Supplementary Materials for Yield of genetic association signals from genomes, exomes, and imputation in the UK biobank

Supplementary Information

Survey of coding variation

Before proceeding to genetic association analyses, we compared the number of coding variants detected by the WGS and WES+IMP approaches. We annotated variants by functional consequence with the ENSEMBL Variant Effect Predictor (McLaren et al., 2016) using the ENSEMBL 100 canonical transcript definitions (Cunningham et al., 2022). As expected, both approaches resulted in very similar numbers of coding variants per individual (WGS median: 19,905, IQR: 239; WES+IMP median: 19,948, IQR: 245). For both datasets, 48% of observed variants were singletons. For WGS, 75.3% variants are present in less than 5 individuals and similarly 74.7% of WES+IMP variants are present in less than 5 individuals. Overall, coding variants were distributed across 19,377 genes in the WGS data, and across 18,446 genes in the WES+IMP data set (among the genes in WES+IMP dataset, variants in 347 genes were outside the exome target regions and detected only through arrays and imputation).

The total number of coding variants captured by each approach was very similar (WGS 6,732,108 variants; WES+IMP 6,761,880 variants) with 6,544,263 observed in both WGS and WES+IMP. Among variants that were present in only the WES+IMP dataset, there were 126,319 missense variants – compared to 88,448 missense variants specific to the WGS data – the largest increase for a coding variant consequence. In contrast, the largest proportional gain was for variants that were present only in the WGS data for in-frame indels or putative-loss-of-function (pLOF) variants – there were 9.3% more pLOFs and 23.5% more in-frame indels specific to the WGS data, but only 7.2% more pLOFs and 5.6% more in-frame indels specific to the WGS data, but only 7.2% more pLOFs and 3.1% of variants were observed only in WES+IMP. The coding variation was even more similar when limiting comparison to the target capture regions (Supplementary Table 4).

Supplementary Figure 1. Flowchart of analytical UKB sample. The analysis includes individuals from the UK Biobank with WES, imputed array, and WGS data with all analytical datasets in the dotted box. The primary analytical dataset includes 149,195 individuals who have all data sources available (bold); secondary datasets include (a) 468,169 individuals with WES and imputed array data and (b) a subset of 47,545 individuals with WGS.

Supplementary Figure 2. Flowchart of primary analyses. Analyses of the primary datasets (n=149,195) included performing single variant and gene-based association testing for WES, imputed array, and WGS data. The same tests were performed on the secondary datasets (n=468,169 and n=47,545).

Supplementary Figure 3. Survey of coding variation for WGS and WES+IMP. A comparison of the coding variation observed by the WES+IMP and WGS datasets stratified by variant consequence. In Panel A, the count of variants observed in each approach, in both approaches, and in only one approach is given; the percentage gains in approach-specific variants is also given. In Panel B, the variant count per individual is given.

Α

Consequence	WGS (% Singleton)	WES+IMP (% Singleton)	Intersection	WGS only	WES+IMP only	% WGS only	% WES+IMP only
Coding variants	6,732,108 (48%)	6,761,880 (48%)	6,544,263	187,845	217,617	2.7	3.1
Missense	4,225,468 (49%)	4,263,339 (48%)	4,137,020	88,448	126,319	2.0	2.9
Synonymous	1,994,972 (44%)	2,012,866 (44%)	1,959,714	35,258	53,152	1.7	2.6
In-frame indel	87,080 (51%)	70,543 (45%)	65,383	21,697	5,160	23.5	5.6
pLoF	424,588 (60%)	415,132 (58%)	382,146	42,442	32,986	9.3	7.2
Frameshift	190,713 (63%)	182,447 (60%)	162,815	27,898	19,632	13.3	9.3
Stop gained	130,968 (56%)	132,452 (56%)	126,845	4,123	5,607	3.0	4.1
Start lost	12,058 (52%)	11,744 (51%)	11,374	684	370	5.5	3.0
Stop lost	4,599 (58%)	4,417 (57%)	4,184	415	233	8.6	4.8
Splice donor	49,170 (60%)	46,658 (59%)	43,151	6,019	3,507	11.4	6.7
Splice acceptor	37,080 (62%)	37,414 (61%)	33,777	3,303	3,637	8.1	8.9

Supplementary Figure 4. Flowchart of unified gene-p test. Gene-based association analyses primarily focused on a single, unified p-value per gene. This gene-p p-value aggregates across multiple variant frequencies, masks (Supplementary Table 6), and set-based testing methods. The flowchart visualized how the single variants from a given gene are combined and tested to yield a single gene-level p-value, where gray arrows indicate aggregation by ACAT (Liu et al., 2019).

