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ABSTRACT

Heart sound auscultation is a physical examination routinely used in clinical practice to identify
potential cardiac abnormalities. However, accurate interpretation of heart sounds requires specialized
training and experience, thereby limiting its generalizability. Deep learning, a subset of machine
learning, involves training artificial neural networks to learn from large datasets and perform complex
tasks related to intricate patterns, such as disease diagnosis, event prediction, and clinical decision-
making. Over the past decade, deep learning has been successfully applied to heart sound analysis
with remarkable achievements. Meanwhile, as heart sound analysis is gaining attention, many public
and private heart sound datasets have been established for model training. The massive accumulation
of heart sound data improves the performance of deep learning-based heart sound models and extends
their clinical application scenarios. In this review, we will compile the commonly used datasets
in heart sound analysis, introduce the fundamentals and state-of-the-art techniques in heart sound
analysis and deep learning, and summarize the current applications of deep learning for heart sound
analysis and their limitations for future improvement.
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1 Introduction

Heart sounds are generated from the turbulent movement of blood through the heart chambers as the valves open and
close during the cardiac cycle, which can be affected by anatomical changes or narrow blood vessels [1]. Cardiac
auscultation, which involves listening to heart sounds with a stethoscope, is a non-invasive and easy-to-operate technique
widely accepted by medical professionals to identify potential cardiac abnormalities. However, the interpretation of
heart sounds can vary greatly depending on the experience and skill of the examiners. Even in detecting the systolic
murmurs, which is a common task in auscultation, the reliability is mediocre at best (k = 0.3− 0.48) [2], and the ability
to identify other pathological features is even worse [3]. In addition, the growing availability of recording techniques
has led to a substantial accumulation of heart sound data, particularly long-term heart sound monitoring. However,
manual analysis using traditional auscultation methods is no longer sufficient to handle the data surge, especially in
real-time scenarios.
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To address these challenges, researchers are actively developing computational methods for analyzing heart sound data,
whose graphical representation is known as phonocardiogram (PCG). In recent years, the potential of deep learning
(DL) techniques in PCG analysis has gradually attracted the interest of researchers. DL is suitable for tasks involving
a large amount of data with complex patterns, and the PCG signal has a high sampling frequency and contains rich
information in both the time and frequency domains, consistent with this data characteristic. DL models can be trained
using either raw signals in the time domain or pre-processed frequency information, allowing them to capture subtle
patterns in heart sounds that may be difficult for physicians to discern. By leveraging this underlying knowledge, these
models have demonstrated remarkable diagnostic accuracy across a range of cardiac conditions [4, 5]. Furthermore,
DL-based heart sound diagnostic techniques offer a cost-effective and user-friendly approach, making them a more
economical and accessible alternative for disease screening than traditional medical imaging techniques. This advantage
is precious for undiagnosed patients in underdeveloped regions who may face limited access to specialized medical
imaging equipment and trained healthcare providers.

In this review, we will introduce the datasets commonly used in heart sound analysis, as these datasets play a fundamental
role in advancing research in this field. Subsequently, we will demonstrate the knowledge of heart sound analysis and
DL, highlighting why DL is a suitable method for analyzing heart sounds. Then, we will comprehensively summarize
the clinical applications of DL-based heart sound analysis. Finally, we will conclude with a summary of the current
challenges and future perspectives in this field.

2 Methods

2.1 Search strategy

To summarize current research findings on heart sound analysis using DL, we searched PubMed, Embase, Web of
Science, and Google Scholar for "deep learning" or "machine learning" or "artificial intelligence" in conjunction with
"heart sounds" or "cardiac sounds" or "heart murmur" or "cardiac murmur" or "phonocardiogram", "phonocardiography"
or "PCG", and covers the period from January 1st 2010 to January 1st 2023. All keywords are case-insensitive. To
avoid missing papers that did not explicitly mention these keywords in their titles, we expanded our search to include
all fields in each article. In total, 211 related studies were found.

2.2 Study selection

We only included published peer-reviewed articles and excluded reviews, editorials, non-heart sound studies, non-
artificial intelligence studies, and papers written in foreign languages. As this review focused on DL, we excluded
those studies with a narrow sense of machine learning involved with conventional machine learning algorithms and
applications outside the DL regime. However, we retained research on neural networks and their variants because of
their close proximity to DL model structures.

The process of literature searching and selection is illustrated in Figure 1. At last, 71 original articles were included.
These studies can be broadly categorized into several groups: methods (15 papers, including heart sound segmentation
[6, 7, 8, 9, 10, 11, 12, 13], noise cancellation [14, 15, 16], algorithm development [17, 18, 19], and database development
[20]), cardiac murmurs detection (36 papers [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]), valvular heart disease (6 papers [57, 58, 59, 60, 61, 62]),
congenital heart disease (4 papers [63, 64, 65, 66]), heart failure (4 papers [67, 68, 69, 70]), coronary artery disease (2
papers [71, 72]), rheumatic heart disease (2 papers [73, 74]), and extracardiac applications (2 papers [75, 76]).

3 Results

3.1 Heart sound datasets

The study of sound is a discipline with ancient roots that can be traced back centuries. Before the invention of modern
medical imaging techniques, physicians heavily relied on sounds to gain insights into the inner workings of the body,
particularly heart sound auscultation. As recording technology has advanced, it has become possible to capture heart
sounds in both analog and electronic forms, leading to the accumulation of vast amounts of data that can be utilized for
in-depth analysis. This has facilitated the availability of publicly-accessible datasets that serve as valuable resources for
benchmarking and testing novel methods and approaches in heart sound analysis.

