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Abstract 
Objective: While scalp EEG is important for diagnosing epilepsy, a single routine EEG is limited 

in its diagnostic value. Only a small percentage of routine EEGs show interictal epileptiform 

discharges (IEDs) and overall misdiagnosis rates of epilepsy are 20-30%. We aim to 

demonstrate how analyzing network properties in EEG recordings can be used to improve the 

speed and accuracy of epilepsy diagnosis - even in the absence of IEDs. 

Methods: In this multicenter study, we analyzed routine scalp EEGs from 198 patients with 

suspected epilepsy and normal initial EEGs. The patients' diagnoses were later confirmed 

based on an epilepsy monitoring unit (EMU) admission. About 46% ultimately being diagnosed 

with epilepsy and 54% with non-epileptic conditions. A logistic regression model was trained 

using spectral and network-derived EEG features to differentiate between epilepsy and non-
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epilepsy. The model was trained using 10-fold cross-validation on 70% of the data, which was 

stratified to include equal numbers of epilepsy and non-epilepsy patients in both training and 

testing groups. The resulting tool was named EpiScalp. 

Results: EpiScalp achieved an area under the curve (AUC) of 0.940. The model had an 

accuracy of 0.904, a sensitivity of 0.835, and a specificity of 0.963 in classifying patients as 

having epilepsy or not. 

Interpretation: EpiScalp provides accurate diagnostic aid from a single initial EEG recording, 

even in more challenging epilepsy cases with normal initial EEGs. This may represent a 

paradigm shift in epilepsy diagnosis by deriving an objective measure of epilepsy likelihood from 

previously uninformative EEGs. 

 
 
 
 
 

Introduction:  

Epilepsy is a brain disorder characterized by a predisposition to experiencing 

recurrent seizures, affecting approximately 60 million people worldwide.1 Although 8-

10% of the population will experience a seizure during their lifetime, only 2-3% of the 

individuals develop epilepsy.1 Evaluation of patients experiencing suspected seizures 

includes a thorough clinical history and is usually accompanied by a routine scalp EEG 

and brain imaging.2 After determining whether the episode was an epileptic seizure, the 

clinician evaluates the risk of subsequent seizures and the need to start anti-seizure 

medications.3  
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Scalp EEG plays a central role in diagnosing epilepsy and evaluating the risk of 

subsequent seizures.2,4,5 Visual analysis and interpretation remain the gold standard in 

analyzing EEGs.6 Neurologists look for abnormalities including spikes and sharp waves, 

formally called interictal epileptiform discharges (IEDs), in addition to focal slowing of 

EEG waveform activity, all of which are known indicators of epileptic tendency.1,4 

Unfortunately, the sensitivity of scalp EEG in diagnosing epilepsy varies from 29-55%, 

largely due to the sporadic nature of IEDs.7–9 Repeat scalp EEGs may increase the 

sensitivity up to 92%, but lead to significant use of financial and logistical resources for 

both patients and the healthcare system.7 Additionally, misinterpretation of the EEG as 

being abnormal10 and overinterpretation of EEG are major contributors to misdiagnosis 

and may result in unnecessary pharmacotherapy and reduce patient quality of life.8  

Visual interpretation of EEG recordings is subjective and prone to variability 

across different EEG readers.9,11–13 As a result, both false positive and false negative 

diagnoses commonly occur and overall misdiagnosis rates of epilepsy are nearly 

30%.14,15  

Computational EEG analysis tools have emerged recently to assist clinicians in 

EEG analysis.16 The majority of the proposed algorithms automate detection of 

abnormalities, and a widely used commercially available software is Persyst’s Spike 

Detector,13,17 which identifies possible spikes in the EEG recording.  There have been 

several promising publications analyzing EEGs in search of features to distinguish 
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epilepsy from EEGs void of abnormalities. Many such papers, however, use healthy 

individuals as their control group which limits their utility as this setup is both not 

representative of a real-world clinical setting and may not yield an indicator that is 

specific to epilepsy.16,18–23  

Two network-based metrics, fragility24 and source-sink25, have been proposed to 

aid in the localization of the epileptogenic zone from ictal and interictal intracranial EEG 

recordings, respectively. Both methods operate on the assumption that there are 

alterations in the neural network, specifically in the epileptic tissue, of an epilepsy 

patient.26–28 We applied these concepts to scalp EEG to differentiate the network of 

epileptic and non-epileptic EEGs. We named the tool that combines these analyses 

EpiScalp. 

