Supplementary Material for: Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling

Alexandre Filiot^{1,,,,,} Ridouane Ghermi¹, Antoine Olivier¹, Paul Jacob¹, Lucas Fidon¹, Alice Mac Kain¹, Charlie Saillard^{1,,,,,,} and Jean-Baptiste Schiratti^{1,,,,,}

> ¹Owkin, Inc., New York, NY, USA. [#]These authors contributed equally.

Appendix A: iBOT pre-training parameters

In addition to hyperparameters described in section 3.3, iBOT models were pre-trained using weight decay, a shared projection head with output dimension 8,192 and gradient clipping. We provide details on each of these hyperparameters.

- **Projection head**: for all Vision Transformers (ViT), the projection head consists of a 3-layer multi-layer perceptron (MLP) with hidden dimension 2,048, followed by L2 normalization and a weight normalized fully connected layer with output dimension 8,192. Based on the empirical results presented in (1), the projection head was shared between the [CLS] token and patch tokens, with output dimension 8,192. Finally, the last linear layer of the projection head was kept frozen for the first three epochs to ensure convergence.
- Weight decay: initial value of weight decay was set to 0.04, with a final value of 0.4 for ViT-S/16 and ViT-B/16, 0.48 for ViT-L/16. A cosine schedule is applied.
- Gradient clipping: gradient clipping was applied with a value of 3 (*i.e.* all gradients have a maximal L2 norm of 3) to all ViT models.

Appendix B: Repartition of pan-cancer pre-training datasets

Two pan-cancer pre-training datasets are used in this study: PanCancer40M and PanCancer4M. PanCancer40M pre-training dataset covers 13 anatomic sites and 16 cancer subtypes for 5,558 patients, representing a total of 6,093 slides and 43,374,634 patches. PanCancer4M is taken as a subset (random sampling) of its larger counterpart, with 5,183 whole slide images (WSI) and 4,386,755 tiles overall. We provide additional details on the distribution of The Cancer Genome Atlas (TCGA) cohorts for each of these two datasets (see Table B1 and Table B2 below).

		r anoanoor rom pro	training databot.
Cohort	No. patients	No. WSIs	No. patches
TCGA-KIRC	514	519	1,299,576
TCGA-KICH	121	121	1,299,903
TCGA-PAAD	189	209	3,197,302
TCGA-COAD	434	441	3,499,776
TCGA-READ	157	158	499,912
TCGA-OV	107	107	1,950,937
TCGA-LUSC	478	512	1,999,872
TCGA-LUAD	468	530	1,999,531
TCGA-PRAD	278	310	3,984,428
TCGA-BLCA	386	457	3,999,664
TCGA-BRCA	1,060	1,124	3,999,192
TCGA-UCEC	506	566	3,999,922
TCGA-KIRP	107	110	1,293,676
TCGA-LIHC	363	371	3,999,751
TCGA-ESCA	15	158	2,358,538
TCGA-STAD	375	400	3,992,654
All	5,558	6,093	43,374,634

Table B1. Distribution of TCGA cohorts in PanCancer40M pre-training dataset.

Table B2. Distribution of TCGA cohorts in PanCancer4M pre-training dataset.

Cohort	No. patients	No. WSIs	No. patches
TCGA-KIRC	514	519	129,750
TCGA-KICH	121	121	129,954
TCGA-PAAD	189	209	399,817
TCGA-COAD	434	441	349,713
TCGA-READ	157	158	49,928
TCGA-OV	107	107	399,966
TCGA-LUSC	478	512	199,680
TCGA-LUAD	468	530	199,810
TCGA-PRAD	278	310	399,900
TCGA-BLCA	386	457	399,875
TCGA-BRCA	1,060	1,124	399,020
TCGA-UCEC	506	566	399,596
TCGA-KIRP	107	110	129,910
TCGA-LIHC	363	371	399,938
TCGA-ESCA	15	158	399,898
All	5,183	5,693	4,386,755

Appendix C: SSL methods

Table C1 provides a descriptive summary of each of the representation learning frameworks used as feature extraction methods in this study. Following section 4.3, models are named using the framework-architecture-dataset formalism. The weights from Dino[ViT-S]BRCA (2), HIPT (3) and CTransPath (4) models were retrieved directly from their respective GitHub repositories.