Table 1 showcases a selection of well-known public heart sound datasets. The HSS dataset [77] is unique in detailing
the severity levels of heart conditions. PASCAL [78], CinC2016 [79], and CinC2022 [20] are suitable for distinguishing
between normal and abnormal heart conditions. On the other hand, the Khan dataset [80] focuses on specific valvular
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Figure 1: Diagram demonstrating literature selection process and applications of deep learning in heart sound analysis

heart diseases. The EPHNOGRAM dataset [81] stands out for providing simultaneous electrocardiogram and heart
sound recordings during fitness exercises. Additionally, the SUFHSDB dataset [82] offers fetal and maternal heart
sounds.

Dataset Resource Sampling Frequency Recording Duration Number of Recordings and/or Subjects (if mentioned)

HSS [77] patients with various health conditions from the hospital 4,000 Hz 30 s on average
845 recordings (144 normal, 465 mild, 236 moderate/severe)

from 170 subjects

PASCAL [78]
two sources: (A) from the general public via the web and

(B) from hospital patients

(A) 44,100 Hz;

(B) 4,000 Hz
1 s to 30 s

(A) 124 recordings (31 normal, 34 murmur, 19 extras, 40 artifacts)

(B) 461 recordings (320 normal, 95 murmur, 46 artifacts)

Khan [80]
books (Auscultation skills CD, Heart sound made easy)

and 48 websites
8,000 Hz 3 s to 5 s 1,000 recordings (200 for each: normal, MVP, MR, MS, AS)

CinC2016 [79] nine databases from different research groups 2,000 Hz 5 s to 120 s 3,240 recordings (2,575 normal, 665 abnormal with CAD or VHD.)

CinC2022 [20] two mass pediatric screening campaigns conducted in Brazil 4,000 Hz 4.8 s to 80.4 s
5,272 recordings from 1,568 subjects

(486 normal subjects , 1,082 subjects with heart diseases)

EPHNOGRAM [81]
healthy adults indoor fitness,

simultaneous electrocardiogram and phonocardiogram
8,000 Hz 30 s or 30 min

69 recordings (10 bicycle stress test, 11 treadmill,

13 static bike, 35 resistance training) from 24 subjects

SUFHSDB [82]
fetal and maternal heart sounds obtained

at Hafez Hospital, Shiraz University
16,000 Hz; 44,100 Hz 90 s on average 119 recordings from 109 subjects

Table 1: Public heart sound datasets.

In addition to publicly available datasets, numerous researchers collected their own heart sound data for specific research
purposes. Table 2 provides a comprehensive overview of various private heart sound datasets and their applications.
These datasets originate from diverse sources and cover various heart-related conditions, such as valvular heart diseases,
heart failure, and congenital heart diseases. These datasets exhibit diversity in sampling frequency, spanning from 2,000
Hz to 8,000 Hz, and provide recordings of varying durations, ranging from short 5-second clips to extensive 120-second
recordings. Their scale also varies significantly, from only dozens to thousands of subjects. Each dataset has been cited
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Dataset Application Resource Sampling Frequency Recording Duration
Number of Recordings

and/or Subjects (if mentioned)

Private heart murmur dataset

Chorba et al. (2021) [61]
Heart murmur detection

patients from four echocardiography laboratories

and structural heart disease clinics in the US
4,000 Hz 15 s × 4 positions

1,774 recordings (682 murmur, 1092 normal)

from 962 subjects

Private VHD dataset

Makimoto et al. (2022) [62]
Valvular heart disease

patients at the Faculty of Medicine

at Heinrich Heine University Düsseldorf,

Germany.

4,000 Hz 15 s × 3 positions
836 subjects (670 normal, 51 mild AS,

51 moderate AS, 114 severe AS)

Private CHD dataset 1

Gharehbaghi et al. (2017) [63]
Congential heart disease

children referrals to the Children Medical Centre

Hospital of Tehran University, Iran.
- 10 s 90 subjects (30 VSD, 15 MR, 15 TR, 30 normal)

Private CHD dataset 2

Wang et al. (2020) [64]
Congenital heart disease patients at the National Taiwan University Hospital - 10 s × 5 positions × 2

776 recordings (525 VSD, 251 normal)

from 76 subjects

Private CHD dataset 3

Liu et al. (2022) [65]
Congenital heart disease

children admitted to Children’s Hospital of

Chongqing Medical University, China
22,050 Hz 10 s × 5 positions

884 subjects (409 normal, 192 ASD, 98 VSD,

95 PDA, 90 Combined CHD)

Private CHD dataset 4

Gharehbaghi et al. (2020) [66]
Congenital heart disease

children referrals to Tehran University of

Medical Sciences, Iran
44,100 Hz 10 s

115 subjects (10 ASD, 25 innocent murmur,

15 MR, 15 TR, 25 VSD, 25 normal)

Private HF dataset 1

Gao et al. (2020) [67]
Heart failure

patients at University-Town Hospital of

Chongqing Medical University, China
11,025 Hz - 108 subjects (42 HFrEF, 66 HFpEF)

Private HF dataset 2

Wang et al. (2022) [68]
Heart failure

patients at the First Affiliated Hospital of

Chongqing Medical University, China
4,000 Hz 3 min 136 subjects (59 HFrEF, 77 HFpEF)

Private HF dataset 3

Yang et al. (2021) [69]
Heart failure

patients at the First Affiliated Hospital of

Chongqing Medical University, China
8,000 Hz 5 min 71 subjects (30 LVDD, 41 normal)