Supplementary Figure 5. Summary of allele frequency, effect size, and p-value of all single variant associati on signals. Single variant associations are grouped by the platform in which they were observed. Key features o f the signals, AAF, effect size, and -log10(p-value), are plotted for each signal in all groups.

Supplementary Figure 6. LocusZoom plot of lead single variant signals detected by all platforms. A 1Mb regi on centered around most significant single variant association that was supported across all platforms (WGS, W ES, IMP, WGS – SV). This was defined as observing an association with a p-value within an order of magnitude of the threshold of significance within a 1Mb region of the index association. The association is shown for 12:2117 8615:T:C (rs4149056), associated with Total bilirubin and identified first from the WGS sequencing data with p-v alue 2.23e-307. This missense variant lies in an exon of gene *SLCO1B1*, and is commonly observed with AAF=0.1 5.

Supplementary Figure 7. LocusZoom plots of single variant signals detected only by WGS. A 1Mb region cent ered on a peak single variant association signal observed only in WGS. This variant, 7:73890306:C:T, is associate d with standing height with p-value 4.67e-12 and AAF=0.13. It is supported by additional associated variants in WGS; the region also indicates support but below the 'suggestive' threshold for the same variant in the imputed data. The intergenic variant is not observed in the WES data.

Supplementary Figure 8. LocusZoom plots of single variant signals detected only by WES. A 1Mb region cent ered on a peak single variant association signal observed only in WES. Variant 14:33367284:AAAG:A is an introni c variant n gene *NPAS3*. It is associated with mean reticulocyte volume with p-value 3.99e-13 and AAF 0.0020. T he most significant variant in the region in WES is neighboring with a p-value below the commonly recognized 5 e-8 GWAS threshold. Similar signal is not observed in WGS and IMP.

Supplementary Figure 9. LocusZoom plots of single variant signals detected only by IMP. A 1Mb region cent ered on a peak single variant association signal observed only in IMP. This intronic variant, 19:51628767:CGT:C, is associated with eosinophil count with p-value 4.37e-12 and AAF=0.31. It is supported by other variants in IMP , and the same peak variant and neighboring variants lie below the suggestive signal threshold in WGS.

Supplementary Figure 10. Summary of p-value of all gene-based association signals. Gene-based association s are grouped by the platform in which they were observed. The unified gene P p-value, incorporating multiple s tatistical tests and masks, are plotted for each signal in all groups.

Supplementary Figure 11. Comparison of gene-p p-values for gene-based analyses between platforms. For each gene tested, the p-value between each pair of platforms is given for all tests and for those with $-\log_{10}(p - value)$.

Supplementary Table 1. Characteristics of the UKB data. Analyses included UKB data with three sample sizes, comprised of individuals with an assigned ancestry. Demographic features of these individuals are provided.

Sample size	Platforms analyzed	Sex - Female	Mean age (SD)	Ancest	ry
47,545	WGS	26,384 (55.5%)	56.5 (8.1)	982	AFR
				97	AMR
				227	EAS
				45,093	EUR
				1,146	SAS
149,195	IMP, WES, WGS	82,210 (55.1%)	56.5 (8.1)	3,008	AFR
				277	AMR
				736	EAS
				141,695	EUR
				3,479	SAS
468,169	IMP, WES	253,697 (54.2%)	56.5 (8.1)	9,277	AFR
				856	AMR
				2,303	EAS
				445,544	EUR
				10,189	SAS

Supplementary Table 2. Genotype concordance between the different approaches. For all autosomal

variants that passed QC in each platform, after enforcing hard calls, we assessed the number of mean discordant calls per variant and the concordance across all variant calls.

Datasets	Number of variants compared	Mean number of discordant calls	Concordance
		per variant	
WGS & WES	15,840,174	9.6	99.99%
WES & IMP	2,371,567	75.3	99.95%
WGS & IMP	89,809,894	72.2	99.95%

Supplementary Table 3. Number of canonical coding variants in WGS and WES+IMP datasets. Count of variants for each coding consequence, stratified by frequency. Variants were annotated with VEP and genes were defined by Ensembl v100.

