysis, the fine-tuned model usually predicts
a mask that is more consistent with anticipated LV geometry on POCUS (Figure 3).

We also observed a discrepancy between the MAE and R-square metrics on the LVEF assessment. It is
important to note that SAM is designed as a universal segmentation model instead of the prediction of
LVEF. In contrast, predicting LVEF based on segmented masks is performed by a dedicated model in the
EchoNet framework. However, SAM had an MAE ranging from 5-7% on different datasets, which was
within the range of typical inter-observer variation, which can be up to 13.9%10–12.

Integrating SAM and Future Foundation Models into Clinical Research and Practice
One of the major limitations in building machine learning models for healthcare is the collection of
high-quality training datasets. In addition, the models’ generalizability is frequently questionable17,34.
Annotators with medical expertise are expensive and limited; while EchoNet is currently the largest
public echo segmentation dataset3, its size is still far from the web-scale data used to train SAM26. Having
foundation models like SAM can facilitate the development process of image-based AI applications for
segmentation tasks21.

We observed a significant drop in EchoNet’s performance on the POCUS dataset (Table 1), with
completely failed segmentation in 4 (9.8%) of cases. This suggests a limitation of the generalization
capacity of conventional neural networks across different modalities. In contrast, the comparable
performance of SAM on TTE and POCUS images demonstrated the advantage of leveraging the
generalization capabilities of foundation models 21 in building AI solutions for the rapidly growing use of
POCUS in cardiac imaging35. While evaluation on a larger POCUS is required to better evaluate
inter-observer variations, we demonstrated a strategy to fine-tune foundation models using readily
available and relatively high-quality TTE results knowing that POCUS images usually come with larger
variations in operator skill levels, image quality, and scanning modalities35–38. We observed that fine-tuned
SAM, similar to MedSAM24, can accurately segment cases with weak or missing boundaries, which is
more common in POCUS images. This can be especially useful in assisting the estimation of cardiac
function for POCUS users, who are often not trained for cardiac ultrasound segmentation. SAM can also
be used to facilitate the creation of high-quality clinical echocardiography segmentation datasets by
reducing the workload of annotation23,24,26.

We also foresee the potential of incorporating SAM (either zero-shot or fine-tuned) into clinical workflow
in echocardiography labs23. Compared to the fully automatic models3, an advantage of having an
interactive, human-in-the-loop approach with SAM is that the segmentations can be directly prompted or
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modified to the level of interpreters’ satisfaction23,26. While future studies are needed to assess its real
impact on clinical practice, the interactive functionality of SAM could be especially helpful in challenging
cases or when fully automatic models fail to accurately predict segmentations23.

Finally, while the EchoNet-dynamic dataset does not include detailed segmentation other than LV
endocardium, a potential future step is to include an object detection model that can detect cardiac
chambers, and provide corresponding bounding boxes as prompts to SAM to enable a fully automized
AI-segmentation framework.

Conclusion
SAM has a good zero-shot performance on complex echocardiography images from the EchoNet and
Mayo Clinic datasets, and its frame-level performance was superior to the original EchoNet model after
fine-tuning. The generalization capability of foundation models like SAM can overcome the difficulty of
obtaining large-scale, high-quality training data and facilitate the development of AI applications in
echocardiography and POCUS.

Limitations
This study is limited by its retrospective nature and could be subject to selection bias. Since SAM is an
image-based model, its performance was evaluated on pre-selected end-diastolic and end-systolic frames
rather than the beat-to-beat assessment of the video as proposed by the EchoNet-Dynamic model.
However, we still demonstrated superior frame-level performance with fine-tuned SAM. While adapters
are another potential direction to use SAM for echocardiography segmentation39, we did not specifically
explore this approach in the current paper. How can SAM be integrated into the current echocardiography
lab workflow and its real-world effects will need to be validated in a prospective setting.

