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Abstract  

Alzheimer's disease (AD) is a growing global health crisis, affecting millions and incurring 

substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and 

underdiagnoses prevalent. There is an increased focus on putative, blood-based biomarkers that may 

be useful for the diagnosis, as well as early detection, of AD. In the present study, we used an 

unbiased combination of machine learning and functional network analyses to identify blood gene 

biomarker candidates in AD. Using supervised machine learning, we also determine whether these 

candidates were indeed unique to AD or whether they were indicative of other neurodegenerative 

diseases Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS).  Our analyses showed that 

genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, 

mitoribosomes, and NADH dehydrogenase were the best performing genes for identifying AD 

patients relative to cognitively healthy controls. This transcriptomic signature, however, was not 

unique to AD and subsequent machine learning showed that this signature could also predict PD and 

ALS relative to controls without neurodegenerative disease. Combined, our results suggest that 

mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may 

be less effective at diagnosing the specific neurodegenerative disease.  
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1. Introduction 

 Alzheimer’s disease (AD), the most common form of dementia, is a rapidly growing global 

medical crisis. With 50 million people currently affected, and at least an additional 10 million cases a 

year predicted, the global cost to the economy is estimated to be $1.3 trillion USD annually [1]. The 

clinical diagnosis of AD has remained challenging: 25-30% of patients are misdiagnosed with AD and 

a further 50-70% of patients with symptoms of AD don’t receive a probable AD diagnosis from their 

primary care provider [2]. To combat this, there has been an increased focus on the identification of 

putative, blood-based, biomarkers to aid in the early diagnosis and detection of AD. Diagnostic tests 

are especially important for identifying patients with AD who may be suitable for clinical trials [3]. 

The majority of this work has focused on the core pathological hallmarks of AD including amyloid β 

(Aβ), phosphorylated tau (pTau), and neurofilament light chain (NfL) [4]. Although there has been 

some demonstrated diagnostic utility towards these pathogenic traits, for example pTau181 [5], there 

is evidence that these biomarkers increase with age, even in the absence of clinical AD symptoms [4]. 

Further, available modelling demonstrates the clinical efficacy of these putative biomarkers are 

performed on a smaller number of patients (often <100), use cohorts with a significant class 

imbalance (healthy controls > AD), and rarely examine whether their biomarkers are also predictive of 

other neurodegenerative diseases. This may lead to significant bias and perhaps limit the clinical 

utility of these models [6, 7]. Therefore, there is an imperative to evaluate the efficacy of additional 

AD biomarkers outside those traditionally used, using modelling techniques that are more likely to be 

generalizable.  

 Advances in high-throughput omics technologies have allowed the measurement of tens of 

thousands of genes and molecules that are dysregulated in disease states, making them novel tools for 

identifying biomarkers. However, historically there has been a tendency to use these high-throughput 

techniques to test a priori hypotheses, potentially limiting the full appreciation of their diagnostic 

capacity. Further, these datasets are often analyzed using arbitrary, yet commonly used fold change 

and corrected p-value thresholds, which can bias the results and their interpretation [8]. One way 

around these limitations is to distil new perspectives in high-throughput data, without preconceptions, 

using machine learning. Such an approach represents a unique and effective way to identify novel 

biomarkers. A small number of prior studies have used this approach to identify novel blood 

biomarker signatures in AD using transcriptomic and proteomic data [9-15]. Although these studies 

have shown promising results, there are some limitations that warrant consideration. First, many 

studies use a very low number of samples (sometimes <20) [10-13, 15]. Small sample sizes in high 

dimensional data, like patient-derived omics data, can result in significant problems with pattern 

recognition and model overfitting [16-18]. Furthermore, as mentioned previously, class imbalances 

where the number of samples in one group significantly outweighs the other, risks biasing the model 

in a particular direction, often toward the over-represented cohort. In many studies, the number of 
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cognitively healthy controls far exceeds the number of AD patients and is reflected in high specificity 

(ability to predict healthy control) performance metrics [12]. Additionally, prior investigations 

utilizing large datasets from public repositories (e.g., Gene Omnibus (GEO) database), do not specify, 

either in the meta-data or the publication, the diagnostic criteria for AD [13-15, 19], thereby limiting 

the generalizability of their findings to patients with AD.   

 There is substantial overlap in genetics, cellular pathways, and even clinicopathological 

features across neurodegenerative diseases [20-23]. Therefore, an important consideration in 

biomarker development is whether the signature(s) identified are specific to the disease of interest. 

Few machine learning studies for AD biomarker development have determined whether the identified 

signatures are similar or divergent in other neurodegenerative diseases. One study demonstrated that 

DNA methylome patterns in AD significantly overlap with those of Parkinson’s disease (PD) and 

amyotrophic lateral sclerosis (ALS) [24]. Another two research groups have reported that certain 

features (genes) selected by random forest algorithms overlap between neurodegenerative diseases, 

including AD, PD, ALS, frontotemporal dementia (FTD), Huntington’s disease (HD), and Friedrich’s 

Ataxia [15, 19]. However, these studies relied on fold change and p-value threshold cutoffs and only 

compared categories of affected transcripts rather than identifying whether their machine learning 

models, themselves, were able to predict other diseases relative to healthy controls. Thus, it remains 

unclear if AD predictive biomarker models are useful for diagnosis or whether their signature overlaps 

other neurodegenerative diseases.  

