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ABSTRACT 

 

There is a problem of clinical trial failure, as each new drug should surpass the effectiveness of 

existing treatment regimens, which becomes increasingly challenging over time. Another 

significant issue is treating patients who have developed resistance to the current therapies. 

Essentially, the use of drug combinations or off-label drug use, where the indication does not 

match the diagnosis, is akin to an experiment, as there is insufficient data on which drug or 

combination to use. 

 

This work proposes an approach utilizing computer modeling of patients using gene expression 

and clinical data. Deep learning and generative adversarial networks are employed as modeling 

tools. The training data for the algorithms were sourced from publicly available databases such 

as TCGA and Drugbank. 

 

The modeling is based on the hypothesis of similarity between patients, similarity between 

drugs, as well as the similarity between individual organs and patient tissues with cell lines, with 

similarity being computed mathematically. As a result, a patient model is created, where the 

input consists of drugs and their combinations, and the output provides survival probability 

values. These model data can be generated in any required quantity with generative adversarial 

networks (GAN) technology to create observation and control groups. Consequently, it becomes 

possible to simulate clinical trials, forecasting their outcomes, and, most importantly, optimizing 

the trial parameters to maximize the likelihood of success. 

 

Introduction 

 

Many studies have focused on determining whether a patient will surpass the threshold of a 

defined OS or PFI, leading to classification tasks. Researchers attempt to classify whether a 

patient will have a positive or negative response to a given therapy [1]. 

 

Some approaches predict the response to specific therapeutic agents, but they are limited to a 

small number of chemotherapy drugs, typically less than ten. Models for other drugs have not 

been trained [2]. 

 

The existing methods for predicting the effectiveness of clinical trials or clinical outcomes are 

based on different approaches. However, there is limited research available (less than 45 out of 

1900) that incorporates transcriptomic analysis data. 
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Turki proposed the use of a technique known as transfer learning. The approaches utilized 

included correlation alignment for unsupervised domain adaptation (CORAL), specifically 

CORAL-SVM, as well as boosting for transfer learning. These methods enabled the extraction 

of gene expression data most relevant to drug sensitivity. Various strategies were employed by 

the authors to standardize data across training and testing datasets. Recognizing the limitations 

of these approaches, the authors developed a novel method based on support vector machines 

(SVM), xgboost, DeepBoost, and decision trees. This new approach demonstrated enhanced 

effectiveness, albeit restricted to assessing potential drug sensitivity in patients. The task of 

predicting patients' survival time was not addressed [3]. 

In their intriguing study, López-García employed a densely-connected multi-layer feed-forward 

neural network (MLNN) model for the prediction of lung-cancer patient's progression-free 

interval (PFI). The training dataset consisted of gene expression profiles from patients with 

various tumor conditions, along with information on the time of occurrence of adverse events. 

To optimize the MLNN model's performance, a Bayesian optimization procedure with 100 

iterations was applied to collectively fine-tune all hyper-parameters. The trained neural network 

was then utilized to forecast the PFI duration in lung-cancer patients. Notably, the analysis 

excluded any influence of medications on patient survival outcomes. 

Fascinating research is being conducted regarding the prediction of prostate cancer recurrence 

[4]. Among several methods applied, the best was random forest model with accuracy 74.2%.  

Common tasks include tumor classification based on gene expression, although without 

considering them in conjunction with the administered treatments [5]. 

 

It is interesting to provide examples of research where gene expression information was not 

utilized as input data. For instance, in the study conducted by Motwani, machine learning 

techniques were employed to predict 5-year all-cause mortality (ACM) in patients undergoing 

coronary computed tomographic angiography (CCTA) [6]. The performance of this prediction 

was compared to existing clinical or CCTA metrics. Notably, a smaller set of input features was 

used for this prediction compared to our study. Specifically, twenty-five clinical and 44 CCTA 

parameters were assessed. The predictive classifiers for ACM were developed using an 

ensemble classification approach, specifically employing an iterative LogitBoost algorithm 

utilizing decision stumps (single-node decision trees) for each feature-selected variable as base 

classifiers. This method demonstrated greater efficacy compared to classical predictive 

approaches, achieving an AUC of 0.79 (0.77-0.81). 