Private HF dataset 4

Zheng et al. (2022) [70]
Heart failure

patients at the First Affiliated Hospital and

the University-Town Hospital of

Chongqing Medical University, China

8,000 Hz 5 min
224 HF subjects (42 Stage A, 56 Stage B,

75 Stage C, 51 Stage D), 51 normal

Dan-NICAD trial 1 dataset

Winther et al. (2021) [83]
Coronary artery disease

patients from the Danish study of

the Non-Invasive Testing

in Coronary Artery Disease (Dan-NICAD) trial 1

-
3 min

(8 s holding breath × 4)

1,464 subjects (723 CAD-score ≤ 20,

741 CAD-score > 20)

Private CAD dataset

Li et al. (2021) [71];

Li et al. (2020) [72]

Coronary artery disease
patients at Shandong Provincial Qianfoshan Hosptial,

China
1,000 Hz 5 min 195 subjects (135 CAD, 60 non-CAD)

Private RHD dataset

Asmare et al. (2020) [73]
Rheumatic heart disease

patients at Tikur Anbessa Referral Teaching Hospital,

College of Health Sciences, Addis Ababa University,

Ethiopia

44,100 Hz - 170 subjects (124 RHD, 46 normal)

Proposed RHD dataset

Ali et al. (2021) [74]
Rheumatic heart disease

children from a group of schools serving

the underprivileged in Karachi, Pakistan
- -

aim to recruit 1,700 children

(definite RHD, subclinical RHD, normal)

Private blood pressure dataset

Kapur et al. (2019) [75]
Blood pressure measurement

Critically ill children undergoing continuous

blood pressure monitoring

at the Children’s Hospital of

Michigan/Wayne State University, US

-
>1min×2 positions

simultaneously
25 subjects

Table 2: Private heart sound datasets

in one or more research studies, emphasizing their importance in advancing the understanding and analysis of heart
sounds.

3.2 Heart sound analysis technologies

3.2.1 Pre-processing and feature extraction

Because sound analysis has a long and well-established research history, heart sound analysis often draws upon
the techniques from traditional sound studies. The input of DL models can be the features extracted using various
time-frequency methods or a time representation that has undergone basic manipulations such as smoothing, denoising,
and segmentation. The latter paradigm eliminates the need for a feature extraction step, allowing the model to directly
process the raw data and output the task results—an "end-to-end" approach. Figure 2 illustrates the different process
pathways.

3.2.2 Deep learning

DL, a subset of machine learning (ML), involves training artificial neural networks to learn from large datasets and
perform complex tasks related to human cognitive activities and experiences. It has been successfully applied to
various tasks, including image classification, speech recognition, natural language processing, and disease diagnosis
[85, 86, 87, 88, 89]. DL models perform intricate functions based on large numbers of simple non-linear computational
units (known as artificial neurons) connected in complex hierarchical networks. This structure encourages each layer
to learn simple representations that build up to sophisticated concepts. Compared to traditional ML, the fundamental
architectural features of DL determine its greater ability to perform cohesive tasks, such as visual and computational
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Task Class Citation Data Representation DL (or NN) Model

Heart Sound Segmentation Oliveira et al. (2021) [6] MFCC time-frequency RNN (GRU); CNN (3 conv layers)

Heart Sound Segmentation Wang et al. (2021) [7] CWT time-frequency Transformer-CNN (3 conv layers)

Heart Sound Segmentation Fernando et al. (2020) [8] MFCC time-frequency, CWT time-frequency, frequency RNN (LSTM)

Heart Sound Segmentation Nogueira et al. (2019) [9] MFCC time-frequency, time, frequency CNN

Heart Sound Segmentation Renna et al. (2019) [10] CWT time-frequency, time CNN

Heart Sound Segmentation Meintjes et al. (2018) [11] CWT time-frequency CNN (3 conv layers)

Heart Sound Segmentation Messner et al. (2018) [12] MFCC time-frequency RNN

Heart Sound Segmentation Chen et al. (2017) [13] MFCC time-frequency CNN

Noise Cancellation Marzorati et al. (2022) [14] time CNN (6 conv layers)

Noise Cancellation Tsai et al. (2020) [15] STFT time-frequency CNN (33 conv layers)

Noise Cancellation Gradolewski et al. (2019) [16] CWT time-frequency time delay NN

Algorithm Development Bao et al. (2022) [17] MFCC time-frequency CNN; RNN

Algorithm Development Soni et al. (2021) [18] STFT time-frequency CNN (17 conv layers)

Algorithm Development Gharehbaghi & Babic (2018) [19] time deep time growing NN

Database Development Oliveira et al. (2022) [20] - -

Murmur Detection Tariq et al. (2022) [21] STFT time-frequency, MFCC time-frequency, chromagram CNN

Murmur Detection Li et al. (2022) [22] log Mel time-frequency, MFCC time-frequency CNN

Murmur Detection Zhu et al. (2022) [23] MFCC time-frequency CNN

Murmur Detection Zhou et al. (2022) [24] Mel time-frequency CNN (2 conv layers)

Murmur Detection Gharehbaghi & Babic (2022) [25] time CNN; deep time growing NN

Murmur Detection Tseng et al. (2021) [26] time, frequency, MFCC time-frequency CNN (large-size)

Murmur Detection Koike et al. (2021) [27] STFT time-frequency CNN

Murmur Detection Duggento et al. (2021) [28] MFCC time-frequency CNN

Murmur Detection Megalmani et al. (2021) [29] MFCC time-frequency, time CNN-RNN (LSTM)

Murmur Detection Bondareva et al. (2021) [30] time, frequency DNN

Murmur Detection Ho et al. (2021) [31] CWT time-frequency CNN (2 conv layers)

Murmur Detection Duggento et al. (2021) [32] MFCC time-frequency CNN

Murmur Detection Boulares et al. (2021) [33] MFCC time-frequency CNN

Murmur Detection Khan et al. (2021) [34] STFT time-frequency CNN

Murmur Detection Huai et al. (2021) [35] log Mel time-frequency CNN (3 conv layers)