 To address this knowledge gap, we analyzed transcriptomic microarray data from whole 

blood samples of clinically diagnosed AD patients and healthy controls. To move away from fold 

change and p-value-based identification of dysregulated genes, we used an unbiased combination of 

unsupervised machine learning and functional enrichment analyses to identify these. We then used 

random forest models to test whether our identified gene biomarker candidates were indeed specific to 

AD or, using the same models, whether they were generalizable to two other neurodegenerative 

diseases: PD and ALS.  

 

2. Results 

2.1. Characteristics of the included datasets  

 Our review of the GEO database identified five whole-blood microarray datasets that met the 

inclusion criteria: GSE140829, GSE97760, GSE85426, GSE63061, and GSE63060. Two of these, 

GSE140829 and GSE85426, did not specify the criteria used to diagnose probable AD and were 

therefore excluded from our analyses. Samples from the included datasets consisted of patients with a 

diagnosis of possible or probable AD and cognitively normal controls at time of assessment (Table 1). 
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Donor age (ranging from 72-79 years old) and sex were generally well-matched, both across and 

within datasets (Table 1). Only one of the three datasets specified the ethnicity of their donors: 

GSE97760 was made up of primarily white donors with two AD donors who were African American 

[25]. Although all the datasets report measuring RNA integrity (RIN), none reported the cutoff used. 

Further, none of the datasets reported APOE genotype of the donors.   

 

Table 1. Characteristics of the included AD datasets.  

 GSE97760 GSE63061 GSE63060 
 AD Control AD Control AD Control 
Sample size 9 10 139 134 145 104 

Sex (M:F) 0:9 0:10 
 

54:85 53:81 46:99 42:62 

Age (Average +/- 
SEM) 

79.3 + 4.1 72.1 + 4.1 77.9 + 0.6 75.3 + 0.5 75.4 + 0.6 72.4 + 0.6 

AD Diagnostic 
Criteria 

NIH diagnostic 
guidelines for AD 

NINCDS-ADRDA and 
DSM-IV 

NINCDS-ADRDA and 
DSM-IV 

Platform GPL16699  GPL10558 GPL6947 
Abbreviations: DSM-IV: Diagnostic and Statistical Manual of Mental Disorders; NIH: National 
Institutes of Health; NINCDS-ADRDA: National Institute of Neurological and Communicative 
Disease and Stroke and Alzheimer’s disease 

 

2.2. Principal component and functional network analyses of GSE97760 indicate dysregulated 

pathways and central gene nodes in whole blood of AD patients 

 We first performed feature selection using principal component analysis (PCA) on GSE97760 

to identify dysregulated central gene nodes that may predict an AD diagnosis. GSE97760 was selected 

as a reference dataset as all of their AD donors were clinically diagnosed as having advanced AD [25]. 

PCA showed that there was a distinct separation between the AD and control samples (Figure 1).  
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Figure 1. Principal component analysis (PCA) of AD reference dataset GSE97760.  

 

It was also clear that the groups were separating along the y-axis, suggesting that genes within PC2 

were playing a key role in driving group separation. Given that PC1, however, contributes to a greater 

percentage of the variance between groups (45.9% vs 21.5%), we also wanted to ensure that we 

examined the possibility that genes in PC1 may be good predictors of AD. We therefore took the top 

1000 genes that correlated with PC1 (Supplementary Table 1) and PC2 (Supplementary Table 2), 

respectively, as the most dysregulated genes between AD and controls.  

 To identify the number of common pathways and interconnections represented in these genes, 

we performed k-means clustering in STRING [26]. Four clusters were identified as being the optimal 

number for the dysregulated genes in PC1 and PC2, respectively (Figure 2).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.23295651doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.15.23295651
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. K-means clustering of top 1000 dysregulated genes in GSE97760 identified by principal 
component analysis. (A) Principal component (PC) 1. Red n = 255, yellow n = 271, green n = 250, 
and blue n = 224 genes. (B) PC2. Red n = 239, yellow n = 216, green n = 261, and blue n = 284 
genes.    

 

 Genes within each k-means cluster were then independently examined, again using STRING, 

to identify overlapping pathways and central gene nodes (the genes that are the most connected within 

the network) within the cluster. The pathways’ biological function and cellular localization were both 

characterized using Gene Ontology (GO). In PC1, the first k-means cluster (red) was characterized by 

genes involved in cellular localization within the endomembrane system (Supplementary Figure 1). 

There were three central gene nodes identified as playing a role in vesicle formation, the SNARE 

complex, and signal transduction (Table 2; Supplementary Table 3). The second k-means cluster 

(yellow) was characterized by 62 central gene nodes involved in metabolic processes across the 

mitochondrion and ribonucleoprotein complex and included genes from ATP synthase (complex V), 

mitochondrial ribosomes, and those with roles in mitochondrial respiration (Table 2; Supplementary 

Table 4; Supplementary Figure 2). The third k-means cluster (green) represented genes important for 

gene expression in the nucleus (Supplementary Figure 3). The 39 central gene nodes identified here 

were involved in RNA regulation and transcription (Table 2; Supplementary Table 5). The fourth and 

final k-means cluster (blue) from PC1 included genes involved in cellular response to stimulus and 

protein folding, both of which localized to the cytosol (Supplementary Table 6). There were 23 central 

gene nodes involved in protein folding, maintenance, stabilization, and degradation (Table 2; 

Supplementary Figure 4). 
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 We observed a degree of overlap in the biological function of genes between PC1 and PC2 k-

means clusters. The first PC2 k-means cluster (red) was similarly characterized by gene expression in 

the nucleus, however unlike PC1, also included genes expressed in the ribonucleoprotein complex 