Ethical review and approval: EchoNet-Dynamic dataset contains a publicly available, de-identified
dataset. The use of the Mayo Clinic dataset was approved by the institutional review board
(protocol#22-010944).
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Figure 1. Comparison of the overall Dice Similarity Scores (DSC) between EchoNet and fine-tuned
SAM models. This figure illustrates the distribution of overall DSC scores for EchoNet (in light blue) and
Fine-tuned SAM (in orange), across multiple datasets. The box plots depict the median, quartiles, and
95% confidence intervals of the overall DSC scores. Fine-tuned SAM demonstrated consistent
performance across different datasets and was significantly superior to the EchoNet model on the
Mayo-TTE, Mayo-POCUS, and CAMUS datasets (all p<0.0001).
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Figure 2. Qualitative performance of fine-tuned SAM on representative cases against ground truth on the
EchoNet-dynamic test dataset. From top to bottom: 97.5th to 2.5th percentile of DSC. Panels A, B, and C
are end-diastolic frames, and Panels D, E, and F are end-systolic frames. We observed that many of the
poor-performance cases had suboptimal image qualities, such as weak LV borders or off-axis views
(Panels C and F), suggesting the importance of good input image quality on model performance.
Additionally, end-diastolic frames usually have a better delineation of borders than end-systolic frames,
which is consistent with the model performance (end-diastolic slightly better than end-systolic).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.19.23295772doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Zero-shot and fine-tuned SAM performance on a representative POCUS case. Panel A.
end-diastolic frame, Panel B. end-systolic frame. From left to right are the ground truth, zero-shot, and
fine-tuned mask, with an overlay of bounding boxes (green-colored) and mask (blue-colored), on the
original POCUS image. Fine-tuned masks were more consistent with anticipated left ventricular geometry
on visualization. Note that POCUS images generally had worse quality compared to transthoracic
echocardiography images.
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Supplemental Table 1. Excluded EchoNet-dynamic dataset cases due to missing ground truth

FileName Split

0X234005774F4CB5CD.avi TRAIN

0X2DC68261CBCC04AE.avi TRAIN

0X35291BE9AB90FB89.avi TRAIN

0X6C435C1B417FDE8A.avi TRAIN

0X5515B0BD077BE68A.avi TRAIN

0X5DD5283AC43CCDD1.avi TEST

Supplemental Table 2. Zero-shot and Fine-tuned SAM performance on EchoNet-dynamic Train
and Validation set

Zero-shot Fine-tuned

EchoNet-Dynamic-
Train

EchoNet-Dynamic-
Validation

EchoNet-Dynamic-
Train

EchoNet-Dynamic-
Validation

Mean IoU (overall) 0.761 ± 0.080 0.762 ± 0.078 0.842 ± 0.070 0.841 ± 0.069

Mean DSC (overall) 0.862 ± 0.055 0.862 ± 0.054 0.913 ± 0.044 0.912 ± 0.043

Mean IoU (ED) 0.781 ± 0.068 0.783 ± 0.065 0.868 ± 0.052 0.869 ± 0.050

Mean DSC (ED) 0.875 ± 0.046 0.877 ± 0.043 0.928 ± 0.032 0.929 ± 0.030

Mean IoU (ES) 0.740 ± 0.085 0.740 ± 0.084 0.816 ± 0.076 0.813 ± 0.074

Mean DSC (ES) 0.848 ± 0.060 0.848 ± 0.059 0.897 ± 0.049 0.895 ± 0.047

IoU: intersection over union, DSC: Dice similarity score, ED: end-diastolic, ES: end-systolic. Data expressed as
mean± standard deviation.

Supplemental Table 3. LVEF prediction task evaluated by R-square and MAE of zero-shot vs.
fine-tuned SAM

EchoNet-dynamic test CAMUS-A2C CAMUS-A4C Mayo-TTE Mayo-POCUS

Zero-shot Fine-tuned Zero-shot Fine-tuned Zero-shot Fine-tuned Zero-shot Fine-tuned Zero-shot Fine-tuned
R-squared 0.141 0.161 0.445 0.761 0.549 0.709 0.374 0.517 0.638 0.718
MAE (%) 11.7 7.52 9.75 6.11 9.67 7.31 6.28 5.47 6.38 6.70
MAE: mean absolute error.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.09.19.23295772doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295772
http://creativecommons.org/licenses/by-nc-nd/4.0/