EpiScalp aims to diagnose epilepsy from a patient‘s scalp EEG by i) estimating 

patient-specific dynamical network models from the EEG recording24,25 and ii) analyzing 

the network properties to detect whether pathological patterns, inherent to an epileptic 

brain, are present in the EEG network.  

Methods: 

Subjects: 

This was a multi-center analysis of retrospectively collected data (Table 1). 

Adults patients admitted to the Epilepsy Monitoring Unit (EMU) were screened to be 
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included in the study. Patients who did not have a habitual event/seizure in the EMU 

and patients with both epileptic and non-epileptic seizures were excluded. Potential 

candidates were labeled as having either epileptic seizures or non-epileptic events, 

based on video EEG results in the EMU. Most patients with non-epileptic events had 

functional seizures (FS).29  

Demographic and clinical data were collected from the electronic medical charts. 

The first EEG available at the center was collected for this study. Further 

exclusion criteria included patients without routine EEG available in the center, patients 

with IED or temporal intermittent rhythmic delta activity (TIRDA) based on the EEG 

report, and patients with EEG containing continuous, large myogenic artifacts or 

technical problems. In the course of standard clinical practice, EEGs were reviewed and 

interpreted by a fellowship trained credentialed neurologist. 

Figure 1 depicts how patients were selected. 

Data: 

All participating centers record scalp EEG using the standard 10-20 montage 

scheme. Recording sampling rate varied based on the location: 200 Hz at Johns 

Hopkins Hospital (JHH) and Johns Hopkins Bayview Medical Center (JHBMC), 256 Hz 

at University of Pittsburgh Medical Center (UPMC) and University of Maryland Medical 

Center (UMMC), and either 500 or 1000 Hz at Thomas Jefferson University Hospital 

(TJUH). All EEG records were downsampled to 200 Hz for analysis. Signals were 
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referenced against an average of the C3 and C4 electrodes, and thus the reference 

electrodes were excluded from further analysis. Since not all centers recorded from the 

midline channels (Fz, Pz, and Cz), we opted to discard signals acquired from these 

contacts. The remaining 14 EEG channels were included for analysis. Data was stored 

in European Data Format (EDF) and organized using the BIDS-EEG scheme. 

Preprocessing: 

To remove most myogenic artifacts, a second order bandpass filter between 1 

and 30 Hz was applied to each record. The remaining artifacts, mostly ocular and 

cardiac, were removed through an automated process using Independent Component 

Analysis (ICA). Preprocessing was performed in Python via the package MNE30. The 

sub-package MNE-ICA was used to automatically calculate the independent 

components from the filtered signals and MNE-ICLabel was used to classify each 

component as either EEG signal or one of the following artifact types: eye, muscle, line 

noise, or other31. MNE-ICLabel returns a percent likelihood for each classification. 

Components with less than 30% probability of containing EEG signal were removed. 

The remaining components were reconstructed into a cleaned EEG record that was 

used for the remaining analysis. 

 

Network-Based EEG Metrics: 

Two network based metrics, neural fragility24 and source-sink index25, have been 

shown to be useful in localizing the epileptogenic zone (EZ) in ictal and interictal stereo 
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EEG (sEEG) recordings, respectively. Both methods were validated across multiple 

epilepsy centers and developed in the Sarma lab.24,25,32  

Neural fragility is a concept related to the underlying dynamics of epileptic 

networks and the emergence of seizures. Specifically, it suggests that the onset of focal 

seizures may be related to the presence of a few fragile nodes, which render the 

epileptic network unstable and susceptible to seizure activity. The idea is that during 

interictal periods, the network is in a “balanced” state, meaning that activity hovers 

around a baseline value and can respond transiently to perturbations but returns to the 

baseline value. However, during a pre-ictal period and during a seizure event, the 

network becomes “unbalanced”, with activity growing in amplitude, oscillating, and 

spreading throughout the brain. The notion of balance refers to the level of inhibitory 

and excitatory neuronal populations across the brain network. 