(Supplementary Table 7). Here, the 16 central gene nodes played roles in mRNA regulation and 

mitochondrial ribosomes (Table 3; Supplementary Figure 5). Genes involved in metabolic processes 

were also identified in the second PC2 k-means cluster (yellow). These were in both the cytosol and 

mitochondrion and included 41 central gene nodes involved in cytochrome c oxidase (complex IV), 

mitochondrial ribosomes, NADH dehydrogenase (complex I), and ribosomes (Table 3; Supplementary 

Table 8; Supplementary Figure 6). The final two k-means clusters represented pathways unique to 

PC2. The third k-means cluster (green) included 18 central gene nodes involved in transport within 

the cytoplasm, including vesicular transport, protein trafficking, and hemoglobin (Table 3; 

Supplementary Table 9; Supplementary Figure 7). The final k-means cluster (blue) was made up of 12 

central gene nodes involved in the regulation of cellular processes in the plasma membrane 

(Supplementary Figure 8). These included genes with roles in protein kinase signaling, estrogen 

signaling, transcription, and protein chaperones (Table 3; Supplementary Table 10).    
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Table 2. Characterization summary of each k-means cluster from PC1.  

K-Means 
Cluster 

Biological Function (GO) FDR Cellular Component (GO) FDR Number of 
Central 

Gene Nodes 

Roles of Central Gene Nodes 

1 (Red) Cellular localization 3.61e-11 Endomembrane system 6.02e-22 3 Vesicle formation; SNARE complex; 
signal transduction 

2 (Yellow) Metabolic process 5.29e-25 Mitochondrion 
Ribonucleoprotein complex 

2.87e-40 
5.93e-12 

62 ATP synthase (complex V); 
mitochondrial ribosomes; 
mitochondrial respiration 

3 (Green) Gene expression 3.87e-28 Nucleus 1.75e-44 39 RNA regulation; transcription  
4 (Blue) Cellular response to stimulus 

Protein folding 
1.69e-9 

1.19e-16 
Cytosol 2.8e-9 

 
23 Protein folding, maintenance, 

stabilization, and degradation 
Abbreviations. FDR: false discovery rate; GO: Gene Ontology. 

 

Table 3. Characterization summary of each k-means cluster from PC2. 

K-Means 
Cluster 

Biological Function (GO) FDR Cellular Component (GO) FDR Number of 
Central 

Gene Nodes 

Roles of Central Gene Nodes 

1 (Red) Gene expression 2.32e-9 Nucleus 
Ribonucleoprotein complex 

1.83e-21 
0.00024 

16 mRNA regulation; mitochondrial 
ribosomes 

2 (Yellow) Metabolic process 2.58e-22 Cytosol 
Mitochondrion 

1.78e-16 
4.40e-6 

41 Cytochrome c oxidase (complex IV); 
mitochondrial ribosomes; NADH 

dehydrogenase (complex I); ribosomes  
3 (Green) Transport 4.58e-6 Cytoplasm 4.19e-10 18 Vesicular transport; protein trafficking; 

hemoglobin  
4 (Blue) Regulation of cellular 

processes 
2.49e-10 Plasma membrane 0.00062 12 Protein kinase signaling; estrogen 

signaling; transcription; protein 
chaperone 

Abbreviations. FDR: false discovery rate; GO: Gene Ontology. 
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2.3. Supervised machine learning identifies dysregulated pathways that can predict AD 

 We used supervised machine learning (random forest) to determine which clusters were the 

best predictors of AD. Importantly, this was done separately for GSE63061 (dataset A) and GSE63060 

(dataset B) to assess the reproducibility and generalizability of our models’ performance. For PC1, the 

top performing cluster was gene expression, demonstrating a consistently higher sensitivity and 

precision, average of 0.67 and 0.77, respectively (Table 4; Figure 3).  

Table 4. Random forest performance metrics for the dysregulated clusters from AD PC1.  

 AUC Sensitivity Specificity Precision 
Cluster A B A B A B A B 
Cellular Localization 0.53 0.54 0.48 0.64 0.39 0.26 0.31 0.67 
Metabolic Process 0.55 0.79 0.54 0.72 0.46 0.81 0.51 0.89 
Gene Expression* 0.70 0.72 0.65 0.69 0.66 0.61 0.65 0.88 
Cellular response to stimulus / protein 
folding 

0.64 0.74 0.58 0.68 0.59 0.69 0.55 0.89 

* indicates top performing cluster. Dataset A: GSE63061; dataset B: GSE63060.   

 

Figure 3. Receiver operating characteristic (ROC) curve of the random forest models’ performance 
for PC1 gene expression cluster in (A) Dataset A, GSE63061 and (B) Dataset B, GSE63060. AUC: 
Area under the curve. 

 

For PC2, the top performing cluster was metabolic process, with an average sensitivity of 0.7 and 

precision of 0.77 (Table 5; Figure 4). 
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Table 5. Random forest performance metrics for the dysregulated clusters from AD PC2.  

 AUC Sensitivity Specificity Precision 
Cluster A B A B A B A B 
Gene expression 0.68 0.64 0.73 0.65 0.53 0.58 0.56 0.78 
Metabolic Process* 0.73 0.78 0.65 0.75 0.67 0.72 0.7 0.83 
Transport 0.58 0.43 0.55 0.60 0.48 0.55 0.55 0.87 
Regulation of cellular process 0.57 0.58 0.54 0.67 0.42 0.41 0.40 0.64 
* indicates top performing cluster. Dataset A: GSE63061; dataset B: GSE63060.   

