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METHODS

Michigan Medicine EHR system and biobank

Three cohorts of Michigan Medicine (MM) patients were used in this study: 1) Primary
Care Provider cohort (MM-PCP; N=61,849), 2) Heart Failure cohort (MM-HF; N=53,272), and
3) Michigan Genomics Initiative cohort (MM-MGI; N=60,215) (Supplementary Figure 1). All
individuals in the three cohorts underwent at least one surgical procedure within the MM
healthcare system. The data were recorded between 2000 to 2022 in the Michigan Medicine
EHR system, which includes both ICD-9 and ICD-10 diagnosis codes.

The MM-PCP cohort includes patients i) with primary care providers within Michigan
Medicine, ii) who had received an anesthetic, iii) whose most recent visit was in 2018 or later,
and iv) who had at least five years of medical encounter history (difference between last and first
encounter year greater or equal to five) within Michigan Medicine. Exclusion criteria for this
cohort includes patients i) recruited in the Michigan Genomics Initiative and ii) predefined in the
Heart Failure cohort to ensure that no samples overlap with datasets used to validate the clinical
predictor.

The MM-HF cohort was defined by a previously validated heart failure phenotyping
algorithm?. The phenotyping algorithm incorporated ICD diagnosis codes, medication history,
cardiac imaging, and clinical notes in the form of free text to assign the disease outcome for each
individual. Clinical expert adjudication was performed on 279 individuals to serve as the gold-
standard label for algorithm validation.

The Michigan Genomics Initiative (MGI) is an EHR-linked biobank hosted at the
University of Michigan with genotype data linked to EHR information to facilitate biomedical

research. With both genetic and clinical data available for all individuals in MM-MGI, we were



able to validate the prediction models using genetic and/or clinical information. The MM-MGI
cohort used in this study is from data freeze 4 (release date: July 2021)2.

The study cohorts were subset to individuals who self-reported as European American in
the MM-HF and MM-MGiI cohorts, to avoid having reduced performance of genetic predictors in
non-white ancestries thereby biasing the model evaluation towards favoring clinical predictors.
The MM-HF and MM-MGI cohorts were comprised of 90% and 86% European American
individuals, respectively.

We refer to MM-PCP cohort as the code embedding derivation set, MM-HF cohort
excluding individuals in MM-MGI cohort as ClinRS weights derivation set, and the intersection
of MM-MGI and MM-HF cohort as model validation set. The model validation set has no
overlap with the code embedding and ClinRS weights derivation sets (Supplementary Figure 1).
First, the code embedding derivation set was used to learn EHR code patterns and build medical
code embeddings for downstream analysis. Patients with a rich medical history and active
records within the system were included for code co-occurrence pattern learning in the code
embedding derivation set. Next, the labels curated in the MM-HF cohort served as the outcome
in the ClinRS weights derivation set to obtain the weights to calculate ClinRS for heart failure
cases prediction. The ClinRS weights derivation set consisted of 7,120 individuals from MM-HF
and excluded those from the MM-MGI. Last, the model validation set (independent from CIlinRS
weights derivation set) was used to assess the prediction ability of PRS and ClinRS. The model
validation set included 20,279 participants, who were drawn from the overlapping populations of
the MM-MGI and MM-HF cohorts. All patients in the model validation set were assigned a label
for heart failure outcome using a phenotyping, fully genotyped to calculate PRS, and had EHR

data available to generate ClinRS (Supplementary Figure 1).



Calculate Clinical Risk Score (ClinRS)

Extraction of medical code embeddings using NLP

The first step to summarizing the EHR data using NLP was to convert a patient's EHR
medical codes from all healthcare encounters to paragraphs, then concatenate the patient’s
paragraphs of medical codes to create an article. After converting EHR data to an article, we
were able to derive the co-occurrence patterns of each pair of medical codes. We extracted the
semantic meaning of each code into numeric vector representations (medical code embeddings)
that captured the clinically relevant information of each code. See supplementary materials -
curating medical code embedding section in below for detailed explanation on the NLP approach
to generate vector representation of medical codes.

Evaluation of NLP derived medical code embeddings and parameter tuning

The algorithm for obtaining the medical code embeddings as described above has two
key tuning parameters: time window t and embedding dimension d (i.e., the number of features/
elements in a code embedding). The principle used in parameter tuning is to optimize the clinical
meaningfulness of the medical code embedding. The code embeddings should capture similarity
of the codes and thus be able to identify whether two specific codes describe the same overall
medical concept (i.e., grouping of ICD codes).