Table C1. Description of the representation learning frameworks considered in this study. Learning paradigms: Supervised Learning (SL) and Self-Supervised Learning (SSL). Domains: Out-Of-Domain (OOD), such as ImageNet-1K, and In-Domain (ID), such as histology datasets. SSL paradigms: contrastive learning (CL), Semantically-Relevant Contrastive Learning (SRCL), Knowledge Distillation (KD) and Masked Image Modeling (MIM).

Model name	Learning paradigm	Domain	SSL paradigm	Model	No. params	Size of pre-trained datasets
Sup[RN50]IN	SL	OOD	-	RN50	23.5M	1.2M
MoCoV2[RN50W2]COAD	SSL	ID	CL	RN50w2	66.8M	4.4M
CTransPath	SSL	ID	(SR)CL	Swin-T + CNN	27.5M	14.3M
LIDT	CCI	ID	КD	ViT-S/16	21.7M	104M
nir i	33L	ID	KD	ViT-XS/256	2.8M	0.4M
Dino[ViT-S]BRCA	SSL	ID	KD	ViT-S/16	21.7M	2.1M
iBOT[ViT-S]COAD	SSL	ID	MIM	ViT-S/16	21.7M	4.4M
iBOT[ViT-B]COAD	SSL	ID	MIM	ViT-B/16	85.8M	4.4M
IBOT[ViT-L]COAD	SSL	ID	MIM	ViT-L/16	307M	4.4M
iBOT[ViT-S]PANCAN	SSL	ID	MIM	ViT-S/16	21.7M	43.3M
iBOT[ViT-B]PANCAN	SSL	ID	MIM	ViT-B/16	86M	43.3M

Appendix D: Weakly-supervised tasks on TCGA cohorts

Table D1 provides an extensive description of TCGA cohorts and corresponding downstream tasks used throughout this study.

TCGA cohort	Cancer type	Task	Classes	No. patients	No. slides	Distribution
BRCA	Breast invasive carcinoma	arcinoma Histological subtype classification		938	1.001	79.8% (IDC) 20.2% (ILC)
		Molecular subtype classification	Basal Her2 LumA LumB Normal	939	1,005	17.2% (Basal) 7.6% (Her2) 49.9% (LumA) 21.9% (LumB) 3.4% (Normal)
		HRD prediction	HRD-L HRD-H	1,003	1,073	80.4% (HRD-L) 19.6% (HRD-H)
		OS prediction	Continuous	1,050	1,122	Censoring: 86.7%
COAD	Colon adenocarcinoma	OS prediction	Continuous	431	450	Censoring: 78.0%
CRC	Colorectal carcinoma	MSI prediction	MSS/MSI-L MSI-H	555	576	85.6% (MSS/MSI-L) 14.4% (MSI-H)
LUAD	Lung adenocarcinoma	OS prediction	Continuous	459	528	Censoring: 60.2%
LUSC	Lung Squamous Cell Carcinoma	OS prediction	Continuous	473	507	Censoring: 56.6%
NSCLC	Non-small cell lung carcinoma	Cancer type classification	LUAD LUSC	947	1,050	51.1% (LUAD) 48.9% (LUSC)
OV	Ovarian serous cystadenocarcinoma	HRD prediction	HRD-L HRD-H	96	96	50.0% (HRD-L) 50.0% (HRD-H)
PAAD	Pancreatic adenocarcinoma	OS prediction	Continuous	183	209	Censoring: 45.9%
RCC	Kidney renal cell carcinoma	Histological subtype classification	KIRC KIRP KICH	882	934	56.6% (KIRC) 30.4% (KIRP) 13.0% (KICH)
STAD	Stomach adenocarcinoma	MSI prediction	MSS/MSI-L MSI-H	375	401	83.8% (MSS/MSI-L) 16.2% (MSI-H)

Appendix E: Increasing dataset diversity for iBOT ViT-S pre-training

As an additional study, we compare two ViT-S models pre-trained with iBOT both on the colon adenocarcinoma cohort of TCGA (TCGA-COAD) and PanCancer4M datasets. We specifically investigate the impact of increasing the diversity of cancer indications during pre-training for a same number of tiles. This section encompasses all the results obtained to draw a fair comparison between our two models. Results analysis can be found in section 5.4 in the manuscript.

