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METHODS 

 

Michigan Medicine EHR system and biobank 

Three cohorts of Michigan Medicine (MM) patients were used in this study: 1) Primary 

Care Provider cohort (MM-PCP; N=61,849), 2) Heart Failure cohort (MM-HF; N=53,272), and 

3) Michigan Genomics Initiative cohort (MM-MGI; N=60,215) (Supplementary Figure 1). All 

individuals in the three cohorts underwent at least one surgical procedure within the MM 

healthcare system. The data were recorded between 2000 to 2022 in the Michigan Medicine 

EHR system, which includes both ICD-9 and ICD-10 diagnosis codes.  

The MM-PCP cohort includes patients i) with primary care providers within Michigan 

Medicine, ii) who had received an anesthetic, iii) whose most recent visit was in 2018 or later, 

and iv) who had at least five years of medical encounter history (difference between last and first 

encounter year greater or equal to five) within Michigan Medicine. Exclusion criteria for this 

cohort includes patients i) recruited in the Michigan Genomics Initiative and ii) predefined in the 

Heart Failure cohort to ensure that no samples overlap with datasets used to validate the clinical 

predictor. 

 The MM-HF cohort was defined by a previously validated heart failure phenotyping 

algorithm1. The phenotyping algorithm incorporated ICD diagnosis codes, medication history, 

cardiac imaging, and clinical notes in the form of free text to assign the disease outcome for each 

individual. Clinical expert adjudication was performed on 279 individuals to serve as the gold-

standard label for algorithm validation.  

The Michigan Genomics Initiative (MGI) is an EHR-linked biobank hosted at the 

University of Michigan with genotype data linked to EHR information to facilitate biomedical 

research. With both genetic and clinical data available for all individuals in MM-MGI, we were 



 3 

able to validate the prediction models using genetic and/or clinical information. The MM-MGI 

cohort used in this study is from data freeze 4 (release date: July 2021)2.  

The study cohorts were subset to individuals who self-reported as European American in 

the MM-HF and MM-MGI cohorts, to avoid having reduced performance of genetic predictors in 

non-white ancestries thereby biasing the model evaluation towards favoring clinical predictors. 

The MM-HF and MM-MGI cohorts were comprised of 90% and 86% European American 

individuals, respectively.  

We refer to MM-PCP cohort as the code embedding derivation set, MM-HF cohort 

excluding individuals in MM-MGI cohort as ClinRS weights derivation set, and the intersection 

of MM-MGI and MM-HF cohort as model validation set. The model validation set has no 

overlap with the code embedding and ClinRS weights derivation sets (Supplementary Figure 1). 

First, the code embedding derivation set was used to learn EHR code patterns and build medical 

code embeddings for downstream analysis. Patients with a rich medical history and active 

records within the system were included for code co-occurrence pattern learning in the code 

embedding derivation set. Next, the labels curated in the MM-HF cohort served as the outcome 

in the ClinRS weights derivation set to obtain the weights to calculate ClinRS for heart failure 

cases prediction. The ClinRS weights derivation set consisted of 7,120 individuals from MM-HF 

and excluded those from the MM-MGI. Last, the model validation set (independent from ClinRS 

weights derivation set) was used to assess the prediction ability of PRS and ClinRS. The model 

validation set included 20,279 participants, who were drawn from the overlapping populations of 

the MM-MGI and MM-HF cohorts. All patients in the model validation set were assigned a label 

for heart failure outcome using a phenotyping, fully genotyped to calculate PRS, and had EHR 

data available to generate ClinRS (Supplementary Figure 1).   
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Calculate Clinical Risk Score (ClinRS) 

Extraction of medical code embeddings using NLP 

 The first step to summarizing the EHR data using NLP was to convert a patient's EHR 

medical codes from all healthcare encounters to paragraphs, then concatenate the patient’s 

paragraphs of medical codes to create an article. After converting EHR data to an article, we 

were able to derive the co-occurrence patterns of each pair of medical codes. We extracted the 

semantic meaning of each code into numeric vector representations (medical code embeddings) 

that captured the clinically relevant information of each code. See supplementary materials - 

curating medical code embedding section in below for detailed explanation on the NLP approach 

to generate vector representation of medical codes.  

Evaluation of NLP derived medical code embeddings and parameter tuning 

The algorithm for obtaining the medical code embeddings as described above has two 

key tuning parameters: time window t and embedding dimension d (i.e., the number of features/ 

elements in a code embedding). The principle used in parameter tuning is to optimize the clinical 

meaningfulness of the medical code embedding. The code embeddings should capture similarity 

of the codes and thus be able to identify whether two specific codes describe the same overall 

medical concept (i.e., grouping of ICD codes). 