To select the optimal time window t and embedding dimension d for the medical code
embeddings, we developed a set of true labels for ICD code grouping using an expert curated
ontology named phenome-wide association study code (phecode)®. Next, we evaluated whether
code pairs that are mapped to the same phecode have larger cosine similarity (i.e. the cosine
value of the angle between the corresponding medical code embedding vector pairs) than
randomly selected pairs. The cosine similarity is a distance metric measuring how close the two

codes are alike in terms of their concepts and meanings. It ranges from -1 to 1, with high cosine



values representing that the selected pair of two codes have more similar semantic meaning and
utilization context. These evaluations aid in the search for the most ‘clinically meaningful’ yet
efficient version of medical code embedding with the smallest necessary dimension.

In summary, our goal was to find the optimal time window and embedding dimension
that result in medical code embeddings that accurately capture the relationships between codes
and represent the most clinically meaningful grouping of ICD codes.

In this analysis, phecodes are rolled up to the integer level®. For instance, ICD-9 code
428.2 (systolic heart failure) and 428.3 (diastolic heart failure) are mapped to the phecode 428.3
(heart failure with reduced EF) and 428.4 (heart failure with preserved EF), respectively. These
two codes are then rolled up into to the same phecode group of 428. Moreover, both ICD-9 and
ICD-10 codes can be mapped to the same phecode. For example, ICD-9 code 428.1 (left heart
failure) and ICD-10 code 150.1 (left ventricular failure) are both mapped to phecode 428.2 (heart
failure) and further rolled up to the integer 428.

To search for the most clinically meaningful medical code embeddings, we performed a
classification task using phecode label and cosine scores. The classification label was the binary
indicator of whether the two codes shared the same phecode. The classification score was the
cosine distance score calculated between vector representations for two codes. This classification
task showed whether a pair of codes mapped to the same phecode have a higher cosine similarity
(similar semantic representations). The classification results were evaluated using Area Under
the Receiver Operating Characteristics (AUC). To distinguish the AUC used in the subsequent
evaluation of the heart failure prediction model, we refer to the AUC aiding grid search for
optimal NLP derived medical code embeddings based on existing clinical concept ontology as

concept-AUC. Concept-AUC is used throughout the remainder of this article to assess whether



the medical code embeddings derived from NLP is clinically meaningful, in the sense that it can
aid identifying whether arbitrary pairs of codes are describing the same concept or belonging to
the same general group. The combination of time window t and embedding dimension d that
achieved the highest concept-AUC was selected, the corresponding code embeddings were
generated accordingly.

In the grid search for optimal time windows t and embedding dimension d combination,
cosine similarity for 430,579,185 pairs of codes among 29,346 unique codes was calculated for
each time window and embedding dimension combination. Ten t time windows (1, 2, 7, 10, 14,
20, 30, 40, 50, and 60 days) and twelve d embedding dimensions (10, 30, 50, 100, 150, 200, 250,
300, 350, 400, 450, and 500) were evaluated. This results in a total of 120 concept-AUC
calculated to evaluate the clinical applicability of NLP-derived code concepts from EHR data.
Calculation of patient-level latent phenotypes

To create latent phenotypes for each patient, we used the medical code embeddings
derived from the MM-PCP cohort curated from the previous step and applied this information to
the diagnosis codes documented in the medical records of patients in the MM-HF cohort.
Specifically, we summed up medical code embeddings corresponding to all codes present within
a patient’s medical record.

In detail, we took the product of the patient-level EHR record D, a dataset recorded
whether patients had the diagnosis code in the past, and code embedding C, a semantic vector
representation of the EHR codes. D is a n by p matrix, where n is the number of patients and p is
the number of unique diagnosis codes. C is a p by k matrix, where p is the number of unique
diagnosis codes and k is the embedding dimension selected from the code embedding curation —

parameter tuning step. The final product of D and C will be the patient-level latent phenotypes



with dimension of n by k. See Supplementary Figure 7 for illustration. These latent phenotypes
summarize the information of a patient's medical diagnosis history.
Time point specific latent phenotypes