In the research by Susai et al., vector machine learning techniques were applied to construct 

predictive models for functional outcomes at the 12-month mark. The input data in this case 

encompassed cytokine level determinations. It is conceivable that the authors encountered 

challenges in predicting outcomes within a timeframe of less than 12 months. To explore the 

relationship between two factors observed over a 6-month period, linear regression models 

were developed [7]. 

In another study, Chen et al. employed boosted decision tree, support vector machine, 

nonparametric random forest, and neural network models to forecast 5-year survivorship in 

Ewing sarcoma patients [8]. For both cancer-specific survival and overall survival predictions, 

performance metrics slightly favored the random forest method over the other models, with 
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sensitivities of 77% and 83%, and specificities of 91% and 94%, respectively. While the 

approach appears intriguing, it is important to note that gene expression data were not utilized. 

A noteworthy precedent exists in predicting survival within a 1-year timeframe; however, this 

previous approach did not leverage transcriptomic analysis data. The experimental dataset 

comprised 14,885 records featuring 22 continuous variables and 43 categorical variables [9]. 

One of the studies presents a highly efficient approach for predicting the successful completion 

of Phase 2 clinical trials [10]. However, this approach lacks patient-level detail, including the 

omission of omics data from the patient profile during training. As a result, it is unable to derive 

biomarkers that significantly influence outcomes and could serve as criteria for inclusion or 

exclusion. Consequently, this method is unsuitable for assessing a patient's relevance to a 

clinical trial. Furthermore, this approach cannot be employed for quantitatively forecasting the 

effectiveness of the tested compound in surpassing existing treatment standards. 

 

In this work, we aim to predict the period of event-free survival in terms of the number of 

months, solving a regression task for each interval type: OS and PFI. Moreover, we will train the 

model not only for chemotherapy agents but also for targeted drugs, such as small molecule 

inhibitors, antagonists, and their combinations. 

 

As a result, this model will allow input parameters of patient groups with a specific diagnosis, 

loading their genomic profiles and clinical data from databases (or generating them), as well as 

the drugs planned for testing on these patients. The model will predict survival curves for patient 

groups and the percentages of response categories. The drugs can be any, including those that 

have never been used for a given diagnosis. 

 

The prediction of overall survival (OS) and disease-free survival (PFI) periods is influenced by 

both gene expression data, which provide evidence of pathway activation, and clinical data such 

as patient age and disease stage. 

 

The underlying hypothesis of this study is that patients who are similar in terms of gene 

expression profiles and clinical data will respond similarly to drugs that share similarities. 

Therefore, the challenge is to represent these input data in a machine-readable format to 

mathematically determine the measure of similarity between them. 

 

 

Methods 

 

We obtained patient data and drug information from the TCGA (The Cancer Genome Atlas) 

database located at https://gdc.cancer.gov [11]. Biologicals were excluded, and only small 

molecules, including targeted therapies and chemotherapeutic agents, were retained. The 

dataset consisted of information on 3225 patients and the effects of 161 drugs. 

 

According to our hypothesis, the patient's profile includes three groups of factors, and each of 

these groups contributes approximately equally to the duration of overall survival (OS) and 

disease-free survival (PFI) intervals. The first group comprises clinical data such as age, 
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diagnosis, and disease stage. The second group consists of genetic data, specifically gene 

expression profiles, which capture the functional characteristics of genes. The third group 

represents the drug or combination of drugs used for patient treatment. Therefore, it is 

necessary to ensure that all three groups of factors have comparable dimensions of influence. 

 

The following clinical data were available: age, disease stage, diagnosis, gender, duration of OS 

and PFI intervals, along with information on the occurrence of events. One-hot encoding was 

employed to encode the clinical variables. For instance, age was divided into eight intervals, 

and a separate column was created for each interval ('10-20', '21-30', ..., '81-90'). If a patient's 

age fell within the first interval, a value of 1 was assigned to the corresponding column, while 

the rest were assigned 0, and so on. The same approach was applied to disease stages ('Stage 

I', ..., 'Stage IV'), where stages IA and IC were denoted by a value of 1 in the 'Stage I' column. 

Similarly, diagnoses were represented using 33 additional columns with their respective names. 