To select the optimal time window t and embedding dimension d for the medical code 

embeddings, we developed a set of true labels for ICD code grouping using an expert curated 

ontology named phenome-wide association study code (phecode)3. Next, we evaluated whether 

code pairs that are mapped to the same phecode have larger cosine similarity (i.e. the cosine 

value of the angle between the corresponding medical code embedding vector pairs) than 

randomly selected pairs. The cosine similarity is a distance metric measuring how close the two 

codes are alike in terms of their concepts and meanings. It ranges from -1 to 1, with high cosine 
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values representing that the selected pair of two codes have more similar semantic meaning and 

utilization context. These evaluations aid in the search for the most ‘clinically meaningful’ yet 

efficient version of medical code embedding with the smallest necessary dimension.  

In summary, our goal was to find the optimal time window and embedding dimension 

that result in medical code embeddings that accurately capture the relationships between codes 

and represent the most clinically meaningful grouping of ICD codes. 

In this analysis, phecodes are rolled up to the integer level4. For instance, ICD-9 code 

428.2 (systolic heart failure) and 428.3 (diastolic heart failure) are mapped to the phecode 428.3 

(heart failure with reduced EF) and 428.4 (heart failure with preserved EF), respectively. These 

two codes are then rolled up into to the same phecode group of 428. Moreover, both ICD-9 and 

ICD-10 codes can be mapped to the same phecode. For example, ICD-9 code 428.1 (left heart 

failure) and ICD-10 code I50.1 (left ventricular failure) are both mapped to phecode 428.2 (heart 

failure) and further rolled up to the integer 428.  

To search for the most clinically meaningful medical code embeddings, we performed a 

classification task using phecode label and cosine scores. The classification label was the binary 

indicator of whether the two codes shared the same phecode. The classification score was the 

cosine distance score calculated between vector representations for two codes. This classification 

task showed whether a pair of codes mapped to the same phecode have a higher cosine similarity 

(similar semantic representations). The classification results were evaluated using Area Under 

the Receiver Operating Characteristics (AUC). To distinguish the AUC used in the subsequent 

evaluation of the heart failure prediction model, we refer to the AUC aiding grid search for 

optimal NLP derived medical code embeddings based on existing clinical concept ontology as 

concept-AUC. Concept-AUC is used throughout the remainder of this article to assess whether 
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the medical code embeddings derived from NLP is clinically meaningful, in the sense that it can 

aid identifying whether arbitrary pairs of codes are describing the same concept or belonging to 

the same general group. The combination of time window t and embedding dimension d that 

achieved the highest concept-AUC was selected, the corresponding code embeddings were 

generated accordingly. 

In the grid search for optimal time windows t and embedding dimension d combination, 

cosine similarity for 430,579,185 pairs of codes among 29,346 unique codes was calculated for 

each time window and embedding dimension combination. Ten t time windows (1, 2, 7, 10, 14, 

20, 30, 40, 50, and 60 days) and twelve d embedding dimensions (10, 30, 50, 100, 150, 200, 250, 

300, 350, 400, 450, and 500) were evaluated. This results in a total of 120 concept-AUC 

calculated to evaluate the clinical applicability of NLP-derived code concepts from EHR data.  

Calculation of patient-level latent phenotypes 

To create latent phenotypes for each patient, we used the medical code embeddings 

derived from the MM-PCP cohort curated from the previous step and applied this information to 

the diagnosis codes documented in the medical records of patients in the MM-HF cohort. 

Specifically, we summed up medical code embeddings corresponding to all codes present within 

a patient’s medical record.  

In detail, we took the product of the patient-level EHR record D, a dataset recorded 

whether patients had the diagnosis code in the past, and code embedding C, a semantic vector 

representation of the EHR codes. D is a n by p matrix, where n is the number of patients and p is 

the number of unique diagnosis codes. C is a p by k matrix, where p is the number of unique 

diagnosis codes and k is the embedding dimension selected from the code embedding curation – 

parameter tuning step. The final product of D and C will be the patient-level latent phenotypes 
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with dimension of n by k. See Supplementary Figure 7 for illustration. These latent phenotypes 

summarize the information of a patient's medical diagnosis history. 

Time point specific latent phenotypes 

We sought to evaluate how far in advance we could predict heart failure and avoid label 

leakage. The rationale of avoiding label leakage is to not use nonexistent information in the 

prediction period to predict outcome, which could lead to overestimating the model performance. 