Murmur Detection De Campos Souza (2020) [36] time NN

Murmur Detection Dissanayake et al. (2020) [37] MFCC time-frequency CNN (3 conv layers)

Murmur Detection Koike et al. (2020) [38] log Mel time-frequency CNN (12 conv layers)

Murmur Detection Deperlioglu et al. (2020) [39] time NN

Murmur Detection Chen et al. (2020) [40] CWT time-frequency CNN (2 conv layers)

Murmur Detection Deng et al. (2020) [41] MFCC time-frequency CNN (3 conv layers), RNN

Murmur Detection Krishnan et al. (2020) [42] time CNN (1 or 2 conv layers)

Murmur Detection Khan et al. (2020) [43] MFCC time-frequency, time, frequency NN; RNN (LSTM)

Murmur Detection Humayun et al. (2020) [84] time CNN

Murmur Detection Han et al. (2019) [45] MFCC time-frequency modified NN

Murmur Detection Thompson et al. (2019) [46] time-frequency, time, frequency non-linear AI classifier

Murmur Detection Sotaquirá et al. (2018) [47] time-frequency, time, frequency CNN (2 conv layers)

Murmur Detection Han et al. (2018) [48] MFCC time-frequency CNN (2 conv layers)

Murmur Detection Amiriparian et al. (2018) [49] log Mel time-frequency RNN

Murmur Detection Humayun et al. (2018) [50] sub-band time-frequency CNN (2 conv layers)

Murmur Detection Bozkurt et al. (2018) [51] Mel time-frequency, MFCC time-frequency, sub-band time-frequency CNN

Murmur Detection Dominguez-Morales et al. (2018) [52] sub-band time-frequency CNN

Murmur Detection Eslamizadeh & Barati (2017) [53] CWT time-frequency NN

Murmur Detection Kay & Agarwal (2017) [54] CWT time-frequency, MFCC time-frequency, time, frequency NN

Murmur Detection Maknickas & Maknickas (2017) [55] MFCC time-frequency CNN (2 conv layers)

Murmur Detection Gharehbaghi et al. (2014) [56] time time growing NN

Valvular Heart Disease Ghosh et al. (2020) [57] chirplet transform time-frequency deep layer kernel sparse representation network

Valvular Heart Disease Baghel et al. (2020) [58] log Mel time-frequency CNN (7 conv layers)

Valvular Heart Disease Alkhodari & Fraiwan (2021) [59] time CNN (3 conv layers)

Valvular Heart Disease Khan (2022) [60] STFT time-frequency CNN (16 conv layers)

Valvular Heart Disease Chorba (2021) [61] time CNN (33 conv layers)

Valvular Heart Disease Makimoto (2022) [62] log Mel time-frequency time growing NN

Congential Heart Disease Gharehbaghi et al. (2017) [63] time growing time-frequency CNN (with TAP)

Congential Heart Disease Wang et al. (2020) [64] STFT time-frequency CNN-RNN

Congential Heart Disease Liu et al. (2022) [65] time CNN-RNN; CNN; RNN

Congential Heart Disease Gharehbaghi et al. (2020) [66] time RNN

Heart Failure Gao et al. (2020) [67] time CNN-RNN

Heart Failure Wang et al. (2022) [68] time CNN (3 conv layers)

Heart Failure Yang et al. (2022) [69] STFT time-frequency CNN (multiple models)

Heart Failure Zheng et al. (2022) [70] CEEMD time-frequency, TQWT time-frequency deep belief network

Coronary Artery Disease Li et al. (2021) [71] time, GAF 2D-frequency, MFCC time-frequency CNN (1D w/ 10 conv layers; 2D w/ 3 conv layers)

Coronary Artery Disease Li et al. (2020) [72] MFCC time-frequency CNN (12 conv layers)

Rheumatic Heart Disease Asmare et al. (2020) [73] log Mel time-frequency CNN (5 conv layers)

Rheumatic Heart Disease Ali et al. (2021) [74] time CNN-RNN

Extracardiac Application Kapur et al. (2019) [75] time and frequency features NN

Extracardiac Application Wang et al. (2022) [76] CWT time-frequency CNN (multiple models for transfer learning)

Table 3: Data representations and Models in heart sound analysis
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Figure 2: Different heart sounds process pathways.

knowledge representation. Another notable advantage of DL models is their ability to process raw data and automatically
learn important features. Unlike traditional ML, which often requires handcrafted features, DL models can exploit some
underlying features in raw data, enhancing classification accuracy and reducing the reliance on manual labeling.

The two most widely used DL model architectures are convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). CNNs are commonly used for grid-like data such as images and spectrograms. They employ multiple
layers of convolutional filters to extract input features, followed by pooling layers to reduce the data dimensions. The
output is then fed into fully connected layers for classification or regression tasks. RNNs, on the other hand, are
designed to handle data with temporal dependencies, such as natural language and speech data. They process input
sequences one unit at a time based on the current input unit and a hidden state that captures information from previous
time steps.

In recent years, the Transformer architecture has gained significant popularity in DL. Initially developed for natural
language processing, the Transformer has been adapted for various types of sequential input data, such as video, audio,
and music [90, 91, 92]. Unlike RNNs, the Transformer can process the entire input sequence simultaneously using the
attention mechanism, which allows it to focus on specific parts of the input sequence based on their relevance [93].
Consequently, the Transformer exhibits superior efficiency in both model training and inference stages.