We sought to evaluate how far in advance we could predict heart failure and avoid label
leakage. The rationale of avoiding label leakage is to not use nonexistent information in the
prediction period to predict outcome, which could lead to overestimating the model performance.
For example, we would like to avoid using the disease treatment or procedure information that is
only available after disease diagnosis. To do this, we removed all ICD codes a year prior to the
heart failure diagnosis date, then calculated the latent phenotypes. We repeated this procedure by
increasing the exclusion time for ICD codes, starting from two years prior to disease diagnosis
and then increasing the exclusion time in one-year increments up to ten years prior to disease
diagnosis. This resulted in the generation of ten sets of latent phenotypes, each with a different
cutoff time for medical history removal. Patients with no medical history recorded within the
healthcare system prior to the cutoff time point were excluded from the analysis. See
Supplementary Table 1 for sample size in each time point.
Supervised training for ClinRS using LASSO

To summarize the multi-dimensional patient-level latent phenotypes into a single risk
score, we applied the Least Absolute Shrinkage and Selection Operator (LASSO) for feature
selection with 10-fold validation for shrinkage parameter tuning®. The LASSO leverages the L1
penalty on the regression coefficients to eliminate non-important variables, avoid overfitting, and
achieve better prediction. Next, the coefficients yielded from the LASSO model were used as
weights (effect sizes) to calculate a weighted sum of patients’ clinical risk. In the ClinRS weights

derivation set (individuals in MM-HF excluding MM-MGI), the patients' latent phenotypes were



calculated using EHR records one year prior to heart failure diagnosis (Supplementary Figure 1).
The heart failure outcome was regressed on 350 latent phenotypes and adjusted for age, sex, and
healthcare utilization using logistic regression with L1 regularization. Three patient
characteristics known to be strong predictors of the outcome (age, sex, and healthcare utilization)
were forced in the model with no shrinkage. Patients’ healthcare utilizations were summarized
by the number of months of encounters recorded in the EHR.
Calculate CIlinRS for patients in model validation set

To validate the prediction accuracy of ClinRS, we applied the ClinRS weights obtained
from the ClinRS weights derivation set to an independent model validation set to summarize the
entire EHR diagnosis records into one score (Supplementary Figure 1). The score was further
used in the heart failure prediction model to predict patients’ disease outcome in the future. For
each participant in the model validation set, ten ClinRS were calculated using time point specific
latent phenotypes from one year up to ten years prior to disease diagnosis. Next, we performed

inverse normalization to convert the ClinRS score into standard normal distribution.

Curating medical code embedding

The medical code embeddings were obtained through an adapted NLP method that
learned vector representations of ICD codes based on their co-occurrence patterns in the EHRS,
More specifically, the medical code embeddings were extracted by performing truncated singular
value decomposition (SVD) on the shifted positive pointwise mutual information (SPPMI)
matrix, which is derived from codes’ co-occurrence matrix. The pipeline we developed to extract
medical code embedding was based on Hong et al.” and it is publicly available at

https://github.com/The-Shi-Lab/CodeEmbedding.



Co-occurrence Matrix

A co-occurrence matrix is defined with a selected time window t, within which the co-
occurrence instances of codes are counted. Since there are 29,346 codes, the dimension of the co-
occurrence matrix is 29,346-by-29,346, with each entry counting the number of co-occurrence
instances in the EHR between the corresponding pair of codes. By this definition, the co-
occurrence matrix is a symmetric matrix. Assuming that the selected time window t is co-
occurred within 7 days, for each code (which we denote by C) and each patient, we first identify
the dates when the code was assigned to the patient. Then, for each of these identified dates, we
scan the EHR of the patient within the day and the following 6 days; each code assignment found
is counted as an instance of co-occurrence with code C. In such a fashion, the co-occurrence
matrix is obtained by aggregating the co-occurrence instances over all patients and all codes.
Calculation of medical code embedding

The medical code embeddings were obtained through dimension reduction of the SPPMI
matrix, which is derived from the co-occurrence matrix, which we denote by CC. Specifically,

the SPPMI matrix share the size of CC which is 29,346-by-29,346 and for each code pair C;, C,,

CC(C4,C:
SPPMI(Cy,C,) = max{logm — log(k),0}

where CC(C,,) represents the row sum of CC on the row corresponding to C;. The tuning
parameter, negative sample k was set to 10 based on results shown in previous studies®1°. Given
a SPPMI matrix and a desired semantic vector representation (SEV) dimension d, the SEVs are
obtained through the truncated singular value decomposition of the SPPMI matrix, which we
denote by U,diag(oy,--,04)U,", where o, > o, > -+ > g, are the d largest singular values of
the SPPMI matrix. Specifically, the d SEVs are the columns of U,diag(\/oq, -+, \/a_d), which

are all vectors with 29,346 entries (one for each ICD code).