Thus, together with binary gender representation, we had a total of 46 clinical feature columns. 

 

For drug data, we obtained information from the DrugBank database [12]. We represented the 

drug molecules using SMILES (Simplified Molecular Input Line Entry System) notation, which 

were then converted into 100-dimensional vectors using embedding techniques derived from 

natural language processing technologies. The RDKit [13], mol2vec [14], and word2vec [15] 

libraries for Python were utilized for this purpose. To represent combinations of drugs, we 

employed vector addition of the individual drug vectors. 

As the outcome measure for prediction, we considered numerical values representing the 

durations of OS and PFI intervals for each respective task. 

 

The challenge of accurate training lies in the fact that the algorithm cannot distinguish between 

patients with a short survival period and those who experienced a short follow-up period after 

diagnosis, possibly indicating longer potential survival. The algorithm needs to exemplify true 

short-term survivors, which would include individuals who indisputably passed away after a brief 

observation time. Consequently, when constructing the training dataset, it is necessary to 

exclude all individuals with a short survival period who are still alive. 

 

To address this, we will omit the lower quartile of intervals for patients who were alive at their 

last observation (Fig. 1). This corresponds to 500 days for Overall Survival (OS). This approach 

aligns with the biological rationale: if a patient survives the initial year and a half, they can be 

utilized as a "long-liver" for training purposes. Similarly, for disease-free survival, the equivalent 

cutoff is the first 365 days from the initiation of therapy, as early relapses occur within the initial 

year. This methodology thus aligns with clinical significance. 

 

(a)       (b) 
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Fig. 1.  Patient datasets sorted by overall survival (a) and progression free interval (b)  

 

The gene expression data included no fewer than 20,000 genes. However, including all of them 

in the dataset would result in an imbalanced training set. For optimal training, the gene 

expression data should be reduced to several hundred genes. 

 

To reduce dimensionality, we performed a feature importance analysis on the complete set of 

genes to select the top 150 most significant genes. We utilized the SHAP library for Python [16, 

17] to determine the feature importances. 

For the model we used the Keras library for deep learning. We trained our models to predict the 

number of months for overall survival (OS) and progression free interval (PFI). 

 

We addressed three types of problems to solve: 

1. Regression: Predicting the duration in months for OS and PFI. 

2. Binary classification: Predicting the occurrence of events (death or recurrence) for OS and 

PFI. 

3. Multi-class classification: Predicting the response type according to the RECIST scale 

('Complete', 'Partial', 'Progressive', 'Stable'). 

For the prediction quality control we use 5-fold cross-validation. 

 

It is necessary to compare our results with data from real clinical trials from open sources 

containing sufficient data for Kaplan-Meiers curve construction for OS and PFI [18, 19]. Let's 

predict the outcomes of these trials by specifying into our approach their initial parameters: the 

diagnosis of the tested patients and the molecule(s) or their combination involved. Additionally, 

we extracted response categories to therapy from the clinicaltrials.gov.  

 

As patient cohorts, we will assemble the necessary number of patients with known gene 

expression from the TCGA database. However, for certain diagnoses, the database contains a 

limited number of patients, which would hinder the construction of robust survival curves. To 

avoid this, we obtained additional synthetic patients’ data using generative adversarial networks 

(GAN) technology, which has been successfully used in various industries, such as image 

generation [20]. To implement GAN, we used the sdv library [21], in particular, the CTGAN 
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module [22]. Thanks to this approach, we will generate the necessary amount of patient tabular 

data containing gene expression and clinical information. 

 

 

 
Fig. 2. Overall workflow diagram 

 

 

Results 

 

 

1. Regression accuracy for OS and PFI intervals prediction after cross-validation is 

presented in Table 1. 

 

 

 Overall survival (OS) Progression free interval (PFI) 

Pearsons correlation 0.975 0.986 

R2 0.89 0.94 

RMSE 6.05 4.52 

MAE 3.85 3.71 

 

Table 1. Regression accuracy  
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2. Binary classification for predicting the occurrence of events (death or recurrence): OS - 

0.77 ROC AUC, PFI - 0.73 

3. Results of multi-class classification of the response type according to the RECIST scale 

are presented in Table 2. 

