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Supplementary Text 15 

Discretisation of the serial interval 16 

Here, we explain how a continuous serial interval distribution (with probability density 17 

function	𝑔(𝑥)) can be discretised into timesteps of length 1/𝑃 weeks to obtain 𝑤!
(#) (𝑠 =18 

1,2, … ) and 𝒘(𝑷). The notation 𝑤!
(#) represents the probability that the serial interval, 19 

discretised into timesteps of length 1/𝑃, takes the value 𝑠 timesteps, and 𝒘(𝑷) is the sequence 20 

of values of 𝑤!
(#). We adapt the approach described by Cori et al. [1] (see web appendix 11 in 21 
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the Supplementary Data of that article) in which the serial interval is discretised into 22 

timesteps of length one. 23 

We consider an infector-infectee transmission pair and assume that the precise time at which 24 

the infector develops symptoms is uniformly distributed within the timestep in which they 25 

appear in the disease incidence time series data. If the continuous serial interval takes the 26 

value 𝑢 weeks, then the probability that the infectee arises in the disease incidence time series 27 

data 𝑘 ≥ 2 timesteps after their infector is given by 28 

ℙ(discrete	SI = 𝑘	|	cts	SI = 𝑢) = >1 − 𝑃 @𝑢 −
𝑘
𝑃@ ,					if	

𝑘 − 1
𝑃 < 𝑢 <

𝑘 + 1
𝑃 ,

0,																							otherwise.
 29 

Then, conditioning on the unknown value of the continuous serial interval gives 30 

𝑤&(#) = I ℙ(discrete	SI = 𝑘	|	cts	SI = 𝑢)
'

(

× 𝑔(𝑢)d𝑢, 31 

= I K1 − 𝑃 @𝑢 −
𝑘
𝑃@L 𝑔(𝑢)

(&)*)/#

(&,*)/#

d𝑢, 32 

in which 𝑔(𝑢) is the probability density function of the continuous serial interval distribution. 33 

In principle, the calculation above can be applied when 𝑘 = 1, and a similar argument can be 34 

used to obtain the probability that an infectee appears in the disease incidence time series in 35 

the same timestep as their infector (which would correspond to 𝑤((#)). However, since the 36 

renewal equation model requires all new cases in a given timestep to have been infected by 37 

infectors appearing in the incidence data at a strictly earlier timestep, rather than the same 38 

timestep, we neglect 𝑤((#) and instead assume that same timestep cases are absorbed into 39 

𝑤*(#). In other words, we simply set 𝑤*(#) so that 𝒘(𝑷) sums to one. 40 
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When we apply the Cori method, we require the continuous serial interval distribution to be 41 

discretised into weekly timesteps. This therefore corresponds to undertaking the above 42 

calculations with 𝑃 = 1. 43 

Simulation-based inference of 𝑹𝒕 44 

Here, we give further details about the simulation-based method. The value of 𝑅. (for 𝑡 ≥ 2) 45 

is estimated iteratively: in other words, 𝑅/ is estimated first, followed by 𝑅0, and so on. By 46 

estimating 𝑅. iteratively, our inference procedure can be performed more quickly than 47 

attempting to estimate 𝑅. for all values of 𝑡 ≥ 2 simultaneously (as in standard ABC 48 

rejection sampling [2]). 49 

To estimate 𝑅. (for 𝑡 ≥ 2) from a weekly disease incidence time series dataset, we consider 50 

running simulations of the modified renewal equation model in which each week is divided 51 

into 𝑃 timesteps (each of timestep 1/𝑃 weeks). The value 𝑃 = 7 therefore corresponds to a 52 

daily timestep, however the simulation-based method can be run for any positive integer 53 

value of 𝑃 (with larger values of 𝑃 leading to the most accurate possible estimates of 𝑅. 54 

obtainable from the weekly aggregated disease incidence time series). 55 

To estimate 𝑅/, we repeatedly simulate the modified renewal equation up until the end of the 56 

second week, storing “matching” simulations (those simulations in which the number of 57 

cases in the second week in the simulation exactly matches the number of cases in the second 58 

week in the time series dataset). In each simulation, we: i) sample the value of 𝑅/ from the 59 

(time-homogeneous) prior for 𝑅.; ii) assign each case in the first week of the dataset to one of 60 

the 𝑃 timesteps in the first week (chosen uniformly at random). New simulations are 61 

generated until 𝑀 simulations that match the number of cases in the second week of the 62 

dataset have been obtained. For each matching simulation, we store both the sampled value of 63 