Figure 4. Receiver operating characteristic (ROC) curve of the random forest models’ performance 
for PC2 metabolic process cluster in (A) Dataset A, GSE63061 and (B) Dataset B, GSE63060. AUC: 
Area under the curve. 

 

2.4. Feature selection of the top performing genes that contribute to AD prediction within each PC 

cluster  

 We next sought to identify the top performing gene within each PC cluster that contributed to 

the random forests’ ability to predict AD. A recursive feature elimination (RFE) was performed on 

PC1 gene expression (Figure 5A) and PC2 metabolic process cluster (Figure 5B), respectively. At the 

models’ top performance (blue dot, Figures 5A and 5B), one gene from each cluster dominated the 

predictive power: LSM3 (PC1 gene expression; Figure 5C), a component of the U4/U6-U5 tri-snRNP 

complex involved in pre-mRNA splicing and spliceosome assembly, and RPS27A (PC2 metabolic 

process; Figure 5D), a component of the 40S subunit of the ribosome that plays a role in protein 

synthesis. The top eight performing genes for the PC1 gene expression cluster included those involved 

in spliceosome assembly, RNA binding, and transcription (Table 6). On the other hand, the top 

performers for the PC2 metabolic process cluster included genes involved in protein synthesis, 

mitoribosomes, and NADH dehydrogenase (Table 6).  
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Figure 5. Feature selection of the top performing central gene nodes using recursive feature 
elimination (RFE) for (A) PC1, gene expression cluster and (B) PC2, metabolic process cluster. The 
blue dot indicates peak performance of the model where features were identified from. (C, D) The top 
eight performing genes for the (C) PC1 gene expression cluster and (D) PC2 metabolic process 
cluster. 

 

Table 6. Biological function of the top performing genes for PC1 gene expression cluster and PC2 
metabolic process cluster. 

Abbreviation Name Function (NCBI) 
PC1 Gene Expression Cluster 

LSM3 U6 snRNA and mRNA 
Degradation Associated 

Component of the U4/U6-U5 tri-snRNP 
complex involved in pre-mRNA splicing and 
spliceosome assembly 

GFT2A2 General transcription factor IIA 
subunit 2 

Component of RNA polymerase II transcription 
machinery, role in transcriptional activation 

EBNA1BP2 EBNA1 binding protein 2 RNA binding activity  
EXOSC7 Exosome component 7 Enables RNA binding and 3’-5’-

exoribonuclease activity and RNA metabolism  
CCDC12 Coiled-coil domain containing 

12 
Component of U2-type and post-mRNA release 
spliceosomal complexes  
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SUCLG1 Succinate-CoA ligase 
GDP/ADP-forming subunit 
alpha 

Alpha subunit of the heterodimeric enzyme 
succinate coenzyme A ligase, catalyzes 
conversion of succinyl CoA and ADP to 
succinate and ATP or GDP to GTP   

CCT8 Chaperone containing TCP1 
subunit 8 

Component of molecular chaperonin-containing 
T-complex (TRiC), assists in folding of proteins 
upon ATP hydrolysis 

GTF2E2 General transcription factor IIE 
subunit 2 

Component of RNA polymerase II transcription 
initiation complex, involved in recruitment of 
general transcription factor IIH to initiation 
complex and stimulation of RNA polymerase II 
C-terminal domain kinase and DNA-dependent 
ATPase activity   

PC2 Metabolic Process Cluster 
RPS27A Ribosomal protein 27A Component of 40S subunit of the ribosome 

involved in protein synthesis   
NDUFB3 NADH:ubiquinone 

oxidoreductase subunit B3 
Component of accessory subunit of 
mitochondrial membrane respiratory chain 
NADH dehydrogenase (complex I) 

RPL17 Ribosomal protein L17 Component of the ribosomal 60S subunit, 
involved in protein synthesis  

RPL26 Ribosomal protein L26 Component of the ribosomal 60S subunit, 
involved in protein synthesis 

SNRPG Small nuclear ribonucleoprotein 
polypeptide G 

Component of the U1, U2, U4, and U5 small 
nuclear ribonucleoprotein complexes, involved 
in processing of 3’ end of histone transcripts 

NDUFS4 NADH:ubiquinone 
oxidoreductase subunit S4 

Component of nuclear-encoded accessory 
subunit of mitochondrial membrane respiratory 
chain NADH dehydrogenase (complex I) 

MRPL50 Mitochondrial ribosomal protein 
L50 

Encodes a putative 39S subunit protein of 
mitochondrial ribosomes (mitoribosomes) 

RPL21 Ribosomal protein L21 Component of the ribosomal 60S subunit, 
involved in protein synthesis 

 

2.5. Genes that predict AD are also predictive of neurodegenerative diseases  

 When identifying potential new biomarkers, it is important to determine if they are disease 

specific (i.e., AD). We therefore sought to test whether our top-performing gene candidates for AD 

were also predictive of Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), among the 

most common neurodegenerative diseases. More specifically, we wanted to determine whether our top 

performing genes were also able to predict PD and ALS patients irrespective of whether they were 

trained using an AD dataset (AD train and PD or ALS test) or disease-specific dataset (PD or ALS 

train and PD or ALS test). For Parkinson’s disease, we sourced two microarray datasets from GEO, 

GSE6613 (PD vs. healthy control) and GSE72267 (drug-naïve PD vs. healthy control) (Table 7). We 

also identified one ALS microarray dataset, GSE112681 (ALS vs. healthy control) (Table 7).  
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Table 7. Characteristics of the PD and ALS datasets.  