Table E1-A. Performance comparison of iBOT ViT-S pre-trained on TCGA-COAD vs. PanCancer4M for PAIP-CRC[MSI] external validation after training on TCGA-CRC[MSI] classification task. area under the receiver operating characteristic curve (ROC AUC) scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats. Top and bottom row indicate performance with ABMIL¹ and TransMIL².

Cancer site	Task	iBOT[ViT-S]COAD	iBOT[ViT-S]PanCancer
Branst concer	Comelyon 16 [Metastases]	93.0 ± 5.8^1	93.4 ± 2.8
Dreast cancer	Cameryon to [wietastases]	93.4 ± 4.7^2	$\textbf{94.0} \pm \textbf{3.9}$
	TCC A DDC A [Ilist]	94.0 ± 1.0	$\textbf{95.2} \pm \textbf{1.4}$
	ICOA-BRCA [HISt]	92.9 ± 2.0	$\textbf{94.3} \pm \textbf{1.6}$
		72.8 ± 3.6	$\textbf{74.7} \pm \textbf{2.2}$
	ICOA-BRCA[HRD]	74.0 ± 3.5	$\textbf{75.8} \pm \textbf{2.9}$
	TCCA DDCAIMall	79.4 ± 1.3	80.0 ± 3.2
	ICOA-BRCA[M01]	79.9 ± 2.0	$\textbf{81.6} \pm \textbf{0.9}$
		62.9 ± 8.5	61.7 ± 6.4
	ICGA-BRCA[US]	$\textbf{63.8} \pm \textbf{8.4}$	62.2 ± 4.0
Calamatal annan		$\textbf{89.1}\pm\textbf{3.1}$	87.6 ± 4.2
Colorectal cancer	ICGA-CRC [MSI]	$\textbf{88.3} \pm \textbf{5.6}$	88.8 ± 1.1
		58.5 ± 9.8	59.5 ± 6.5
	ICGA-COAD [05]	$\textbf{62.9} \pm \textbf{8.0}$	56.3 ± 2.7
Lung oppor	TCCA NSCLC [CancerTupe]	94.7 ± 1.9	$\textbf{97.2} \pm \textbf{1.2}$
Lung cancer	TCOA-NSCLC [Cancer Type]	94.9 ± 3.0	$\textbf{96.5} \pm \textbf{1.5}$
		$\textbf{58.4} \pm \textbf{5.2}$	57.0 ± 5.9
		$\textbf{59.3} \pm \textbf{7.4}$	57.5 ± 7.3
	TCCA LUSC [OS]	57.7 ± 2.1	$\textbf{58.2} \pm \textbf{3.2}$
	ICOA-LUSC	57.2 ± 5.9	$\textbf{61.4} \pm \textbf{2.6}$
Overien concer	TCGA OV [HPD]	$\textbf{72.2} \pm \textbf{12.6}$	65.8 ± 7.7
Ovarian cancer	ICOA-OV [HKD]	$\textbf{71.0} \pm \textbf{4.8}$	60.4 ± 10.1
Vidnov concor	TCCA BCC [Concerture]	98.5 ± 0.5	$\textbf{99.0} \pm \textbf{0.3}$
Kiuney cancer	TCGA-RCC [Cancer Type]	98.3 ± 0.6	$\textbf{98.8} \pm \textbf{0.5}$
Stomach concer	TCCA STAD [MS1]	$\textbf{79.5} \pm \textbf{3.8}$	76.7 ± 5.4
		$\textbf{82.5} \pm \textbf{4.2}$	80.6 ± 5.9
Deperantia concor		$\textbf{55.2} \pm \textbf{3.6}$	51.8 ± 7.8
rancreatic cancer	ICUA-PAAD [U5]	$\textbf{57.7} \pm \textbf{4.9}$	53.0 ± 5.7

Table E1-B. Performance comparison of iBOT ViT-S pre-trained on TCGA-COAD vs. PanCancer4M for PAIP-CRC[MSI] external validation after training on TCGA-CRC[MSI] classification task. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats. Top and bottom row indicate performance with ABMIL¹ and TransMIL².