Sensitivity analysis removing circulatory system diagnosis codes

To further verify the validity of ClinRS, additional analyses were conducted to examine
the robustness of the co-occurrence patterns captured by the unsupervised NLP algorithm. We
created a ClinRS without circulatory system information (ClinRS-NoCirc) by excluding ICD
diagnosis codes belonging to ICD-9 Seventh Chapter (390-459) and ICD-10 Chapter IX (100-
199): Diseases of the Circulatory System. The ClinRS without circulatory system was further
used in model prediction to evaluate the ability of the proposed method. The goal of the
sensitivity analysis was to predict disease outcome (heart failure) without directly associated
diagnosis information (circulatory system diagnosis codes). We excluded 1,340 circulatory
system diagnosis codes (459 from ICD-9 and 881 from ICD-10) and used the rest of the 28,006
codes to create patient-level latent phenotypes, and applied the newly derived latent phenotypes
with ClinRS weights derived previously to generate ClinRS-NoCirc. We demonstrated that using
pre-trained co-occurrence patterns from an independent dataset could be valuable for disease
prediction and the co-occurrence patterns aided capturing disease risks through indirect

associations.
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RESULTS

NLP extracted medical code embeddings are clinically meaningful

We discovered two main findings: 1) smaller time window size t and 2) inclusion of more
features d in a code embedding yielded higher accuracy on identifying code pairs in the same
phecode group. Supplementary Figure 2 showed that holding constant embedding dimension d
while varying time window size t, the highest concept-AUC was consistently found from co-
occurrence matrices constructed based on codes that appeared on the same day (within 1 day).
The accuracy attenuated linearly when the window size increased. For example, concept-AUC
calculated from embedding dimension of 350 was the highest for codes co-occurred on the same
day (1 day) with concept-AUC of 0.78, decreased to 0.76 for codes co-occurred within 1 week (7
days), and dropped to the lowest of 0.73 for codes that co-occurred within 2 months (60 days).

Next, we evaluated the concept-AUC variation across different numbers of embedding
dimension d in a code embedding. In general, the higher the embedding dimension d, the higher
the concept-AUC was observed. The optimal embedding dimension found in this study using
Michigan Medicine EHR data was d = 350 (Supplementary Figure 2). The medical code
embeddings generated from time window t = 1 day with embedding dimension d = 350 yielded

the highest concept-AUC of 0.78 in this study (Supplementary Figure 2).

Sensitivity analysis on removing circulatory system diagnosis code

To examine the robustness of ClinRS and address concerns regarding overfitting, we
conducted a sensitivity analysis by removing all circulatory system diagnosis codes to create
ClinRS-NoCirc. In Supplementary Figure 6, we presented the model performances of using

ClinRS-NoCirc as the clinical risk predictor and compared to the ClinRS model. The results

11



were largely consistent with and without removing circulatory system codes, which
demonstrated the success of our efforts to build a risk score that leveraged the high-dimensional
EHR records and summarized underlying patterns to reveal disease associations. Notably, the
models using ClinRS-NoCirc for predicting future heart failure events yielded significantly
higher accuracy than baseline models, up to six years in advance of disease diagnosis. We
observed an AUC of 0.77 (0.75-0.80) from ClinRS-NoCirc model at six years prior to disease
diagnosis, which was significantly higher than baseline model at six years in advance of heart
failure diagnosis (AUC: 0.72 [0.69-0.74]) (see Supplementary Figure 6 and Supplementary Table
1). Although the results derived from ClinRS-NoCirc could not predict the outcome as many
years in advance as the ClinRS model, the additive power of integrating genetic and clinical
information in disease risk prediction remains evident through ClinRS-NoCirc. By including
both PRS and ClinRS-NoCirc in the heart failure prediction model, we were still able to
distinguish patients with high risk of heart failure a decade in advance of the disease diagnosis.
The heart failure prediction model with PRS and ClinRS-NoCirs predictors showed a
significantly higher AUC of 0.78 (0.76-0.81) at ten years prior to heart failure diagnosis,

compared to the baseline model with AUC of 0.72 (0.69-0.75).
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TABLES and FIGURES