 GSE6613 GSE72267 GSE112681 
 PD Control PD Control ALS Control 
Sample size 50 22 40 20 167 137 
Sex (M:F) 39:11 11:11 22:18 10:10 96:68 79:58 
Age (Average +/- 
SEM) 

69.4 + 1.2 64.4 + 2.3 68.8 + 1.1 60.3 + 1.3 Not 
reported 

Not 
reported 

Diagnostic 
Criteria 

United Kingdom 
Parkinson’s Disease 
Society Brain Bank 

clinical diagnostic criteria 

United Kingdom 
Parkinson’s Disease 
Society Brain Bank 

clinical diagnostic criteria 

Revised El Escorial 
criteria  

RNA Quality 
(RIN average +/- 
SEM) 

Not specified RIN > 8 RIN > 7 

 

Random forest models for the top AD gene performers from the PC1 gene expression cluster 

and PC2 metabolic process cluster, respectively, were trained using a collapsed AD dataset made up of 

samples from GSE63061 and GSE63060. The trained models were then tested on each of the three PD 

and ALS datasets, GSE6613, GSE72267, and GSE112681. The random forest models for the PC1 

gene expression cluster had precision metrics of >0.65, suggesting that they were able to identify true 

PD and ALS cases (Table 8).  

 

Table 8. Random forest PC1 gene expression cluster performance metrics for neurodegenerative 
diseases (trained on AD and tested on PD or ALS).  

Dataset AUC Sensitivity Specificity Precision 
Parkinson’s disease (GSE6613) 0.48 0.69 0.30 0.69 
Parkinson’s disease, drug naïve (GSE72267) 0.54 0.72 0.39 0.65 
Amyotrophic lateral sclerosis (GSE112681) 0.50 0.55 0.47 0.73 
 

The models for the PC2 metabolic process cluster had precision metrics of >0.68 and went as high as 

0.83, similarly demonstrating that these genes were predictive of PD and ALS (Table 9).  

 

Table 9. Random forest PC2 metabolic process cluster performance metrics for neurodegenerative 
diseases (trained on AD and tested on PD or ALS).  

Dataset AUC Sensitivity Specificity Precision 
Parkinson’s disease (GSE6613) 0.52 0.68 0.27 0.68 
Parkinson’s disease, drug naïve (GSE72267) 0.61 0.71 0.45 0.83 
Amyotrophic lateral sclerosis (GSE112681) 0.52 0.63 0.15 0.72 
 

It is worth noting that while all the models for the PC1 gene expression and PC2 metabolic process 

clusters had good predictive value for the neurodegenerative disease patients (indicated by high 
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sensitivity and precision), they were unable to identify the healthy controls in each dataset (indicated 

by low specificity and AUC). 

 To further validate these findings, we tested our models’ performance when both trained and 

tested within the same disease dataset (70% training, 30% withheld for testing). This improved all 

performance metrics for both the PC1 gene expression cluster (Table 10) and PC2 metabolic process 

cluster (Table 11). Furthermore, it also improved the ability of the models to accurately identify 

healthy controls (higher specificity) (Tables 10 and 11).  

 

Table 10. Random forest PC1 gene expression cluster performance metrics for neurodegenerative 
diseases (trained and tested on same disease).  

Dataset AUC Sensitivity Specificity Precision 
Parkinson’s disease (GSE6613) 0.44 0.64 0.5 0.78 
Parkinson’s disease, drug naïve (GSE72267) 0.50 0.67 N/A 1.00 
Amyotrophic lateral sclerosis (GSE112681) 0.89 0.91 0.71 0.82 
 

Table 11. Random forest PC2 metabolic process cluster performance metrics for neurodegenerative 
diseases (trained and tested on same disease).  

Dataset AUC Sensitivity Specificity Precision 
Parkinson’s disease (GSE6613) 0.86 0.86 0.67 0.80 
Parkinson’s disease, drug naïve (GSE72267) 1.00 1.00 1.00 1.00 
Amyotrophic lateral sclerosis (GSE112681) 0.89 0.91 0.74 0.84 
 

3. Discussion 

 An affirmative diagnosis for neurodegenerative remains difficult and elusive. Currently, there 

is a reliance on neuroimaging and measurements of biomarkers in the cerebrospinal fluid (CSF) [27]. 

While these do provide clinical utility, there are caveats, namely accessibility to neuroimaging 

(particularly in lower-socioeconomic countries) and the perceived invasiveness of CSF collection [27, 

28]. Further, targeted proteomic or metabolomic methods for analyzing CSF are costly and 

methodologically challenging [27]. PCR-based approaches to examine mRNA changes are a favorable 

alternative given that these assays are timely, reliable, robust, relatively simple, and cost-efficient 

[29]. However, putative biomarker measurements employing this approach are still in their infancy, 

hence the need to explore the possibility of reliable blood mRNA biomarkers. Here, we examined 

publicly available microarray data using machine learning to determine if whole blood transcriptomic 

signatures are unique to AD or whether they are reflective of other neurodegenerative diseases, 

including PD and ALS. Our results suggest that mRNA from whole blood can indeed be used to 

screen for patients with neurodegeneration but may be less effective at diagnosing the specific 

disease.  
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 Our unsupervised machine learning (PCA and k-means clustering) and functional enrichment 

analyses indicated there are multiple dysregulated pathways and central gene nodes in the blood of 

AD patients. Dysfunctional metabolic processes in the mitochondria, cytosol, and ribonucleoprotein 

complex were found across both PCs, highlighting that these processes are likely dysregulated in the 

periphery of neurodegenerative disease patients. Central gene nodes involved in these processes 

including those for NADH dehydrogenase (complex I), cytochrome oxidase C (complex IV), and ATP 

synthase (complex V) as well as those involved in mitoribosomes and mitochondrial respiration. 