 

 

 precision recall f1-score Total patients  

Complete 1.00 0.77 0.87 811 

Partial 0 0 0 133 

Progressive 0.60 0.56 0.58 435 

Stable 0.54 1.00 0.70 223 

accuracy 0.68 1602 

weighted average 0.74 0.68 0.69 1602 

 

Table 2. Multi-class classification accuracy. 

 

To model real clinical trials with known outcomes, trials involving biological molecules were excluded 

from the available data, retaining only trials involving small molecules. Trials for three diagnoses 

were selected: breast cancer, lung cancer, and prostate adenocarcinoma. A total of 80 patient 

groups were utilized, including: 

 

- Lung cancer: 28 trials, 38 pairs of curves 

- Breast cancer (BC): 15 trials, 22 pairs of curves 

- Prostate cancer: 6 trials, 11 pairs of curves 

 

In 8 cases, prediction failures occurred, resulting in the inability to construct curves. Figure 3 

displays curves for real and predicted patient groups using the described approach. Figure 4 

illustrates the distribution of Pearson correlations between real and predicted curves. 

 

 

a) Overall survival  

 

1. Breast cancer 
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2. Lung cancer 
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3. Prostate adenocarcinoma 
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b) PFI 

 

1. Breast cancer 
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2. Lung cancer 

 

 
 

 

3. Prostate adenocarcinoma 
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Fig. 3. Kaplan-Meier curves for real and predicted clinical trials. 

 

 

 

 
a) Breast cancer    b) Lung    c) Prostate 

 

Fig. 4. Pearson correlations between real and predicted Kaplan-Meier curves 

 

Results of multi-class classification of the response type for the real clinical trials with known 

outcomes was conducted based on the percentage of objective responses (OR), as this metric was 

the only one available for the majority of trials. Consequently, the algorithm predicted four response 

categories on the RECIST scale mentioned above, from which the proportion of patients with OR 

was derived through summation. Prediction was performed for a total of 47 trials The following 

accuracy was achieved between these quantitative characteristics: mean average error (MAE) = 

0.27 (95% CI: 0.21 - 0.33) 
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Discussion 

 

Utilization of vast and valuable datasets, such as patient OMICS data, remains a common 

challenge in clinical trial planning. Yet, the utilization of such data types allows for the 

consideration of molecular tumor characteristics, which, in turn, can aid researchers in 

identifying the necessary biomarkers as criteria for the application of newly developed drugs. 

While most new anticancer drugs possess biomarkers, they are primarily derived from 

preclinical studies and represent a fragmented mechanism targeted by the drug. However, such 

an approach fails to account for biomarker combinations, such as parallel oncogenic signaling 

pathways, potentially leading to resistance or recurrence due to selection based on a single 

marker. 

 

The proposed approach aims to address this issue by identifying key features within patient 

cohorts, leveraging omics data available in the initial datasets, particularly gene expression. 

This also extends to synthetic patients generated by generative networks. At first glance, this 

approach may appear to generate non-existent patients, potentially distorting the trial modeling 

landscape. However, the generation of new patients is rooted in existing examples, resulting in 

the variances of attributes in the generated patients (e.g., gene expression, disease stage, or 

age) corresponding to the variances of these attributes in real patients. Consequently, with the 

expansion of the patient dataset, there is a high likelihood of the emergence of patients akin to 

those currently being artificially generated. 

 

Visual analysis of Kaplan-Meier curve plots reveals that the method's errors lie not in the quality 

of the plots but in quantitative characteristics. This signifies that, for more successful operation, 

a larger volume of data is required. 

 

 

Conclusion 

 

The paper introduces a method for modeling clinical trials using omics data. It is designed to 

enhance the accuracy of protocol planning and interactively test hypotheses regarding the 

effectiveness and safety of newly developed drugs. 

 

Based on the literature analysis, no approaches similar to the one presented have been found. 

This approach utilizes detailed patient-level data, full transcriptomic data, and incorporates 

clinical trial metrics as the objective function. The approach of generating synthetic patients has 

shown positive results, improving prediction accuracy both quantitatively and visually. 

 

The presented approach, when implemented as a software platform, aims to expedite the drug 

discovery processes. 
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