Cancer site	Task	iBOT[ViT-S]COAD	iBOT[ViT-S]PanCancer
Coloractal cancer	MSI prediction	$\begin{array}{c} \textbf{96.5} \\ [\textbf{92.9}, \textbf{100.0}]^1 \end{array}$	$\begin{array}{c} \textbf{93.8} \\ [\textbf{88.5}, \textbf{100.0}]^2 \end{array}$
	TCGA-CRC to PAIP	94.7 [89.4, 100.0]	92.7 [85.6, 100.0]

NCT-CRC-HE-7K									Camelyon17-WILDS	
Method	Adi [†]	Deb [†]	Lym^{\dagger}	Muc [†]	Mus^\dagger	Norm [†]	Str [†]	Tum [†]	All [‡]	Metastases [‡]
iBOT[ViT-S]COAD	99.5	97.6	98.0	99.6	96.4	99.7	96.1	99.4	93.2 [92.6, 93.8]	92.4 [92.2, 92.7]
iBOT[ViT-S]PanCancer	99.8	99.0	99.7	99.8	96.3	99.7	96.0	99.3	94.8 [94.2, 95.3]	93.8 [93.6, 94.0]

Table E2. Impact of ViT pre-training dataset on patch classification tasks performance. F1 score (†) is reported for single class classification (Adi to Tum) in NCT-CRC-HE-7K. Accuracy (‡) and 95% confidence intervals are computed using bootstrap with 1,000 repeats for multi-class classification in NCT-CRC-HE-7K and binary classification in Camelyon17-WILDS, respectively. Bold indicates the highest performance across classes.

Fig. E1. Impact of ViT pre-training datasets on the linear evaluation results with different sizes of training data for a ViT-S architecture. Results are reported on NCT-CRC-HE and Camelyon17-WILDS testing dataset. Metrics are reported for an ensemble of 30 linear classifiers with different initializations. 95% confidence intervals are computed using bootstrap with 1,000 repeats.

Appendix F: Comparison with other in-domain SSL methods

In addition to section 5.4, we provide the downstream performance of Dino[ViT-S]BRCA, MoCoV2[RN50W2]COAD, HIPT, CTransPath and iBOT[ViT-B]PanCancer on slide-level tasks using ABMIL aggregation method specifically.

Table F1. Comparison of state-of-the-art SSL frameworks on weakly-supervised downstream tasks. We display the performance with ABMIL. Results are reported for a set of 14 weakly-supervised prediction tasks across seven cancer indications. Bold indicates the highest performance across SSL models and multiple instance learning (MIL) models. [MSI], [HRD], [Ctype], [Mol], [Hist] and [OS] denote respectively: Microsatellite Instability (MSI), Homologous Recombination Deficiency (HRD), Cancer Type, Molecular Subtyping, Histological Subtyping classification, and overall survival (OS) prediction. ROC AUC scores and C-Index are reported for classification and survival tasks, respectively. We take the average and standard deviation of each metric over the five outer test splits from nested cross-validation (CV).