  

The theory of fragility in a dynamical network is presented by Sritharan and 

Sarma.33 Fragility computed from intracranial EEG (iEEG) recordings is described by Li 

et al24,28. Briefly, the fragility of each iEEG channel is computed by first estimating a 

linear time varying dynamical network model from iEEG data before, during and after a 

seizure event.28,34 This model consists of a sequence of linear time invariant models of 

the form: 

 ��� � 1�  �  	����� 

where i=1,2,… and 	� describes how each channel influences each other dynamically 

within a 500 msec window of the iEEG.  Then, from the Ai matrices, an optimization 
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routine is performed to find which channels would cause imbalance with minimal 

perturbations to their connections to other nodes in the network. 

  

The source-sink index is also derived from the linear time varying dynamical 

network model, estimated solely from interictal data. The term "source" refers to a group 

of brain regions that are actively influencing the electrical activity of other regions, while 

"sink" refers to a group of regions that are mostly being influenced by others’ activity. 

 

In the context of EEG or iEEG data, source-sink connectivity refers to the 

analysis of how electrical activity propagates through the brain network, from the 

sources to the sinks. In Gunnarsdottir et al, we hypothesize that the epileptogenic zone 

in a patient is inhibited by other regions during non-clinical seizure periods and thus are 

sinks.25 To investigate this, we created an algorithm that identifies two groups of nodes 

within the interictal iEEG network. These groups are nodes that continuously inhibit 

neighboring nodes ('sources') and the nodes that are inhibited ('sinks'). We estimated 

patient-specific dynamical network models from several minutes of interictal iEEG data, 

and the resulting connectivity properties as gleaned from the A matrices helped identify 

the top sources and sinks within the network. Specifically, we quantified each node 

using source-sink metrics derived from the A matrices.25  

In this current study, one fragility metric and three source-sink metrics (the 

source-sink index, sink-index, and source-influence) were calculated for every EEG 

recording. 
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Spectral Metrics: 

In addition to the network-based metrics described above, we computed spectral-

based metrics from four different frequency bands of interest: Delta (1 – 4 Hz), Theta (4 

– 8 Hz), Alpha (8 – 12 Hz), and Beta (12 – 30 Hz). We calculated a multitaper Fourier 

Transform over non-overlapping 2 second windows to accommodate the slower 

frequency band. All metrics resulted in an n-by-m matrix where n is the number of 

channels and m is the number of time windows. 

Dimensionality Reduction 

To reduce the dimensionality of the feature space and to remove recording 

duration as a variable, each metric matrix was summarized into an n-by-1 vector where 

n is the number of channels. Two summary methods were employed to achieve this 

dimensionality reduction: a) time-average, and b) Principal Component Analysis (PCA). 

Since no seizures are present in the EEG recordings (interictal EEG recordings), the 

signals are relatively stable over time. Thus, we chose to compute the average across 

time windows for each channel. In contrast, the second summary method aimed to 

capture some time-varying dynamics through PCA. To maintain the meaning of 

channels and only reduce dimensions on the time axis, each channel’s time series was 

projected onto each of the first two principal components to result in a single value per 

channel. 

Lobe and Channel Feature-Categories:  

 Two main feature categories were derived from each of the two dimension-

reduced metric vectors: lobe-based features and channel-based features. Lobe based 

features were calculated by aggregating channels that belonged to the same lobe and 
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then calculating statistics (such as the mean and standard deviation) within each lobe. 

Channel based features were calculated by analyzing the quantiles (10%, 50%, 90%, 

mean, and standard deviation) of the individual channel values over time. 

This two-step feature generation method was repeated for every metric (i.e., fragility, 

the three source-sink, and time-frequency metrics), resulting in 39 features per metric, 

or 312 unique features. 

Model Design: 

We modeled the probability of a patient having epilepsy by constructing a logistic 

regression model using the features described above as covariates. Since the possible 

feature space was too large for the sample size, feature selection was necessary before 

constructing a final model. A recursive, greedy feature elimination procedure was 

developed. First, features were grouped according to their generation method 

(dimensionality reduction method and feature category), e.g., all PCA lobe-based 

features or time-averaged channel-based features. Within each such group, initial 

logistic regression models (described below) were built from all possible combinations 

of metrics. After this search over feature groups, all resulting models were ranked by 

their predictive performance. Features that consistently appeared in the top performing 

models, especially those with generally large and significant feature weights, were 

selected. This process resulted in 21 candidate features. 