Despite being one-dimensional signals, heart sounds pose challenges for traditional processing and analysis techniques
due to their high sampling frequency and large number of samples per cardiac cycle. However, the emergence of DL
models like CNNs, RNNs, and Transformers has made it possible to build high-performance models for heart sound
analysis. These DL models can identify specific features relevant to various cardiac conditions, enhancing diagnostic
accuracy and speed compared to manual methods. Moreover, DL techniques facilitate monitoring long-term changes in
heart sounds, making them a powerful tool for continuous cardiac health tracking. By analyzing the evolving patterns
and trends in heart sounds, healthcare professionals can detect and respond to cardiac abnormalities in a timely manner.

In the reviewed literature, most studies use CNN models with 2 to 34 convolutional layers [9, 10, 11, 13, 14, 15, 18, 21,
22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 47, 48, 50, 51, 52, 55, 58, 59, 60, 61, 68, 69, 71, 72,
73, 84], which are usually equipped with rectified linear units, batch normalization, dropout and pooling components,
and some of the layers are linked by residual connections. Wang et al. [76] test 10 different CNN models including
GoogleNet, SqueezeNet, DarkNet19, ModileNetv2, Inception-ResNetv2, DenseNet201, Inceptionv3, ResNet101,
NasNet-Large, and Xception to compare the performances. Since heart sounds are continuous sequence signals, it is
also suitable to test RNN models [8, 12, 49, 66], while other studies combine both CNN and RNN [29, 64, 65, 67, 74].
Other models include Transformer [7], traditional neural network (NN), and some NN modifications such as time delay
neural network, time growing neural network, and kernel sparse representation network. Table 3 lists the heart sounds
analysis models in the reviewed articles.
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3.3 Applications

As shown in Figure 1, except for a few studies focusing on method development such as segmentation, noise cancellation,
algorithm development, and database development, most applications of DL heart sound analysis are related to the
clinical field, and we will discuss the details below.

3.3.1 Cardiac murmurs detection

Detecting cardiac murmurs is a fundamental but crucial task in heart sound analysis. Cardiac murmurs are abnormal
sounds produced during the cardiac cycle and can indicate underlying heart conditions. As previously indicated,
identifying cardiac murmurs through auscultation demands a combination of expertise and experience, and can lead
to variability across different specialists. Since detecting cardiac murmurs is a relatively more straightforward task
compared to identifying specific diseases, there has been a notable accumulation of high-quality annotated data in recent
years, which has been made available to the public [20, 94]. The abundance of accessible data has led to a surge in DL
models research on cardiac murmurs detection [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Although these models can only discern the presence
of cardiac murmurs and cannot provide definitive diagnoses, they still play a crucial role in community-based disease
screening. This facilitates referring individuals with potential cardiac conditions to specialists for a precise diagnosis.
Such an approach holds immense value, especially in underprivileged regions with limited medical resources.

3.3.2 Valvular heart disease

Valvular heart disease (VHD) is a prevalent condition associated with high mortality rates worldwide [95]. Early
screening and follow-up are crucial for managing VHD as most patients remain asymptomatic until the advanced stage,
resulting in poor prognosis without timely intervention. While echocardiography is the current gold standard for VHD
diagnosis [96, 97], its cost and requirement for specialized personnel make it impractical for community screening and
self-monitoring.

Cardiac auscultation is a simple and cost-effective diagnostic tool for VHD. However, relying solely on auscultation
for diagnosis results in low accuracy due to human errors and environmental disturbances [98]. DL techniques have
demonstrated superior recognition capabilities compared to humans. Using the Khan dataset [80] consisting of 1,000
audio clips of normal heart sounds and four VHDs: aortic stenosis (AS), mitral stenosis (MS), mitral regurgitation
(MR), and mitral valve prolapse (MVP), several DL algorithms have been developed to extract heart sound features and
train models for VHD diagnosis. Yaseen et al. employed Mel-frequency Cepstral Coefficients (MFCCs) combined
with Discrete Wavelet Transform features as inputs to Deep Neural Network (DNN) classifiers, achieving an accuracy
of 92.1% [80]. Ghosh et al. extracted features from the time-frequency matrix of the heart sound recordings and
input them into a Deep Layer Kernel Sparse Representation Network classifier, resulting in a 99.24% accuracy [57].
Abbas et al. developed a novel attention-based transformer architecture that combines DL and vision transformer. They
utilized the continuous wavelet transform-based spectrogram strategy to extract representative features and built an
attention-based model on a convolutional vision transformer, yielding an overall average accuracy of 100%, sensitivity
of 99.0%, Specificity of 99.5%, and F1-score of 98.0% [99].

Recently, researchers have worked on constructing automatic models that do not require signal pre-processing or
feature engineering. Also based on the Khan dataset [80], Baghel et al. employed a CNN with data augmentation
and a Gaussian filter for noise removal, achieving an accuracy of 98.6% [58]. Alkhodari et al. utilized a CNN-RNN
model for direct classification using heart sound recordings with one-dimensional wavelet smoothing, resulting in
a 99.32% accuracy [59]. Khan et al. developed a novel Cardi-Net architecture based on a CNN structure to extract
discriminative PCG features from the power spectrogram for VHD identification, achieving an accuracy of 98.88%
[60]. In a large-scale study, Chorba et al. trained a CNN model on over 34 hours of heart sound recordings from
5,318 patients to detect VHD-related murmurs, yielding promising performance [61]. Makimoto and Shiraga et al.
further improved the interpretability and usability of DL models. They developed a lightweight CNN model to detect
severe AS using 1,668 heart sound recordings at three auscultation locations from 556 patients. Based on this model, a
smartphone application was established, achieving a 95.7% accuracy and 0.93 F1 score. Additionally, they employed
Gradient-based Class Activation Maps to identify the specific heart sound features that the DL model focused on when
distinguishing the severity of AS [62].