Similarly, gene expression was found to be dysregulated across the nucleus and ribonucleoprotein 

complex, implicating processes such as RNA regulation, transcription, and mitoribosome function. 

Unsurprisingly, both the gene expression and metabolic process central gene nodes were found to be 

the top performing clusters across PC1 and PC2, respectively, showing an acceptable level of 

sensitivity and precision. Additional feature selection using RFE identified that the sixteen (eight from 

PC1 gene expression cluster and eight from PC2 metabolic process cluster) central gene nodes drove 

the models’ predictive performances. These included those involved in spliceosome assembly, RNA 

binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase. Despite the AD 

transcriptomic signatures identified, subsequent machine learning demonstrated that these were not 

unique to AD. Our models using these top performing genes were also able to predict PD and ALS 

patients irrespective of whether they were trained using an AD dataset (AD train and PD or ALS test) 

or disease-specific dataset (PD or ALS train and PD or ALS test). Importantly, the medications 

commonly used to treat the symptoms of AD, PD, and ALS are different and the ability of our models 

to perform across neurodegenerative diseases suggests that our findings are not simply an artefact of 

drug treatments. It is worthy to note, however, that only one of the datasets specified drugs used by 

the donors: the drug-naïve PD dataset [30]. Although our models showed strong metrics, this dataset 

was small (n=60). Future research, therefore, should include current prescription and non-prescription 

data for their donors to ensure that these can be controlled for as well as larger numbers to enable 

more generalizable conclusions.  

 Many of the genes we found were good predictors of AD, PD, and ALS have also been 

previously identified as being broadly implicated in neurodegeneration. RPS27A has been linked to 

mild cognitive impairment (MCI) and AD [31, 32]. It has also been shown to interact with tau and 

lead to microglial activation that triggers subsequent widespread neurodegeneration [33, 34]. Both 

MRPL50 and NDUFB3 have been implicated in AD, glaucoma, and age-related neurodegeneration 

[35, 36]. In addition to being identified as a gene that links MCI progressing to AD [31], LSM3 has 

been implicated in PD [37], AD [36], the adult-onset neurodegenerative disorder Fragile X,  and 

Tremor and Ataxia syndrome [38]. SUCLG1 is decreased in AD brains [36] and mutations in this 

gene  have been linked to encephalomyopathic mitochondrial DNA (mtDNA) depletion syndromes 

characterized by hypotonia and pronounced neurological symptoms [39, 40]. Interestingly, mtDNA is 
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well-documented to play a role across neurodegenerative diseases including, but not limited to, AD, 

PD, and ALS [41, 42], suggesting that SUCLG1 may be an interesting gene to look at further in the 

context of neurodegeneration. Further, we implicated NDUFS4 in our neurodegeneration predictive 

models, which has been connected to both AD [36] and in neurodegeneration associated with the 

mitochondrial disorder Leigh Syndrome [43, 44].  

 While we provide strong evidence that mRNA signatures can be used to indicate whether 

neurodegeneration is present, there are some limitations to this work. First, we used a specific feature 

selection method (unsupervised machine learning and functional enrichment analyses) to narrow 

down a list of >15,000 genes to only 16. Therefore, it may be the case that we have overlooked other 

genes and genetic signature(s) with greater sensitivity towards AD or other neurodegenerative disease. 

However, this may be mitigated by our selection approach. Our PCA identified the genes highly 

correlated with the principal components – i.e. those with the greatest influence on driving group 

separation between AD patients and healthy controls. Inherent to this is that the non-identified genes 

contribute less to this differentiation and are, therefore, highly likely to be poor predictors of AD. 

Further, our deliberate exclusion of p-value and fold change thresholds ensures that our results 

weren’t biased toward arbitrary cutoffs. The use of functional enrichment analyses to uncover central 

gene nodes (the genes that are the most connected within the network) should enrich for genes whose 

dysregulation have the highest disruptive potential for the system or pathway. In doing so, we may 

also inadvertently examine genes that are functionally connected to these central gene nodes. In this 

systems biology approach, dysregulation of a central, highly connected gene is also likely to disrupt 

downstream connections. Despite this, it can be argued that our functional enrichment analysis is 

biased toward what is already known and that genes with a subtle influence may be unique to 

neurodegenerative diseases. These subtleties are unlikely to be uncovered using tools like databases 

and machine learning; future research would therefore benefit from identifying other methods to 

examine these. 

Another potential limitation of this work is that our models generally had a low specificity 

and high precision, indicating that the models were poor at identifying true negatives (people without 

neurodegeneration). In the AD datasets, all healthy controls were in their early to mid-70s and may, 

therefore, demonstrate subclinical, age-related non-pathological neurodegeneration [45]. This 

conclusion is strengthened by two findings from our data. First, our models’ sensitivity and precision 

metrics were higher for the AD dataset GSE63060 relative to GSE63061 where the age of controls 

was 72 as compared to 75, respectively. In the future, research would benefit from testing whether 

blood-based biomarkers lose sensitivity and precision with increasing patient age. Second, when our 

models were trained on the AD datasets and then tested on the PD or ALS datasets, whose healthy 

controls were around 10 years younger, the specificity was very low. When we instead trained and 

tested the models on the same dataset (PD or ALS, respectively), the specificity improved 
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dramatically. This also suggests that our models are readily able to differentiate between a patient with 

neurodegeneration and a healthy control who is younger.   