From these candidate features, a final model was trained. Results presented 

below are only on this final model. Figure 2 details this procedure. 
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For each step of this process, we performed a 10-fold cross validation (CV) 

procedure. Each fold was randomly split into 70% training data and 30% testing data, 

where the training set had an even split of epilepsy and non-epilepsy patients. The 

model’s weights were then tuned for each training set and the performance was 

evaluated on the corresponding test set. A varying threshold was applied to the model’s 

output (i.e., the probability of each subject belonging to the epilepsy group), to generate 

evaluation metrics. Applying this threshold classified the probabilities into a predicted 

diagnosis, which could be compared to the actual diagnosis of each patient. The metrics 

used were the area under the curve (AUC) of the resulting ROC curve, and the model’s 

accuracy, sensitivity, and specificity at the optimal threshold. For the feature selection 

phase, the models were ranked based on the performance on these test sets. We 

present these results for the final model below. 

We chose to use a logistic regression model to keep the models as simple and 

interpretable as possible. The feature selection method described above was not 

optimal because there was no way to assess if the strong features from different 

selection groups carried the same information. To attempt to prevent this problem, we 

allowed more features to be selected for the final model than should be allowed based 

on the sample size. We applied an L1-penalty on the logistic regression models35 to 

prevent overfitting from the excess features. 

Standard Protocol Approvals 

This study was approved by the institutional review board (IRB) at each 

contributing center. The data presented and used for analysis were deidentified. 
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Results:  

A total of 198 subjects were selected from 4 epilepsy centers – JHU (n=90), 

UPMC (n=62), TJUH (n=27), and UMMC (n=19). The final diagnosis (based on the 

EMU results) of the subjects was 107 epilepsy and 91 non-epilepsy. 

EpiScalp Accurately Predicts Epilepsy Status from Indeterminate EEG Records  

From each patient’s single scalp EEG record, we computed several network-

based metrics which formed the basis for EpiScalp’s features. With this trained model, a 

probability of belonging to the epilepsy group was determined for each patient. Figure 

3A shows this predicted probability of epilepsy where each patient is represented by a 

single dot. The x-axis denotes the patient’s diagnosis (based on gold standard - EMU 

evaluation). By applying a threshold to these probabilities, the prediction can be 

converted to a classification. Probabilities above the threshold are classified as epilepsy 

and below the threshold are classified as non-epilepsy. With each such threshold, we 

can assess the model’s performance against the patients’ final diagnosis by computing  

accuracy, sensitivity, and specificity. The threshold that results in the best accuracy (��� 

is shown with the orange line in Figure 3A. With this optimal  threshold, EpiScalp 

achieves an accuracy of 0.904, sensitivity of 0.835, and specificity of 0.963.  While �* 

maximizes prediction accuracy, a lower threshold may be preferable if sensitivity is 

considered more important than specificity. Figure 3B shows an overview of the 

model’s performance across a varying threshold, represented by a receiver operating 

characteristic curve (ROC, blue line). The overall model’s performance can be assessed 
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by the AUC from this ROC curve. Across the 10 folds, the model had an average AUC 

of 0.940. 

When used to assess epilepsy risk, EpiScalp can provide great utility. We define 

an “epilepsy highly unlikely” range as any probability less than 0.32. Patients within this 

category had a 92% (81/88) chance of not having epilepsy. We also define an “epilepsy 

highly likely” range as any probability greater than 0.61. Patients within this category 

had a 95% (76/80) chance of having epilepsy. Patients whose predicted probability falls 

between these ranges have a medium chance of epilepsy and would therefore be 

considered indeterminate. If EpiScalp is used for all patients that do not lie in the 

indeterminate category, then it would achieve 93% accuracy, 92% sensitivity, and 95% 

specificity on 168 of our patients. 

EpiScalp Performance is Invariant to Patient Type, Age, Sex, Use of AEDs, Sleep 
State, and Duration of EEG recordings  

To verify the generalizability of EpiScalp among different patients, we assessed 

the model’s performance against various demographic and clinical characteristics 

including sex, age, whether the patient was taking anti-seizure medications during the 

recording, the amount of time the patient was asleep during the recording, and the 

duration of the recording. This analysis is displayed in Figure 5.  

To quantify our findings, we performed a Z-test between all pairings of variables 

within a category. There were no significant differences found. 

EpiScalp was also insensitive to epilepsy type as shown in Figure 6. 