For example, we would like to avoid using the disease treatment or procedure information that is 

only available after disease diagnosis. To do this, we removed all ICD codes a year prior to the 

heart failure diagnosis date, then calculated the latent phenotypes. We repeated this procedure by 

increasing the exclusion time for ICD codes, starting from two years prior to disease diagnosis 

and then increasing the exclusion time in one-year increments up to ten years prior to disease 

diagnosis. This resulted in the generation of ten sets of latent phenotypes, each with a different 

cutoff time for medical history removal. Patients with no medical history recorded within the 

healthcare system prior to the cutoff time point were excluded from the analysis. See 

Supplementary Table 1 for sample size in each time point. 

Supervised training for ClinRS using LASSO 

To summarize the multi-dimensional patient-level latent phenotypes into a single risk 

score, we applied the Least Absolute Shrinkage and Selection Operator (LASSO) for feature 

selection with 10-fold validation for shrinkage parameter tuning5. The LASSO leverages the L1 

penalty on the regression coefficients to eliminate non-important variables, avoid overfitting, and 

achieve better prediction. Next, the coefficients yielded from the LASSO model were used as 

weights (effect sizes) to calculate a weighted sum of patients’ clinical risk. In the ClinRS weights 

derivation set (individuals in MM-HF excluding MM-MGI), the patients' latent phenotypes were 
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calculated using EHR records one year prior to heart failure diagnosis (Supplementary Figure 1). 

The heart failure outcome was regressed on 350 latent phenotypes and adjusted for age, sex, and 

healthcare utilization using logistic regression with L1 regularization. Three patient 

characteristics known to be strong predictors of the outcome (age, sex, and healthcare utilization) 

were forced in the model with no shrinkage. Patients’ healthcare utilizations were summarized 

by the number of months of encounters recorded in the EHR. 

Calculate ClinRS for patients in model validation set 

To validate the prediction accuracy of ClinRS, we applied the ClinRS weights obtained 

from the ClinRS weights derivation set to an independent model validation set to summarize the 

entire EHR diagnosis records into one score (Supplementary Figure 1). The score was further 

used in the heart failure prediction model to predict patients’ disease outcome in the future. For 

each participant in the model validation set, ten ClinRS were calculated using time point specific 

latent phenotypes from one year up to ten years prior to disease diagnosis. Next, we performed 

inverse normalization to convert the ClinRS score into standard normal distribution. 

 

Curating medical code embedding 

The medical code embeddings were obtained through an adapted NLP method that 

learned vector representations of ICD codes based on their co-occurrence patterns in the EHR6. 

More specifically, the medical code embeddings were extracted by performing truncated singular 

value decomposition (SVD) on the shifted positive pointwise mutual information (SPPMI) 

matrix, which is derived from codes’ co-occurrence matrix. The pipeline we developed to extract 

medical code embedding was based on Hong et al.7 and it is publicly available at 

https://github.com/The-Shi-Lab/CodeEmbedding. 
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Co-occurrence Matrix 

A co-occurrence matrix is defined with a selected time window t, within which the co-

occurrence instances of codes are counted. Since there are 29,346 codes, the dimension of the co-

occurrence matrix is 29,346-by-29,346, with each entry counting the number of co-occurrence 

instances in the EHR between the corresponding pair of codes. By this definition, the co-

occurrence matrix is a symmetric matrix. Assuming that the selected time window t is co-

occurred within 7 days, for each code (which we denote by 𝐶) and each patient, we first identify 

the dates when the code was assigned to the patient. Then, for each of these identified dates, we 

scan the EHR of the patient within the day and the following 6 days; each code assignment found 

is counted as an instance of co-occurrence with code 𝐶. In such a fashion, the co-occurrence 

matrix is obtained by aggregating the co-occurrence instances over all patients and all codes.  

Calculation of medical code embedding 

The medical code embeddings were obtained through dimension reduction of the SPPMI 

matrix, which is derived from the co-occurrence matrix, which we denote by 𝐶𝐶. Specifically, 

the SPPMI matrix share the size of 𝐶𝐶 which is 29,346-by-29,346 and for each code pair 𝐶1, 𝐶2, 

                          𝑆𝑃𝑃𝑀𝐼(𝐶1, 𝐶2) = 𝑚𝑎𝑥{𝑙𝑜𝑔
𝐶𝐶(𝐶1,𝐶2)