It is also important to consider that there are likely to be sex differences in neurodegenerative 

disease pathogenesis and therefore biomarkers [46]. For example, a recent study demonstrated that 

plasma phospho-tau threonine 217 (p-Tau217) and NfL levels differed between males and females 

with autosomal dominant AD [47]. From a diagnostic testing perspective, however, it is important to 

identify sex-independent biomarkers that can be routinely used in the clinic. In the present study, 

although we used a female-only AD dataset as our reference to identify dysregulated central gene 

nodes, our models still showed good performance (sensitivity and precision) when trained and tested 

using AD, PD, and ALS datasets made up of both males and females. This suggests that although we 

used females as a reference point, we have identified genes that are less likely to be sex specific and 

may therefore be clinically useful to identify patients with neurodegeneration.  

The final limitation of this work is that the datasets used in the present study are not derived 

from single-cell RNA-sequencing, which may limit our interpretation of results. Whole blood is made 

up of many cell types, including red blood cells, white blood cells (lymphocytes, monocytes, and 

granulocytes), and platelets. Mature red blood cells are enucleated and, therefore, have low levels of 

mRNA, with estimates that only about 10% contain mRNA [48, 49]. This suggests that the bulk of 

mRNA comes from the various white blood cells or platelets [50, 51], highlighting that there may be 

peripheral dysfunction in these diseases driven by these cell types. For example, CD49+ Tregs, 

relative to other immune cell subsets, have been shown to be increased in blood samples of PD 

patients relative to healthy controls [52]. This suggests that the relative proportion of blood cell types 

in a sample may influence the identification of disease-related changes in gene expression, potentially 

limiting clinical utility [51]. This may especially be the case in patients with comorbid conditions 

requiring immunosuppression, like cancer patients undergoing chemotherapy. A recent study, 

however, demonstrated that there were marked differences in CD4+ memory, CD4+ activated, and 

CD8+ naïve cells, as well as CD38+CD16low monocytes, between AD and PD patients [53]. Given that 

our models were reasonable across AD and PD, as well as ALS, the relative abundance of cell subsets 

may not provide diagnostic utility with respect to neurodegeneration. Additionally, it is important to 

note that we do not know if our dysregulated genes are from the CNS or only the periphery. 

Extracellular vesicles (EVs) package mRNA and may cross the blood brain barrier into general 

circulation. There is a poor understanding, however, of how EVs do this in a bidirectional manner (i.e. 

cross from brain to blood and vice versa) [54, 55] therefore we can’t conclude from these data the 

relative proportion of EVs. Future studies would greatly benefit from dissecting this further to 

determine whether these blood-based genetic changes are driven by immune cell subtypes or whether 

they are cell subtype-independent.  
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 In summary, we report a machine learning and functional enrichment analysis approach to 

identifying whole blood transcriptomic signatures in AD. We also investigated whether these 

transcriptomic signatures were unique to AD or whether they were indicative of neurodegenerative 

disease, more broadly. The top performing genes for predicting AD included those involved in 

spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH 

dehydrogenase. Although we did identify a blood-based transcriptomic signature that was predictive 

of AD, we found that it could also be used to identify PD or ALS patients relative to non-

neurodegenerative disease controls. Together, these findings suggest that there is a shared blood 

molecular signature across neurodegenerative diseases. This highlights that mRNA from whole blood 

can likely from whole blood can likely be used to screen patients for neurodegeneration but is less 

effective at diagnosing the specific neurodegenerative disease. Our identified gene signature should be 

experimentally investigated to determine whether it is indeed a viable clinical screening test to 

identify neurodegenerative diseases in patients.  

 

4. Materials and Methods 

4.1. Identification of publicly available transcriptomic datasets   

We identified publicly available transcriptomic datasets using a systemic search of the Gene 

Expression Omnibus (GEO) database. The key term used for the search was “Alzheimer’s disease”, 

and the results were limited to homo sapiens. Datasets were included on the basis that they (a) 

examined gene expression in whole blood samples, (b) used microarray to generate high throughput 

transcriptomic data, (c) clinically confirmed AD diagnosis, and (d) included cognitively normal 

healthy controls. We excluded datasets generated by RNA-sequencing due to their small sample sizes, 

which increases the risk of developing overfitted, ungeneralizable models using our machine learning 

methods. Three AD datasets were included: GSE97760, GSE63061, and GSE63060.  