Consequence	Frequency	WGS	WES+IMP	Union	Intersection	WGS only	WES+IMP only
Missense	Singleton (AAC=1)	2,055,463	2,056,701	2,113,288	1,998,876	56,587	57,825
	AAC>1 & AAF<=0.0001	1,935,023	1,968,371	1,999,707	1,903,687	31,336	64,684
	AAF>0.001 & AAF<=0.01	208,238	211,273	211,740	207,771	467	3,502
	AAF>0.01	26,744	26,994	27,052	26,686	58	308
Stop gained	Singleton (AAC=1)	73,515	73,664	76,502	70,677	2,838	2,987
	AAC>1 & AAF<=0.0001	53,823	55,045	56,312	52,556	1,267	2,489
	AAF>0.001 & AAF<=0.01	3,429	3,537	3,554	3,412	17	125
	AAC>1 & AAF<=0.0001	53,823	55,045	56,312	52,556	1,267	2,489
	AAF>0.01	201	206	207	200	1	6
Synonymous	Singleton (AAC=1)	884,307	886,016	907,833	862,490	21,817	23,526
	AAC>1 & AAF<=0.0001	943,930	958,636	971,785	930,781	13,149	27,855
	AAF>0.001 & AAF<=0.01	138,548	139,882	140,132	138,298	250	1,584
	AAF>0.01	28,187	28,332	28,374	28,145	42	187
In-frame indel	Singleton (AAC=1)	44,268	31,537	46,642	29,163	15,105	2,374
	AAC>1 & AAF<=0.0001	38,109	34,143	40,573	31,679	6,430	2,464

	AAF>0.001 & AAF<=0.01	4,311	4,450	4,599	4,162	149	288
	AAF>0.01	392	413	426	379	13	34
Frameshift	Singleton (AAC=1)	120,430	108,817	130,794	98,453	21,977	10,364
	AAC>1 & AAF<=0.0001	65,982	68,518	74,362	60,138	5,844	8,380
	AAF>0.001 & AAF<=0.01	4,065	4,813	4,878	4,000	65	813
	AAF>0.01	236	299	311	224	12	75
Splice donor	Singleton (AAC=1)	27,177	27,000	29,192	24,985	2,192	2,015
	AAC>1 & AAF<=0.0001	16,549	17,209	17,875	15,883	666	1,326
	AAF>0.001 & AAF<=0.01	1,097	1,143	1,155	1,085	12	58
	AAF>0.01	63	67	70	60	3	7
Splice acceptor	Singleton (AAC=1)	21,344	21,693	23,321	19,716	1,628	1,977
	AAC>1 & AAF<=0.0001	11,993	12,814	13,320	11,487	506	1,327
	AAF>0.001 & AAF<=0.01	721	749	752	718	3	31
	AAF>0.01	39	41	41	39	0	2
Start lost	Singleton (AAC=1)	6,250	5,968	6,418	5,800	450	168
	AAC>1 & AAF<=0.0001	5,351	5,307	5,537	5,121	230	186
	AAF>0.001 & AAF<=0.01	421	432	436	417	4	15
	AAF>0.01	36	37	37	36	0	1
Stop lost	Singleton (AAC=1)	2,678	2,509	2,810	2,377	301	132
	AAC>1 & AAF<=0.0001	1,751	1,736	1,847	1,640	111	96
	AAF>0.001 & AAF<=0.01	153	155	158	150	3	5
	AAF>0.01	17	17	17	17	0	0
5' UTR splice	Singleton (AAC=1)	1,559	1,113	1,741	931	628	182
acceptor	AAC>1 & AAF<=0.0001	1,066	811	1,171	706	360	105
	AAF>0.001 & AAF<=0.01	94	98	99	93	1	5
	AAF>0.01	10	11	11	10	0	1
3' UTR splice	Singleton (AAC=1)	134	23	136	21	113	2
acceptor	AAC>1 & AAF<=0.0001	103	42	106	39	64	3
	AAF>0.001 & AAF<=0.01	16	18	18	16	0	2
	AAF>0.01	1	1	1	1	0	0
5' UTR splice	Singleton (AAC=1)	2,119	284	2,139	264	1,855	20
donor	AAC>1 & AAF<=0.0001	1,655	476	1,699	432	1,223	44
	AAF>0.001 & AAF<=0.01	155	152	158	149	6	3
	AAF>0.01	25	25	25	25	0	0
3' UTR splice	Singleton (AAC=1)	178	153	199	132	46	21
donor	AAC>1 & AAF<=0.0001	124	121	136	109	15	12