𝐶𝐶(𝐶1,⋅)𝐶𝐶(𝐶2,⋅)
− 𝑙𝑜𝑔(𝑘),0} 

where 𝐶𝐶(𝐶1,⋅) represents the row sum of 𝐶𝐶 on the row corresponding to 𝐶1. The tuning 

parameter, negative sample 𝑘 was set to 10 based on results shown in previous studies8–10. Given 

a SPPMI matrix and a desired semantic vector representation (SEV) dimension 𝑑, the SEVs are 

obtained through the truncated singular value decomposition of the SPPMI matrix, which we 

denote by 𝑈𝑑𝑑𝑖𝑎𝑔(𝜎1,⋯ , 𝜎𝑑)𝑈𝑑
𝑇, where 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑑 are the 𝑑 largest singular values of 

the SPPMI matrix. Specifically, the 𝑑 SEVs are the columns of 𝑈𝑑𝑑𝑖𝑎𝑔(√𝜎1,⋯ , √𝜎𝑑), which 

are all vectors with 29,346 entries (one for each ICD code). 
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Sensitivity analysis removing circulatory system diagnosis codes 

To further verify the validity of ClinRS, additional analyses were conducted to examine 

the robustness of the co-occurrence patterns captured by the unsupervised NLP algorithm. We 

created a ClinRS without circulatory system information (ClinRS-NoCirc) by excluding ICD 

diagnosis codes belonging to ICD-9 Seventh Chapter (390-459) and ICD-10 Chapter IX (I00-

I99): Diseases of the Circulatory System. The ClinRS without circulatory system was further 

used in model prediction to evaluate the ability of the proposed method. The goal of the 

sensitivity analysis was to predict disease outcome (heart failure) without directly associated 

diagnosis information (circulatory system diagnosis codes). We excluded 1,340 circulatory 

system diagnosis codes (459 from ICD-9 and 881 from ICD-10) and used the rest of the 28,006 

codes to create patient-level latent phenotypes, and applied the newly derived latent phenotypes 

with ClinRS weights derived previously to generate ClinRS-NoCirc. We demonstrated that using 

pre-trained co-occurrence patterns from an independent dataset could be valuable for disease 

prediction and the co-occurrence patterns aided capturing disease risks through indirect 

associations. 
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RESULTS 

 

NLP extracted medical code embeddings are clinically meaningful 

We discovered two main findings: 1) smaller time window size t and 2) inclusion of more 

features d in a code embedding yielded higher accuracy on identifying code pairs in the same 

phecode group. Supplementary Figure 2 showed that holding constant embedding dimension d 

while varying time window size t, the highest concept-AUC was consistently found from co-

occurrence matrices constructed based on codes that appeared on the same day (within 1 day). 

The accuracy attenuated linearly when the window size increased. For example, concept-AUC 

calculated from embedding dimension of 350 was the highest for codes co-occurred on the same 

day (1 day) with concept-AUC of 0.78, decreased to 0.76 for codes co-occurred within 1 week (7 

days), and dropped to the lowest of 0.73 for codes that co-occurred within 2 months (60 days). 

Next, we evaluated the concept-AUC variation across different numbers of embedding 

dimension d in a code embedding. In general, the higher the embedding dimension d, the higher 

the concept-AUC was observed. The optimal embedding dimension found in this study using 

Michigan Medicine EHR data was d = 350 (Supplementary Figure 2). The medical code 

embeddings generated from time window t = 1 day with embedding dimension d = 350 yielded 

the highest concept-AUC of 0.78 in this study (Supplementary Figure 2). 

Sensitivity analysis on removing circulatory system diagnosis code  

To examine the robustness of ClinRS and address concerns regarding overfitting, we 

conducted a sensitivity analysis by removing all circulatory system diagnosis codes to create 

ClinRS-NoCirc. In Supplementary Figure 6, we presented the model performances of using 

ClinRS-NoCirc as the clinical risk predictor and compared to the ClinRS model. The results 
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were largely consistent with and without removing circulatory system codes, which 

demonstrated the success of our efforts to build a risk score that leveraged the high-dimensional 

EHR records and summarized underlying patterns to reveal disease associations. Notably, the 

models using ClinRS-NoCirc for predicting future heart failure events yielded significantly 

higher accuracy than baseline models, up to six years in advance of disease diagnosis. We 

observed an AUC of 0.77 (0.75-0.80) from ClinRS-NoCirc model at six years prior to disease 

diagnosis, which was significantly higher than baseline model at six years in advance of heart 

failure diagnosis (AUC: 0.72 [0.69-0.74]) (see Supplementary Figure 6 and Supplementary Table 

1). Although the results derived from ClinRS-NoCirc could not predict the outcome as many 

years in advance as the ClinRS model, the additive power of integrating genetic and clinical 

information in disease risk prediction remains evident through ClinRS-NoCirc. By including 

both PRS and ClinRS-NoCirc in the heart failure prediction model, we were still able to 

distinguish patients with high risk of heart failure a decade in advance of the disease diagnosis. 