3.3.3 Congenital heart disease

Congenital heart disease (CHD) is a prevalent cardiovascular disease in children, affecting approximately 0.8-1%
global population [100]. The most common type is left-to-right shunt CHD, including atrial septal defects (ASD),
ventricular septal defects (VSD), and patent ductus arteriosus (PDA). This condition can cause chronic volume overload,
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resulting in heart failure and pulmonary hypertension [101, 102]. Imaging techniques, including echocardiography,
magnetic resonance imaging, and computerized tomography, are crucial for CHD evaluation [103]. However, their
limited availability and high costs pose challenges, particularly in underdeveloped regions. The delay in diagnosis can
lead to irreversible complications and even death [104].

Auscultation plays a vital role in screening and diagnosing CHD as these patients often present with heart murmurs
caused by abnormal blood flow through malformed heart structures[105]. However, the accuracy of this method heavily
relies on the physicians’ experience, and not all heart murmurs can be accurately identified [106]. To enhance the
diagnostic efficiency of heart sound, DL algorithms have been increasingly employed. Wang et al. developed a temporal
attentive pooling-convolutional recurrent neural network model for VSD detection using heart sound recordings from
51 patients with VSD and 25 healthy individuals, with a sensitivity of 96.0% and a specificity of 96.7%. Notably,
when analyzing heart sounds in the second aortic and tricuspid areas, the sensitivity and specificity of this model
reached 100% [64]. Huang et al. converted heart sound recordings from 184 participants, including 46 with VSDs, 50
with ASDs, and 88 with a normal heart structure, into bispectrum signals. These signals were then utilized to train
an advanced optical coherence tomography network model for heart sound classification. Remarkably, this model
outperformed experienced cardiologists in detecting VSD and ASD with an accuracy of 93.4% and 85.3%, respectively
[107]. Liu et al. developed a residual convolution recurrent neural network model to detect ASD, VSD, PDA, and
combined CHD using 884 heart sound recordings from children with left-to-right shunt CHD, with accuracy values
ranging from 94.0% to 99.4% [65].

In clinical practice, distinguishing between VSD and bicuspid/tricuspid regurgitation through auscultation can be
challenging, as both conditions manifest as systolic murmurs. Gharehbaghi et al. tackled this issue by training a Time
Growing Neural Network (TGNN) model to differentiate VSD from valvular regurgitation and healthy subjects using
heart sound recordings from 90 individuals, achieving an accuracy of 86.7% [63]. Furthermore, innocent murmurs
are present in approximately 50% of children, leading to a significant number of unnecessary referrals to pediatric
cardiologists [108]. To address the issue, Gharehbaghi et al. developed a TGNN model capable of distinguishing ASD
and VSD from valvular regurgitation and innocent murmur using heart sound recordings from 115 children, resuting in
an accuracy of 91.6% [66].

3.3.4 Heart failure

Heart failure (HF) is a global epidemic with high mortality, affecting over 26 million individuals worldwide, and its
prevalence continues to rise due to an aging population [109]. Early detection and timely treatment of HF are crucial for
long-term prognosis, as the progression of HF can lead to irreversible myocardial remodeling and functional impairment
[110]. Current guidelines outline specific conditions for the diagnosis of HF, including typical symptoms and signs,
reduced or preserved LVEF, elevated brain natriuretic peptide levels, and the presence of structural heart disease and
diastolic dysfunction [111, 112],. However, the symptoms or signs may be non-specific at the early stages of HF
[111, 112], and echocardiography and blood biomarker tests are unsuitable for screening purposes.

Heart sounds, as a physiological signal generated by myocardial contraction, can provide direct insights into the
mechanical dysfunctions of the heart [113]. However, the heart sounds specific to HF, such as gallop rhythm, usually
become apparent at the later stages of HF and require sufficient expertise to identify. With DL algorithms, Gao et al.
first proposed an HF screening framework based on a gated recurrent unit (GRU) model, distinguishing between the
normal subjects, HF with preserved ejection fraction (HFpEF), and HF with reduced ejection fraction (HFrEF) using
heart sounds, with an average accuracy of 98.82% [67]. Wang et al. employed CNN and RNN to build a heart sound
diagnostic model that accurately differentiated between normal individuals, HFpEF, and HFrEF, achieving an accuracy
of 97.64% [68]. Yang et al. developed a CNN model to diagnose left ventricular diastolic dysfunction using heart
sounds. They utilized data augmentation techniques with deep convolutional generative adversarial networks to enhance
the model performance, resulting in an accuracy of 98.7% [69].

Once HF is diagnosed, accurately classifying the stages of HF is critical for guiding clinical practice. The AHA/ACC
guidelines define four stages of HF (stages A, B, C, and D), ranging from developing HF without symptoms to advanced
HF [112]. Zheng et al. utilized heart sound recordings from 275 subjects and employed a deep belief network model
that incorporated multi-scale (original signal, sub-sequences, and sub-band signals) and multi-domain (time-domain,
frequency-domain, and nonlinear) features. Their approach achieved 74.3% accuracy in automatically HF staging [70].

3.3.5 Coronary artery disease

Coronary artery disease (CAD) is a major cause of mortality and morbidity worldwide and substantially burdens the
medical system [114]. While coronary angiography is considered the gold standard for CAD diagnosis, its invasive
nature and requirement for specialized catheterization laboratories restrict it availability. Electrocardiogram is another
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commonly used diagnostic tool, but it has limitations in terms of sensitivity, particularly in stable and asymptomatic
patients, and its accuracy highly depends on the expertise of the interpreting physicians [115]. Consequently, there may
be a considerable number of undiagnosed CAD cases in underdeveloped regions.