𝑅/ and the corresponding numbers of cases in each timestep in that simulation, {𝐼1
(#)}12*/# . The 64 
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values of 𝑅/ from the matching simulations can be combined to construct the posterior 65 

distribution for 𝑅/. 66 

We then estimate 𝑅. for each 𝑡 ≥ 3 in turn. To do this, we again run simulations of the 67 

modified renewal equation model, but starting from the beginning of week 𝑡 (this 68 

corresponds to timestep 𝑃(𝑡 − 1) + 1 in the modified renewal equation model). Each 69 

simulation is run until the end of week 𝑡 (i.e. up to and including timestep 𝑃𝑡). In each 70 

simulation, we: i) sample the value of 𝑅. from the prior; ii) choose past incidence uniformly 71 

at random out of the matching sets stored when estimating 𝑅.,*. New simulations are 72 

generated until 𝑀 simulations that match the number of cases in week 𝑡 of the dataset have 73 

been obtained. For each matching simulation, we store both the sampled value of 𝑅. and the 74 

corresponding numbers of cases in each timestep in that simulation (including the sampled 75 

past disease incidence used in that simulation), {𝐼1
(#)}12*#. . The values of 𝑅. from the matching 76 

simulations can be combined to construct the posterior distribution for 𝑅.. 77 

In all of our analyses, we required simulations that match the disease incidence time series 78 

data in week 𝑡 to have exactly the correct number of cases in that week. For improved 79 

computational efficiency, this algorithm could be adapted so that the number of cases in week 80 

𝑡 in matching simulations is within some tolerance level of the corresponding number of 81 

cases in the real-world data. However, we did not use that approach here as it would lead to 82 

less accurate estimates of 𝑅., and we found that our computing code ran sufficiently quickly 83 

for results to be obtained without this adaptation. 84 

  85 
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Supplementary Figures 86 

 87 

Fig S1. Schematic illustrating the steps involved in the simulation-based method for inferring 𝑹𝒕. The 88 

procedure involves six steps: (1) Initialise the incidence partitioning for the first aggregated timestep (𝑡 = 1). 89 

Each case in the first aggregated timestep is assigned uniformly at random to one of the 𝑃 partitions in that 90 

aggregated timestep; (2) Sample the value of 𝑅" from the prior; (3) Use the partitioned incidence from step 1 91 

and the 𝑅" value from step 2 to simulate the partitioned incidence in week 𝑡 = 2 using the modified renewal 92 

equation. (4) Repeat steps 1-3 until a pre-specified number of simulations, 𝑀, have been generated in which the 93 

simulated number of cases in week 𝑡 = 2 match the corresponding number of cases in the disease incidence 94 

data. (5) Use the sampled values of 𝑅" from the matching simulations to construct the posterior distribution for 95 

𝑅". These steps are then repeated iteratively to estimate 𝑅# in each of weeks 𝑡 = 3,4,5…  For these values of 𝑡, 96 

in each simulation, the value of 𝑅# is sampled from the prior, and step 1 is replaced so that past disease 97 

incidence for times up to (and including) week 𝑡 − 1 are sampled from the matching simulations obtained when 98 

estimating 𝑅#$%. (6) Plot the posterior distributions for 𝑅# (𝑡 = 2,3,4… ) to observe temporal changes in 99 

transmissibility during the outbreak. 100 
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Fig S2. Dependence of 𝑹𝒕 estimates using the simulation-based method on the value of 𝑷 used, for the 103 

simulated disease incidence time series dataset. A. Estimates of 𝑅# obtained when the Cori method (blue) and 104 

the novel simulation-based approach with 𝑃 = 1 (red) are applied to the simulated disease incidence time series 105 

dataset (Fig 2A in the main text). B. Analogous to panel A, but with 𝑃 = 3 in the simulation-based approach. C. 106 

Analogous to panel A, but with 𝑃 = 5 in the simulation-based approach. D. The average weekly absolute error 107 

in mean 𝑅# estimates obtained using the simulation-based method with different values of 𝑃, compared to the 108 

true underlying value of 𝑅#. For a given value of 𝑃, this measure represents the absolute value of the error in the 109 

estimate of 𝑅# in week 𝑡 (compared to the true value of 𝑅#), averaged over all values of 𝑡. Red bars are for the 110 

simulated dataset shown in Fig 2A of the main text. Blue bars are the average weekly absolute error averaged 111 

over each of 100 simulated datasets that were generated in an identical fashion to the simulated dataset in Fig 112 

2A of the main text. Error bars show the 95% credible interval across the 100 simulations.  113 
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 115 

Fig S3. Comparison of 𝑹𝒕 estimates obtained using our simulation-based approach with analogous 116 

estimates using the Expectation-Maximisation (EM) approach developed by Nash et al. [3]. A. Estimates of 117 

𝑅# obtained when the simulation-based approach with 𝑃 = 7 is applied to the 2019-20 Wales influenza dataset 118 

(Fig 3A). B. Analogous results to panel A, but using the EM approach. C. Estimates of 𝑅# obtained when the 119 

simulation-based approach with 𝑃 = 7 is applied to the 2022-23 Wales influenza dataset (Fig 5A). B. 120 

Analogous results to panel C, but using the EM approach. Blue and red lines are the mean estimates, and the 121 

shaded regions represent 95% credible intervals. These results indicate that the simulation-based and EM 122 

approaches generate consistent results. 123 

 124 
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