Feature Importance 
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The final model had 20 features whose coefficients were statistically significantly 

different from 0 (displayed in Figure 4). Ten of the 20 were network-based features, out 

of which 7 were derived from source-sink metrics. Of the 10 remaining spectral features, 

alpha, beta, and delta band features emerged as significant. The sign of each weight 

determines whether the feature increases or decreases the likelihood of having epilepsy 

as the feature increases. For example, the coefficient for “Mean of frontal delta” is 1.01 - 

the more the average delta band power in the frontal lobes, the probability that the 

patient has epilepsy modulates up by 101%. Or if the standard deviation of the fragility 

across EEG electrodes is large, then this modulates the probability that the patient has 

epilepsy up by a factor of over 200%. 

Discussion 

Current Practice 

Currently, epilepsy is clinically diagnosed by gathering evidence rather than 

through a single biomarker or test.15 The primary evidence is usually sourced from the 

clinical patient interview. Neuro-imaging tests, such as MRI and scalp EEG, are also 

conducted and visually analyzed. The lack of reliable, specific, and easily identifiable 

biomarkers on these scans limits their usefulness in diagnosis.  

Our analysis suggests that network analysis of scalp EEG along with spectral 

features together are able to provide diagnostic insight for epilepsy, even when no 

visual abnormalities are present on the record. Since scalp EEG recordings have 

sporadic prevalence of these visually identified abnormalities, like IEDs, their usefulness 

is limited in practice. Our findings support the use of EpiScalp in cases where scalp 
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EEG shows normal findings. We have defined three suggested risk score thresholds 

(epilepsy highly unlikely, epilepsy highly likely, and indeterminate) for the interpretation 

of EpiScalp’s output. With the provided thresholds, EpiScalp can provide strong 

evidence (i.e., 93% accuracy) to support or reject an epilepsy diagnosis in 84% (168 of 

198) previously normal studies.   

 Generalizability of EpiScalp 

The algorithm’s performance is agnostic to expected patient variation in age and 

sex, as well as the number of anti-seizure medications the patient was on, whether the 

patient was asleep or awake during the recording, and the duration of the recording. For 

epilepsy patients, EpiScalp’s performance was unaffected by the type of epilepsy. 

Network Based EEG Features 

Prior work has demonstrated the utility of analyzing neuroimaging data as a 

network for providing useful insights into the dynamics of an epileptic brain.24,25 By 

assessing the interactions of brain regions as captured through multiple electrodes, this 

prior work suggested that you can better localize the epileptogenic region of the brain 

than by using traditional, single-channel analyses. Since these studies rely on invasive 

recordings, like electrocorticography (ECoG) and stereo-electroencephalography 

(sEEG), they could not be directly applied to assist in the diagnosis of epilepsy.  

In this study, we expand upon the idea that there is some characteristic network 

abnormality that is always (even during rest) present in an epileptic brain. Since the goal 

is to diagnose epilepsy, rather than to localize the epileptogenic zone, this analysis 
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needs to provide the same output independent of the type of epilepsy. This alternative 

goal, paired with the poor spatial density of scalp EEG as compared to invasive 

methods, meant that we could not simply apply the same methods as in the prior 

studies.24,25 Instead, we derived features from recently introduced network-based 

metrics, fragility and source-sink, that would ideally identify all patients with epilepsy 

instead of a specific type or focus. A combination of these network features were used 

along with spectral features to predict the diagnosis of these patients. 

In our analysis, we identified fragility and sink connectivity as two of the top five 

significant features within the model. A notable finding was that a greater dissimilarity in 

fragility between the left and right brain hemispheres was associated with a higher 

likelihood of epilepsy in patients. This observation aligns with our prior research Li et al, 

which demonstrated that epileptogenic zones (EZ) tend to exhibit increased fragility 

compared to non-epileptic regions, typically localized within one hemisphere of the 

brain.24  

Another noteworthy feature among the top five was the variance in sink 

connectivity between the two brain hemispheres. Specifically, higher variance (or 

equivalently standard deviation) in sink connectivity between the left and right brain 

hemispheres was associated with a lower likelihood of epilepsy in patients. This 

discovery is in line with our previous studies, which show that EZ regions are 

characterized as strong sinks that are connected to all brain regions, most notably top 

sources as outlined in Gunnarsdottir et al and not just regions in the same 

hemisphere.25  
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Spectral Features 

Prior studies have shown that patients with epilepsy have different spectral EEG 

features when compared to healthy controls.18,36–38 We found that alpha, delta, and beta 

bands features emerged as statistically significant in our final model. Specifically, the 

higher the delta power in the frontal lobe, the higher the likelihood of epilepsy. The 

higher the variance of alpha power between left and right frontal lobes, the higher the 

likelihood of epilepsy. Finally, the higher overall beta power in the EEG snapshot, the 

lower the likelihood of epilepsy. 