PCP
*  (n=62K)
> (n=53K)

Michigan Medicine

Surgical Patients
(n=60K)

Rich medical history
Recent visit since 2018 —

>5 years med hx

Phenotyping algorithm
defined cohort —
(Mathis et al., 2020)

EHR linked biobank
(genotype data)

Derivation set (N=61,849)
Medical code embedding

Derivation set (n=7,120)
ClinRS weights

Validation set (n=20,279)
Integrate PRS & ClinRS
(10-fold cross-validation)

Supplementary Figure 1. Three cohorts within Michigan Medicine (MM) were used in this analysis: i) Primary Care Provider (MM-
PCP), ii) Heart Failure (MM-HF), and iii) Michigan Genomics Initiative (MM-MGI). MM-PCP cohort with 61,849 individuals was
used to build medical code embeddings. Subset of MM-HF (N=7,120), participants of European descent and not in MM-MGI, was
used to derive the weights (effect sizes) of clinical risk score (ClinRS). Subset of MM-MGI (N=20,279), patients fully genotyped and
disease outcome was predefined using Mathis et al. phenotyping algorithm® in MM-HF, was used to validate heart failure prediction
accuracy using polygenic risk score and clinical risk score.
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Supplementary Figure 2. Heatmap of concept-AUC across medical code embeddings derived from using 10 time windows and 12
embedding dimensions to summarize a medical code. Concept Area Under the Receiver Operating Characteristics (concept-AUC)
summarized how well medical code embeddings generated from the adapted natural language (NLP) processing method capture the
clinical meaning of each code. Medical code embedding built on code co-occurred within 1 day with embedding dimension of 350
yielded the highest concept-AUC.
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Model Accuracy Comparisons in Heart Failure Prediction
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Supplementary Figure 6. Forest plot comparing models accuracy of predicting heart failure at one to ten years prior to disease
diagnosis in the sensitivity analysis. Six models were compared with each time point: baseline (age and sex), PRS (polygenic risk
score), ClinRS (clinical risk score), ClinRS-NoCirc, PRS+CIinRS, and PRS+CIlinRS-NoCirc. ClinRS-NoCirc was calculated by
removing circulatory system diagnosis code in patients’ medical records to validate the validity of ClinRS generated using the adapted
natural language processing method. Numbers at the bottom of the plot indicate the sample size for each time point. Results showed
that ClinRS-NoCirc can predict heart failure outcomes six years in advance, shorter than using ClinRS as a predictor. Adding both
PRS and ClinRS-NoCirc in the model, the model accuracy is comparable to PRS+CIlinRS model, which predicts disease ten years in
advance.
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Supplementary Table 1. Sample size of heart failure cases and controls included in analysis for one to ten years prior to disease

diagnosis.
Sample Size 10-fold Cross-Validated AUC
Year PRS+
cases controls baseline ARIC PRS ClinRS PRS+ClinRS  ClinRS-noCirc ClinRS-noCirc
1 576 19,703 0.70(0.68-0.72) 0.81(0.79-0.83) 0.76(0.74-0.78) 0.85(0.83-0.87) 0.86(0.85-0.88) 0.84 (0.82-0.86) 0.86 (0.84-0.88)
2 539 17,758 0.70(0.68-0.72) 0.81(0.79-0.82) 0.76 (0.74-0.79) 0.82(0.80-0.85) 0.84 (0.82-0.86) 0.81(0.79-0.84) 0.83 (0.81-0.85)
3 515 16,365 0.70(0.68-0.73) 0.79(0.77-0.81) 0.77(0.74-0.79) 0.81(0.79-0.84) 0.83(0.81-0.85) 0.80(0.78-0.82) 0.82(0.80-0.85)
4 494 15,152 0.71(0.68-0.73) 0.79(0.77-0.81) 0.76 (0.74-0.79) 0.80 (0.78-0.83) 0.82 (0.80-0.84) 0.79 (0.76-0.81) 0.81 (0.79-0.84)
5 459 14,153  0.71(0.69-0.73) 0.77 (0.75-0.79) 0.77 (0.75-0.79) 0.80(0.77-0.82) 0.82 (0.80-0.84) 0.78 (0.76-0.81) 0.81 (0.79-0.83)
6 427 13,239 0.72(0.69-0.74) 0.78 (0.76-0.80) 0.78 (0.76-0.80) 0.79 (0.76-0.81) 0.81 (0.79-0.84) 0.77 (0.75-0.80) 0.80 (0.78-0.83)
7 407 12,394 0.71(0.69-0.74) 0.77 (0.75-0.80) 0.77 (0.75-0.80) 0.78 (0.75-0.80) 0.81(0.78-0.83) 0.76(0.73-0.78) 0.79(0.77-0.82)
8 376 11,601 0.71(0.69-0.74) 0.76(0.74-0.79) 0.76(0.74-0.78) 0.77(0.74-0.79) 0.80(0.77-0.82) 0.75(0.73-0.78) 0.78 (0.76-0.81)
9 353 10,831 0.72(0.69-0.75) 0.77 (0.74-0.80) 0.77 (0.74-0.79) 0.76 (0.74-0.79) 0.80(0.77-0.82) 0.75(0.73-0.78) 0.79 (0.76-0.81)
10 332 10,059 0.72(0.69-0.75) 0.77(0.74-0.79) 0.77(0.74-0.80) 0.76(0.73-0.78) 0.79(0.77-0.82) 0.75(0.72-0.77) 0.78(0.76-0.81)