		(A) Cohort-specific pre-training			Pa	(B) an-cancer pre-trair	iing
Cancer site	Task	Dino[ViT-S] BRCA	MoCoV2 [RN50W2] COAD		HIPT	CTrans Path	iBOT[ViT-B] PanCancer
	Camelyon16[Meta]	83.8 ± 4.3	91.4 ± 4.3		$\textbf{95.7} \pm \textbf{1.3}$	93.9 ± 4.4	92.9 ± 3.3
Breast cancer	TCGA-BRCA[Hist] TCGA-BRCA[HRD] TCGA-BRCA[Mol] TCGA-BRCA[OS]	$\begin{array}{c} 92.1 \pm 3.0 \\ 72.1 \pm 3.1 \\ 77.9 \pm 1.9 \\ 60.2 \pm 4.7 \end{array}$	$\begin{array}{c} 93.0 \pm 1.7 \\ 73.5 \pm 4.3 \\ 78.0 \pm 1.4 \\ 60.3 \pm 2.9 \end{array}$		$\begin{array}{c} 91.3 \pm 1.9 \\ 73.1 \pm 3.5 \\ 78.4 \pm 2.5 \\ 63.3 \pm 4.9 \end{array}$	$\begin{array}{c} 95.4 \pm 0.8 \\ 76.8 \pm 2.9 \\ 80.8 \pm 1.7 \\ \textbf{65.0} \pm \textbf{6.0} \end{array}$	$\begin{array}{c} \textbf{96.2 \pm 1.5} \\ \textbf{79.3 \pm 2.4} \\ \textbf{81.7 \pm 2.2} \\ \textbf{64.7 \pm 5.7} \end{array}$
Colorectal cancer	TCGA-CRC[MSI] TCGA-COAD[OS]	76.1 ± 4.4 57.7 ± 10.4	88.5 ± 2.5 59.4 ± 10.2		79.7 ± 4.1 58.3 ± 6.3	88.1 ± 1.9 60.1 ± 10.9	$\begin{array}{c} 91.0\pm2.2\\ 62.8\pm12.7\end{array}$
Lung cancer	TCGA-NSCLC[CType]	92.8 ± 2.5	96.2 ± 1.7		94.2 ± 2.8	97.3 ± 0.4	97.7 ± 1.3
Lung cancer	TCGA-LUAD[OS] TCGA-LUSC[OS]	$\begin{array}{c} \textbf{59.1} \pm \textbf{4.1} \\ \textbf{59.8} \pm \textbf{3.7} \end{array}$	$55.3 \pm 4.8 \\ 61.6 \pm 4.2$		$53.7 \pm 5.5 \\ 60.9 \pm 5.4$	$58.1 \pm 4.1 \\ 60.5 \pm 2.1$	53.8 ± 4.5 62.2 \pm 2.9
Ovarian cancer	TCGA-OV[HRD]	51.6 ± 4.9	69.2 ± 12.9		68.0 ± 8.9	68.5 ± 10.8	$\textbf{74.2} \pm \textbf{8.6}$
Kidney cancer	TCGA-RCC[CType]	97.5 ± 0.8	98.6 ± 0.3		98.6 ± 0.4	98.7 ± 0.3	$\textbf{99.5} \pm \textbf{0.2}$
Stomach cancer	TCGA-STAD[MSI]	76.5 ± 3.3	78.1 ± 4.8		79.6 ± 3.1	83.2 ± 8.1	89.9 ± 3.9
Pancreatic cancer	TCGA-PAAD[OS]	59.3 ± 6.8	58.2 ± 4.9		61.3 ± 2.7	57.0 ± 5.5	55.3 ± 4.4

Table F2. Comparison of state-of-the-art SSL frameworks on PAIP-CRC[MSI] external validation after training on TCGA-CRC[MSI] classification task. We display the performance with ABMIL. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats.

		Cohort-specif	A) ic pre-training	(B) Pan-cancer pre-training			
Cancer site	Task	Dino[ViT-S] BRCA	Dino[ViT-S] MoCoV2 BRCA [RN50W2] COAD		CTransPath	iBOT[ViT-B] PanCancer	
Colorectal cancer	MSI prediction: TCGA-CRC to PAIP	88.1 [78.1, 99.1]	94.0 [88.8, 100.0]	91.6 [85.2, 100.0]	88.4 [78.2, 100.0]	94.7 [89.4, 100.0]	

Appendix G: ROC AUC scores on patch-level classification tasks

This section highlights ROC AUC scores on both patch-level classification tasks: NCT-CRC-HE-7K and Camelyon17-WILDS.

Table G1. Comparison of patch classification performance for (A) in-domain pretraining vs out-of-domain training, (B) MoCoV2 vs iBOT frameworks with TCGA-COAD pre-training. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats. Bold indicates the highest performance across classes.