Previous studies have shown that turbulence in stenosed coronary arteries can produce faint high-frequency murmurs
[116, 117, 118]. However, these faint murmurs are often not discernible during auscultation, and recognizable changes
in heart sounds typically occur only after the development of severe structural complications, such as papillary muscle
dysfunction, septal perforation, or ventricular dilatation [1]. Given that machine recording can capture faint murmurs, a
DL-based diagnostic model shows promise for CAD detection. In 2020, Li et al. developed a CAD detection model
using heart sounds. They extracted 110 multi-domain features and MFCCs from the heart sound recordings of 175
subjects. The fusion framework, combining selected multi-domain and DL features, served as input for a CNN classifier,
achieving an accuracy of 90.43% [72]. In 2021, Li et al. further improved their approach by developing a multi-
input CNN framework that integrated time, frequency, and time-frequency domain deep features from simultaneous
electrocardiogram and PCG signals of 195 subjects for CAD detection. The model, which combined multi-domain
deep features from the two modalities, showed high performance in CAD identification, with an accuracy of 96.51%
[71]. To address the challenge of limited sample size for training CNN models, Pathak et al. explored transfer learning
for CAD detection using heart sounds. They employed a CNN pre-trained on the ImageNet database, consisting of 1
million training images, and transferred its feature representation for CAD detection. Multiple kernel learning was
then used to fuse the embeddings of the CNN with handcrafted features, including the heat map of Synchrosqueezing
Transform, time-varying Shannon and Renyi Entropy in subbands of Synchrosqueezing Transform. Despite having only
40 CAD and 40 normal subjects’ heart sound data, their diagnostic model achieved an accuracy of 89.25% [119].

3.3.6 Rheumatic heart disease

Rheumatic heart disease (RHD) remains a significant public health issue in developing countries, impacting a minimum
of 33 million individuals and contributing to at least 345,000 deaths annually [120]. RHD is caused by an abnormal
immune response to beta-hemolytic streptococcal pharyngitis infection and primarily affects the mitral valve. Typically,
echocardiography is used to diagnose RHD by evaluating valve morphology and severity of valve dysfunction [121].
However, given the high prevalence of RHD in underdeveloped regions, there is an urgent need to develop a cost-effective
screening method for RHD.

The RHD-related damage on the valves disrupts the normal blood flow in the heart chambers and causes murmurs,
which presents a possibility of creating a DL-based model for RHD detection using heart sounds. In 2020, Asmare et al.
collected 33453 heart sound clips from 124 RHD patients and 46 healthy individuals. They trained a CNN model using
the Mel Spectro-temporal representation of un-segmented PCG, achieving an overall accuracy of 96.1% with 94.0%
sensitivity and 98.1% specificity [73].

Compared to intervention after RHD has developed, early detection of subclinical RHD in susceptible populations and
providing penicillin for prophylaxis may be a more cost-effective strategy for individuals and healthcare systems [122].
Based on this principle, Ali et al. proposed a study plan to recruit 1700 children (5–15 years) from underprivileged
schools in Pakistan and collect clinical data, including heart sound recordings and echocardiograms. They aimed to
train a DNN to automatically identify patients with subclinical RHD and definite RHD [74]. This study is currently
ongoing, and we look forward to its results.

3.3.7 Extracardiac applications

Continuous blood pressure (BP) measurements are essential for managing critically ill patients and those undergoing
surgery. Invasive intra-arterial cannulation is the gold standard for continuous BP measurement. However, it often causes
arterial complications and thrombosis. On the other hand, the cuff BP measurement, the most common non-invasive
method, can provide only indirect estimates of systolic and diastolic BP using proprietary formulas, and it does not
allow for continuous readings [123]. Heart sounds have shown a close relationship with BP. Previous studies have
established a positive correlation between the frequency and amplitude of the second heart sound and BP [124, 125].
This relationship can be explained by the mechanical vibrations caused by arterial wall elasticity and blood column
inertia [126]. Additionally, the amplitude of the first heart sound has been linked to cardiac contractility [126]. These
findings provide a physiological basis for estimating BP using heart sounds with DL techniques. In 2019, Kapur et al.
trained an artificial neural network model to estimate BP using 737 heart sound recordings from 25 children undergoing
continuous BP monitoring via radial artery intra-arterial catheters. The DL model successfully estimated BP, exhibiting
a significant correlation with the readings obtained from intra-arterial catheters (R2 = 0.928 and 0.868 for systolic and
diastolic BP, respectively) [75].
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Pulmonary hypertension (PH) is a chronic and progressive disease characterized by dyspnea, right heart failure, and a
high mortality risk [127]. The gold standard for diagnosing PH is right heart catheterization, which defines PH as a
resting mean pulmonary artery pressure (PAP) of 20 mmHg or higher. However, cardiac catheterization is invasive
and thus unsuitable for routine examinations. As an alternative, echocardiography is recommended for estimating
PAP, calculated from the maximum peak tricuspid regurgitation velocity using the Bernoulli equation. Nonetheless,
echocardiography is operator-dependent and requires optimal acoustic windows and flow tracings to measure PAP
accurately, resulting in a delay of up to 2 years between the symptom onset and PH diagnosis [128]. As PAP increases,
specific changes occur in heart sounds, including tricuspid regurgitant murmurs, an augmented second heart sound in
the pulmonic area, and a third heart sound gallop. Wang et al. utilized the Khan dataset [80] and supplemented it with
their own heart sound recordings of PH. They translated one-dimensional heart sound signals into three-dimensional
spectrograms using CWT. They employed ten transfer learning networks to diagnose PH and VHDs, and compared
their performance. Their findings revealed that four transfer learning networks (ResNet101, DenseNet201, DarkNet19,
and GoogleNet) outperformed other models with an accuracy of 98% in detecting PH and 4 VHDs [76].