AAF>0.001 & AAF<=0.01	20	21	21	20	0	1
AAF>0.01	8	7	8	7	1	0

Supplementary Table 4. Number of canonical coding variants in target capture regions for WGS and WES+IMP datasets. Count of variants for each coding consequence when limiting to variants within the WES targeted capture regions. Variants were annotated with VEP and genes were defined by Ensembl v100. pLoFs included frameshift, splice donor, splice acceptor, stop gained, stop lost, and start lost variants.

Consequence	WGS	WES+IMP	Union	Intersection	WGS only	WES+IMP only
Missense	4155578	4244803	4279583	4120798	34780	124005
Synonymous	1964215	2003872	2016349	1951738	12477	52134
In-frame indel	84619	69754	89655	64718	19901	5036
pLoF	358211	356825	385531	329505	28706	27320

Supplementary Table 5. Single variant signal consequences by platforms with association observed. Count of variants for each consequence with an observed trait association, given by the platforms in which the signal is observed. Variants were annotated with VEP and genes were defined by Ensembl v100.

Consequence	ІМР	IMP, WES	IMP, WES, WGS	IMP, WGS	WES	WES, WGS	WGS
3' UTR	0	0	75	27	0	0	1
5' UTR	0	0	27	9	0	0	0
Downstream	1	0	108	23	0	0	2
Frameshift	0	0	5	0	0	1	0
In-frame indel	0	0	6	0	0	0	0
Intergenic	17	0	422	691	0	0	38
Intronic	8	1	1,014	467	7	2	22
Missense	0	0	281	0	1	1	0
Splice donor	0	0	2	0	0	1	0
Splice region	0	0	6	0	0	0	0
Stop gained	0	0	10	0	0	0	0
Synonymous	0	0	28	0	0	0	0
Upstream	0	0	198	66	1	0	1

Supplementary Table 6. Gene burden mask definitions. For gene-based testing, variants were grouped into seven different masks by variant consequence. The variants were annotated with VEP and Ensembl 100, and aggregated into masks for tests in Regenie.

Mask	Variant consequences included
pLoF	stop_gained, stop_gain, frameshift, splice_donor, splice_acceptor
	stop_gained, stop_gain, frameshift, splice_donor, splice_acceptor, start_lost, stop_lost,
pLoF_missense_5	missense(5/5)
	<pre>stop_gained, stop_gain, frameshift, splice_donor, splice_acceptor, start_lost, stop_lost, missense(5/5), missense(>=1/5), UTR_splice_donor, 5_prime_UTR_splice_donor, 3 prime_UTR_splice_donor, UTR_splice_acceptor, 5 prime_UTR_splice_acceptor,</pre>
pLoF_missense_1	3_prime_UTR_splice_acceptor
	stop_gained, stop_gain, frameshift, splice_donor, splice_acceptor, start_lost, stop_lost,
pLoF_missense_0	missense(5/5), missense(>=1/5), missense(0/5), UTR_splice_donor,

	5_prime_UTR_splice_donor, 3_prime_UTR_splice_donor, UTR_splice_acceptor, 5_prime_UTR_splice_acceptor, 3_prime_UTR_splice_acceptor
missense_5	start_lost, stop_lost, missense(5/5)
missense_1	start_lost, stop_lost, missense(5/5), missense(>=1/5)
missense_0	start_lost, stop_lost, missense(5/5), missense(>=1/5), missense(0/5)

Supplementary Table 7. Significant single variant tests. *Attached*.

Supplementary Table 8. Significant gene-based tests.

Attached.

References

- Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Austine-Orimoloye, O., Azov, A. G., Barnes, I., & Bennett, R. (2022). Ensembl 2022. *Nucleic acids research*, *50*(D1), D988-D995.
- Liu, Y., Chen, S., Li, Z., Morrison, A. C., Boerwinkle, E., & Lin, X. (2019). ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies. *The American Journal of Human Genetics*, *104*(3), 410-421.
- McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., & Cunningham, F. (2016). The ensembl variant effect predictor. *Genome biology*, *17*(1), 1-14.