	NCT-CRC-HE-7K										Camelyon 17WILDS
	Method Adi Deb Lym Muc Mus Norm Str Tum All										Metastases
(A)	Sup [RN50] IN	99.8	87.1	99.9	98.5	96.3	99.8	91.6	99.5	96.5 [96.2, 96.9]	96.5 [96.3, 96.6]
	iBOT [ViT-S] COAD	100.0	99.9	99.9	100.0	93.4	100.0	97.4	99.9	98.8 [98.6, 99.0]	98.3 [98.2, 98.4]
(B)	MoCoV2 [RN50W2] COAD	100.0	100.0	99.6	99.8	90.7	99.9	97.1	99.1	98.3 [98.0, 98.5]	97.1 [96.9, 97.3]
	iBOT [ViT-B] COAD	99.9	100.0	99.8	100.0	97.4	100.0	98.7	99.9	99.5 [99.4, 99.6]	99.0 [98.9, 99.1]

Table G2. Impact of VIT architecture scaling on patch classification tasks. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats. Bold indicates the highest performance across classes.

NCT-CRC-HE-7K										
Method	Adi	Deb	Lym	Muc	Mus	Norm	Str	Tum	All	Metastases
iBOT [ViT-S] COAD	100.0	99.9	99.9	100.0	93.4	100.0	97.4	99.9	98.8 [98.6, 99.0]	98.3 [98.2, 98.4]
iBOT [ViT-B] COAD	99.9	100.0	99.8	100.0	97.4	100.0	98.7	99.9	99.5 [99.4, 99.6]	99.0 [98.9, 99.1]
iBOT [ViT-L] COAD	99.9	99.9	100.0	100.0	97.4	100.0	98.3	99.9	99.4 [99.3, 99.6]	98.1 [98.0, 98.3]

Table G3. Impact of ViT pre-training datasets on patch classification tasks performance for a ViT-B architecture. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats. Bold indicates the highest performance across classes.

NCT-CRC-HE-7K										Camelyon 17WILDS
Method	Adi	Deb	Lym	Muc	Mus	Norm	Str	Tum	All	Metastases
iBOT [ViT-B] COAD	99.9	100.0	99.8	100.0	97.4	100.0	98.7	99.9	99.5 [99.4, 99.6]	99.0 [98.9, 99.1]
iBOT [ViT-B] PanCancer	100.0	100.0	99.8	100.0	95.8	100.0	98.1	100.0	99.2 [99.1, 99.3]	99.5 [99.4, 99.6]

Table G4. Comparison of state-of-the-art SSL frameworks on patch classification tasks. HIPT*[ViT₂₅₆] correspond to the first ViT-S model of HIPT architecture pre-trained on $256 \times 256 \,\mathrm{px}$ tiles. ROC AUC scores and 95% confidence intervals are computed using bootstrap with 1,000 repeats. Bold indicates the highest performance across classes.

NCT-CRC-HE-7K									Camelyon 17WILDS	
Method	Adi	Deb	Lym	Muc	Mus	Norm	Str	Tum	All	Metastases
Dino [ViT-S] BRCA	99.9	99.7	99.8	99.0	98.4	99.3	89.8	99.4	98.2 [98.0, 98.3]	96.6 [96.4, 96.8]
MoCoV2 COAD	100.0	100.0	99.6	99.8	90.7	99.9	97.1	99.1	98.3 [98.0, 98.5]	97.1 [96.9, 97.3]
HIPT*[ViT ₂₅₆]	99.9	99.7	99.7	99.6	97.8	99.4	92.2	99.6	98.5 [98.3, 98.7]	95.4 [95.2, 95.6]
CTransPath	100.0	97.1	100.0	99.9	96.9	99.9	93.9	99.7	98.4 [98.2, 98.7]	98.3 [98.1, 98.4]
iBOT [ViT-B] PanCancer	100.0	100.0	99.8	100.0	95.8	100.0	98.1	100.0	99.2 [99.1, 99.3]	99.5 [99.4, 99.6]

References

- 1. Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image BERT pre-training with online tokenizer. In International Conference on Learning Representations, 2022.
- 2. Dino[ViT-S]BRCA repository. https://github.com/Richarizardd/Self-Supervised-ViT-Path,.
- HIPT repository. https://github.com/mahmoodlab/HIPT.
 CTransPath repository. https://github.com/Xiyue-Wang/TransPath.