Our findings were in line with prior studies where slowing of the posterior 

dominant rhythm (alpha rhythm), increase in delta power, and decrease in beta power 

have been noted in patients with epilepsy.18,36–39 It is important to emphasize that it is 

the collective several metrics contributed to the model rather than a single analysis. 

Additionally, all of the EEGs in our study were read as qualitatively normal.  

Existing Computational Tools 

In the realm of EEG analysis, there has been a recent emergence of 

computational tools designed to aid clinicians. These tools primarily focus on 

automating the detection of abnormalities. One notable software in this domain is 

Persyst's Spike Detector,13,17 which has gained popularity as a widely utilized 

commercial solution. It functions by automatically identifying potential spikes within EEG 

recordings. 

Several publications have explored the analysis of EEGs to uncover hidden 

features that can differentiate between epilepsy and normal EEGs lacking 
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abnormalities. These studies have relied on healthy individuals as their control group.18–

22 In contrast, our study utilized subjects with conditions mimicking epilepsy (for 

example functional seizures), hence representing a better applicability to the real-world 

clinical scenarios.   

One notable study, however, compared EEGs of epilepsy patients to patients 

suffering from other seizure mimicking disorders (e.g., functional seizures) and achieved 

71% accuracy.23 Unfortunately, the non-interpretable nature of neural network models, 

as well as the lower accuracy, hinder the clinical utility of such a tool. Our use of a 

simple logistic regression model allows for interpretable results from EpiScalp. 

Limitations 

For this study, we aimed to develop a tool, EpiScalp, that could compute the 

probability of epilepsy diagnosis from previously non-diagnostic EEG information. Since 

our primary input was inconclusive data, we needed an alternative method of confirming 

the diagnosis of the subjects in this study. The best way to be confident in our labels 

retrospectively was to only gather patients who had EMU monitoring with video EEG. As 

shown in Figure 1, we then selected the most traditionally difficult subset of patients, 

i.e., those with no abnormalities present in their EEG, for this study. While this approach 

was necessary for clean study labels, we acknowledge that it introduces patient 

selection bias. 

While there are several conditions that may mimic epilepsy, the most common 

alternative diagnosis determined by an EMU visit at the participating centers was FS. It 
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is possible that our analysis will not generalize well to other mimics, such as syncope. 

Since we specifically targeted features that have proven useful in analyzing epileptic 

networks, we believe our analysis is uniquely identifying epilepsy and would therefore 

be able to differentiate it from any alternative condition. However, a further study would 

be needed to validate this claim. 

All centers who contributed data to this study are specialized, academic epilepsy 

centers. These centers are likely to see a higher proportion of difficult-to-diagnose 

cases referred from external clinics. This bias is especially evident when selecting 

patients based on extended in-patient stays as the specialized centers are more 

equipped to handle these visits than other clinical settings. Since EpiScalp’s input is the 

most basic neurophysiological data, i.e., a routine scalp EEG with the standard 10-20 

montage, we believe our results would hold in a less specialized setting, but this claim 

needs to be validated.  

Despite these limitations, we have devised network-based evidence to support or 

refute an epilepsy diagnosis from scalp EEG which was previously considered 

uninformative. The findings in this study suggest it may be possible to shift the 

diagnosis of epilepsy to a more test-driven diagnosis. EpiScalp could be used in 

conjunction with clinical reasoning to provide a more confident, faster diagnosis of 

epilepsy.  

Future Work 

There remains significant work to be done before a complete paradigm shift in 

the diagnostic process can be achieved. Validating this approach on a more 
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representative, prospective patient population would ensure that the tool is unique to 

epilepsy. Additionally, testing the tool on data collected from various clinical settings, 

instead of all specialized academic centers as in this study, could help prove the real-

world clinical usability of such a metric.  
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