The heart failure prediction model with PRS and ClinRS-NoCirs predictors showed a 

significantly higher AUC of 0.78 (0.76-0.81) at ten years prior to heart failure diagnosis, 

compared to the baseline model with AUC of 0.72 (0.69-0.75). 
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TABLES and FIGURES 

 

 

 

Supplementary Figure 1. Three cohorts within Michigan Medicine (MM) were used in this analysis: i) Primary Care Provider (MM-

PCP), ii) Heart Failure (MM-HF), and iii) Michigan Genomics Initiative (MM-MGI). MM-PCP cohort with 61,849 individuals was 

used to build medical code embeddings. Subset of MM-HF (N=7,120), participants of European descent and not in MM-MGI, was 

used to derive the weights (effect sizes) of clinical risk score (ClinRS). Subset of MM-MGI (N=20,279), patients fully genotyped and 

disease outcome was predefined using Mathis et al. phenotyping algorithm1 in MM-HF, was used to validate heart failure prediction 

accuracy using polygenic risk score and clinical risk score.   
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Supplementary Figure 2. Heatmap of concept-AUC across medical code embeddings derived from using 10 time windows and 12 

embedding dimensions to summarize a medical code. Concept Area Under the Receiver Operating Characteristics (concept-AUC) 

summarized how well medical code embeddings generated from the adapted natural language (NLP) processing method capture the 

clinical meaning of each code. Medical code embedding built on code co-occurred within 1 day with embedding dimension of 350 

yielded the highest concept-AUC.  
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Supplementary Figure 3. Heatmap of cosine similarity score between a pair of codes within ICD-9 140 to 239 (Neoplasms) and 

sorted by its order. Every dot in this plot represents a pair of codes and its cosine similarity score, with the darker the red representing 

the closer the distance (more similar) between these 2 codes. 
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Supplementary Figure 4. Scatter plot and boxplot of patients’ polygenic risk score (PRS) and 

clinical risk score (ClinRS) at one year prior to heart failure diagnosis, colored by disease status. 

Dotted gray lines indicate the cutoff of high and low risk of corresponding risk predictors. 

Percentage in each quadrant indicates the percentage of heart failure cases among patients 

classified in the corresponding risk group. 
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Supplementary Figure 5. Manhattan plot of clinical risk score (ClinRS) weights for each ICD-9 diagnosis code by disease class. X-

axis indicates the exponential of the absolute weights in ClinRS. The left panel showed the weights of the protective (negative 

weights; decreased risk) factor and the right panel showed the weights of the risk (positive weights; increased risk) factor.  
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Supplementary Figure 6. Forest plot comparing models accuracy of predicting heart failure at one to ten years prior to disease 

diagnosis in the sensitivity analysis. Six models were compared with each time point: baseline (age and sex), PRS (polygenic risk 

score), ClinRS (clinical risk score), ClinRS-NoCirc, PRS+ClinRS, and PRS+ClinRS-NoCirc. ClinRS-NoCirc was calculated by 

removing circulatory system diagnosis code in patients’ medical records to validate the validity of ClinRS generated using the adapted 

natural language processing method. Numbers at the bottom of the plot indicate the sample size for each time point. Results showed 

that ClinRS-NoCirc can predict heart failure outcomes six years in advance, shorter than using ClinRS as a predictor. Adding both 

PRS and ClinRS-NoCirc in the model, the model accuracy is comparable to PRS+ClinRS model, which predicts disease ten years in 

advance. 
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Supplementary Figure 7. Illustration of creating latent phenotype from individual level electronic health records. 
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Supplementary Table 1. Sample size of heart failure cases and controls included in analysis for one to ten years prior to disease 

diagnosis.  

Ten-fold cross-validated Area Under the Receiver Operating Characteristics (AUC) of six models predicting heart failure outcome 

across 10 time points. Model performances were calculated for baseline (age and sex) model and 5 models with risk score(s) added: i) 

polygenic risk score (PRS), ii) clinical risk score (ClinRS), iii) PRS+ClinRS, iv) clinical risk score calculated without circulatory 

system diagnosis code (ClinRS-NoCirc), and v) PRS+ClinRS-NoCirc. 
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Supplementary Table 2. Top 20 protective and risk factors yielded from clinical risk score (ClinRS). 
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