Ten-fold cross-validated Area Under the Receiver Operating Characteristics (AUC) of six models predicting heart failure outcome
across 10 time points. Model performances were calculated for baseline (age and sex) model and 5 models with risk score(s) added: i)
polygenic risk score (PRS), ii) clinical risk score (ClinRS), iii) PRS+CIinRS, iv) clinical risk score calculated without circulatory
system diagnosis code (ClinRS-NoCirc), and v) PRS+CIlinRS-NoCirc.
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Supplementary Table 2. Top 20 protective and risk factors yielded from clinical risk score (ClinRS).

Protective Factors Risk Factors

ICD code ClinRS weight Diagnosis ICD code  ClinRS weight Diagnosis
371.03 -0.6391 Opacity, central cornea 410.91 0.7476 AMI NOS, initial
370.03 -0.4905 Ulcer, central corneal 410.21 0.7063 AMI, inferolateral wall, initial
727.63 -0.4600 Rupture, hand/wrist extensor tendon 410.41 0.6463 AMI, inferior wall, initial
370.63 -0.4441 Vascularization, deep corneal 410.01 0.6400 AMI, anterolateral wall, initial
765.14 -0.4378 Preterm infant NEC, 1000-1249 gram 410.51 0.5861 AMI, lateral wall, initial
54.42 -0.4144 Herpes simplex dendritic keratitis 410.71 0.5127 AMI, subendocardial, initial
736.09 -0.4015 Deformity, acquired, forearm NEC 996.01 0.5007 Malfunction, cardiac pacemaker
806.25 -0.4011 Fx T7-T12 clsd w/spinal cd inj NOS 410.61 0.4616 True posterior wall, initial
374.23 -0.3808 Lagophthalmos, cicatricial 842.19 0.4483 Sprain/strain, hand NEC
370.35 -0.3697 Keratoconjunctivitis, neurotrophic 996.04 0.3927 Complications d/t AICD
732.7 -0.3621 Osteochondritis dissecans 743.37 0.3894 Ectopic lens, congenital
718.84 -0.3596 Drngmnt, oth joint NEC, hand 396 0.3768 Stenosis, mitral and aortic valves
717.89 -0.3554 Disruption, internal, knee NEC 512.8 0.3746 Pneumothorax, spontaneous NEC
695.14 -0.3416 SJS toxic epidermal necrolysis synd 410.11 0.3674 AMI, anterior wall, initial
765.25 -0.3407 Gestation completed 29-30 weeks 410.02 0.3631 AMI, anterolateral wall, subsequent
371.61 -0.3364 Keratoconus, stable 835.03 0.3596 Dsloc, anterior hip NEC, closed
842.12 -0.3239 Sprain/strain, metacarpophalangeal 414.2 0.3483 Chrn total occlusion coronary arter
813.54 -0.313 Fx lower radius w/ulna, open 780.32 0.3331 Symp, convulsions, febrile complex
997.4 -0.3124 Complications, digestive system 996.09 0.3264 Malfunction, cardiac dev/graft NEC
793.1 -0.3062 AbFnd, rdlog, lung field 746.86 0.3102 Block, heart, congenital
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