4.2. Data processing 

 After downloading the identified GEO datasets, we first confirmed the data was pre-

normalized and did not need additional normalization. Log transformations were not used as they are 

not required in the absence of traditional statistical and fold change analyses. The three datasets were 

processed independently, duplicate gene entries were removed, and a z-score was calculated for each 

gene. A list of genes identified in each dataset was generated, and genes not common to all three 

datasets were discarded. Data processing, merging, and PCA were done in R Studio v1.2.5033 (R 

v3.6.3) using GEOquery, dplyr, PCA and visualization was done using ggplot.  
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4.3. Feature selection using unsupervised machine learning methods and functional enrichment 

analyses on GSE97760 

 We first examined the three AD datasets and selected a ground truth dataset, GSE97760. This 

was selected due to all the patients having a diagnosis of advanced probable AD, thereby reducing the 

chances of clinical misdiagnosis [25]. Further supporting this, a PCA indicated a clear group 

separation between the AD cases and healthy controls (Figure 1). Using GSE97760, we then 

performed our established two-stage machine learning pipeline as previously described in Finney et 

al. [8]. Briefly, we first analyzed all genes (>15,000) using PCA (Figure 6). Importantly, PCA allows 

us to reduce dimensionality and minimize potential information loss [56] while simultaneously 

revealing hidden patterns in high throughput transcriptomic data [57]. PCA was performed in R 

Studio v1.2.5033 (R v3.6.3) and visualized using ggplot. The top 1000 genes correlating with PC1 

and PC2 were identified and selected as potential biomarker gene candidates (Figure 6). The top 1000 

genes were then entered into STRING v11 [26, 58] for gene enrichment analysis and to identify 

interaction networks. We first performed unsupervised machine learning through k-means clustering 

to identify the presence of overlapping functional network clusters in the genes (Figure 6). Each k-

means cluster was then independently entered into STRING for network analyses (Figure 6). The 

following active interaction sources were used: experiments, databases, co-expression, neighborhood, 

and gene fusion. The minimum interaction score was set to 0.7 (high confidence). The clusters were 

then characterized by biological processes and cellular localization using Gene Ontology (GO) [59] 

and the central gene nodes in each cluster were selected. Central gene nodes were identified as those 

with the highest number of connections with other genes in the network, a method used to increase the 

likelihood of identifying biomarker candidates that are fundamental to biological processes [8].  
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Figure 6. Flow chart of the methodological pipeline. Abbreviations: PC: principal component, ND: 
neurodegenerative diseases.  

 

4.4. Supervised machine learning to identify the best predictors of AD 

 Once the central gene nodes from each k-means cluster were identified, we applied 

supervised machine learning (random forest) to determine which central gene nodes (features) were 

best able to distinguish AD patients from cognitively healthy controls. To do this, we used two novel 

AD datasets to train and test the models: GSE63061 and GSE63060. Both datasets, respectively, were 

split into training (70%) and testing (30%) datasets. The training datasets were used to perform model 

training, tuning, and validation. A 5-fold cross-validation repeated three times was used to improve 

model accuracy and identify the top performing gene biomarker predictors [60]. The final evaluation 

of our random forest models was done on withheld testing datasets. Performance indicators used to 

evaluate our models included sensitivity (correctly identifies AD patients) and precision (quality of 

positive AD prediction, i.e. number of AD patients / total number of predicted AD patients (true and 

false)). Using these metrics to determine the diagnostic utility of biomarker tests is particularly 

important because (a) it reduces the likelihood of producing a false negative outcome (someone who 

does have AD has been identified as being healthy) and (d) assesses the probability that a person with 
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a positive result indeed has AD [61]. We did, however, also report additional performance metrics 

including AUC (ability to distinguish between AD patients and cognitively healthy controls) and 

specificity (correctly identified healthy controls). Random forest modelling was performed in R 

Studio v1.2.5033 using libraries rpart, caret, and pROC.  

4.5. Feature selection to identify the genes that contribute to AD prediction  

 Within each of the best predictive models for the PC1 and PC2 clusters, respectively, we 

wanted to identify the genes that contributed the most to our models’ ability to predict AD cases. To 

do this, we performed RF-RFE and examined variable importance at the peak performance of each 

model (Figure 6). This method has previously been used to successfully identify important genes in 

transcriptomic data [62]. We then took the top eight important genes from each model to use as 

features in our neurodegenerative disease models (Figure 6).  

4.6. Supervised machine learning to identify if AD gene biomarkers are unique to AD or 

generalizable to other neurodegenerative diseases 

 To identify whether our AD blood-based gene biomarkers were specific to AD, we tested 

whether the top eight important genes from each of the PC1 and PC2 clusters, respectively, were 

predictive of PD and ALS. We first identified three additional datasets in the GEO database that used 

microarray to analyze whole blood from patients with PD (GSE6613 and GSE72267) and ALS 

(GSE112681). Importantly, we did identify datasets examining other dementias, including behavioral 

variant frontotemporal dementia, and there was a substantial class imbalance whereby the number of 

healthy controls significantly outweighed the number of patients. Our modelling methods are not 

possible with such imbalanced datasets, and these were therefore excluded from our analyses. These 

datasets were processed in the same way as the AD datasets described above in section 4.2.  

 We then used the eight top important genes from PC1 and PC2 clusters in AD in a random 

forest model (Figure 6). We first merged the two AD datasets (GSE63061 and GSE63060) into a 

single dataset using z-scores as we’ve done previously [8]. This merged dataset was then used as a 

training dataset to train, tune, and validate our models. A 5-fold cross-validation repeated three times 

was also used. We then used each of the three neurodegenerative disease datasets, respectively, to test 

these AD-trained models (Figure 6). We also did a second validation experiment where our random 

forest models were both trained and tested on each of the neurodegenerative disease datasets (Figure 

6). Each dataset was split into a 70% training, fine tuning, and validation dataset and a 30% withheld 

dataset for testing the models. As before, performance indicators used to evaluate our models included 

sensitivity (correctly identifies PD or ALS patients) and precision (quality of positive PD or ALS 

prediction, i.e. number of PD or ALS patients / total number of predicted PD or ALS patients (true and 

false)).  
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