4 Discussion

DL has immense potential in analyzing heart sounds, enabling precise and automated diagnosis of heart conditions.
However, this field also presents several challenges and opportunities for further development.

4.1 Data limitation

The limited data availability is one challenge in using DL for heart sound analysis. Heart sound data collection and
annotation is complex and time-consuming, requiring specialized equipment and trained clinicians. Consequently, the
quantity of labeled heart sound data is considerably smaller than other medical data types, such as medical images
or electronic health records (see Table 2). However, DL models thrive on large-scale datasets to learn and generalize
effectively. Insufficient data may result in overfitting, where the model memorizes the available examples instead of
learning meaningful features, leading to poor generalization of unseen data. Leveraging transfer learning techniques
can be beneficial when faced with limited heart sound data. Pre-training DL models on large-scale datasets from related
domains, such as general audio data or medical imaging, can help initialize the model with useful features, enabling it
to learn from limited labeled heart sound data more effectively [76, 119].

The quality of heart sound recordings is another challenge for DL model construction. The acquisition of heart sounds
in real-world practice is vulnerable to interference from environmental noise, which may obscure faint murmurs and
degrade the quality of recordings [58]. Additionally, the positioning of the stethoscope during data collection can
significantly influence the characteristics of recorded heart sounds [1], subsequently affecting the performance of DL
models trained on such data. Therefore, it is crucial to investigate and establish standardized and rigorous protocols for
heart sound collection to ensure consistent and reliable results.

4.2 Pre-processing disadvantage

As previously mentioned, heart sounds are typically pre-processed to extract their frequency information and represent
it in a time-frequency format, such as a spectrogram or Mel-spectrogram. This representation is then fed into a DL
model, which can identify patterns and features associated with various heart conditions. Although this pre-processing
step might make the model converge quicker and incorporate prior knowledge from engineering or human hearing
principles, it also risks filtering out valuable information that could benefit the model’s prediction. Numerous studies
mentioned above have delved into various signal-processing techniques. However, a comprehensive investigation into
the impact of signal processing on the model’s overall performance is still lacking. It is essential to conduct further
research and exploration to understand the trade-off between prior knowledge and detailed information in heart sound
analysis when employing DL techniques.

4.3 Interpretability shortage

Like with the application of DL in other medical fields, the interpretability of DL in heart sound analysis is limited.
As DL models are designed to handle the complexities and nuances of large datasets, they are often too complex to
comprehend or explain fully. Therefore, it is difficult to determine why a given model may be producing a certain result
or why it may be missing specific nuances in the data. Furthermore, DL models are prone to overfitting, leading to
results specific to a given dataset but not generalizable to other datasets. As such, there is an inherent need for caution
when using DL for heart sound analysis. Despite these limitations, DL models have been successfully applied to heart
sound analysis, yielding promising results. As mentioned above, they have shown superiority over traditional signal
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processing techniques in detecting complex cardiovascular events using heart sound data, contributing to advancements
in the field and holding potential for improving diagnostic accuracy and automation in cardiac healthcare.

4.4 Future perspectives

Smartphone applications: The increased computing power of smartphones has made them well-suited for deploying
DL-based heart sound diagnostic models. Smartphones come equipped with built-in microphones that can capture heart
sounds of sufficient quality. In a study conducted by Luo et al. using their smartphone application, over 80% of users
were able to obtain good-quality heart sound recordings, with success rates independent of age, gender, body mass
index, and smartphone versions [129]. As mentioned above, Makimoto et al. have developed a smartphone application
using a lightweight CNN model to detect severe AS [62]. Smartphone-based diagnostic models offer a convenient
way for patients to monitor their health status at home, enabling the early detection of potential diseases and ensuring
prompt access to treatment. Such applications also democratize healthcare by providing individuals, regardless of
their geographic location or socioeconomic status, with the same opportunity to perform disease screenings using their
smartphones.

Wearable devices: Flexible heart sound sensors, such as fabric material sensors, offer greater convenience and comfort
than traditional sensors, allowing for long-term wear and heart sound recording [130]. These continuous monitoring
data can be processed using DL models to detect anomalies and predict adverse events in real time. For instance,
patients with HF can take advantage of wearable heart sound collection devices, which facilitate continuous monitoring
of their cardiac function. This enables the early detection of acute exacerbations of HF, thereby prompting timely
medical intervention. To the best of our knowledge, there are no DL models specifically designed to process long-term
heart sound data. However, as wearable devices continue to advance, the accumulation of relevant data will propel the
development of these specialized DL models.

Multi-modalities: The integration of different modalities in DL models can uncover hidden patterns and dependencies
that might not be apparent when analyzing each modality individually. Li et al. proposed a multi-modal machine
learning approach that combines simultaneous electrocardiogram and PCG signals to predict cardiovascular diseases
[131]. Their study demonstrated that the performance of the multi-modal method surpassed that of single models based
solely on electrocardiogram or PCG. However, there is no research on the multi-modal analysis of PCG specifically
using DL networks. The combination of multi-modal DL-based heart sound diagnostic models holds promise to further
enhance diagnostic accuracy.

5 Conclusion

Cardiac auscultation is a fundamental and essential skill for clinicians, but it requires extensive training and experience
to identify and diagnose heart conditions accurately. Nowadays, heart sounds can be easily recorded and analyzed
using computers. By combining the traditional signal processing approaches and DL techniques, researchers have made
significant progress in detecting a wide range of cardiovascular diseases using heart sounds. While some promising
results have been achieved using DL models for diagnosing heart conditions based on PCG data, further research is
needed to validate the accuracy and generalizability of these models.
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