Supplementary Material

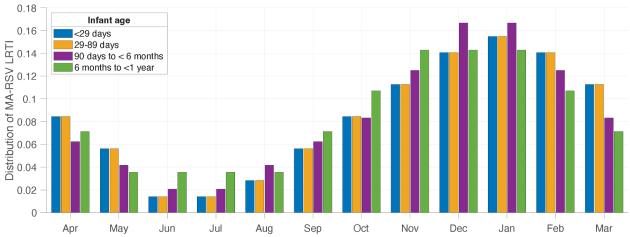
Cost-Effectiveness Analysis of Nirsevimab and RSVpreF Vaccine Prevention Strategies for Respiratory Syncytial Virus Disease: A Canadian Immunization Research Network (CIRN) Study

Affan Shoukat,¹ Elaheh Abdollahi,² Alison P. Galvani,² Scott A. Halperin,³ Joanne M. Langley,³ Seyed M. Moghadas¹

¹ Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada ² Center for Infectious Disease Modeling and Analysis (CIDMA), Yale School of Public Health, New Haven, CT, USA

³ Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, Nova Scotia, Canada

This Supplemental provides additional information for parameterisation of the model, additional figures supporting results reported in the main text, and the results of secondary analyses with willingness-to-pay thresholds of \$30,000 and \$70,000.


1. Model scenarios and inputs

Scenarios evaluated in the model are summarised in Table A1 below:

		Immunisation coverage			
Immunisation Program	Target population	Basecase analysis	Secondary analysis		
L1	Infants ≤32 wGA, and infants with CLD or CHD	100%	80%		
L2	Infants ≤36 wGA, and infants with CLD or CHD	100%	80%		
L3	Infants ≤36 wGA, and infants with CLD or CHD, and infants ≥37 wGA born during the RSV season	100%	80%		

L3	Entire birth cohort	100%	80%
МІ	Pregnant women	100%	60%
LMI	Infants ≤32 wGA, and infants with CLD or CHD	100%	80%
	pregnant women	100%	60%

The birth cohort included 1113 infants with approximately 93 births per month, of which $\sim 2\%$ were born at less than 33 wGA and $\sim 6\%$ were preterm of 33-35 wGA. The population size of infants targeted in L1, L2, L3, and L4 were 38, 104, 582, and 1113 per 100,000 population.

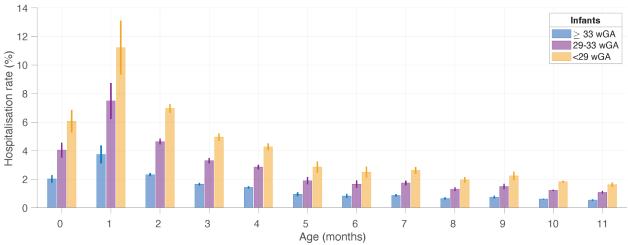


Figure A1. Seasonal distribution of MA-RSV LRTI for infants under 1 year of age. To generate the distribution, we considered the estimated medically attended RSV infection, on a monthly basis, for 9 seasons from 2010-11 to 2018-2019.¹ Applying the rates of MA RSV reported for infants under 1 year of age (Table A2), monthly distribution of MA RSV LRTI for different age groups among infants was generated by averaging each month over the 9 seasons.

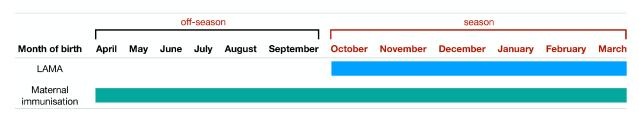
Table A2. Rates of MA RSV LRTI among infants under 1 year of age.¹ Rates were derived from previously published study, estimating the rate of MA RSV among all age groups in the population (Table 1 in Ref. 1).

Age	Rate
< 29 days	5.1%
29–89 days	14.7%

90 days to < 6 months	11.12%
6 months to < 1 year	11.9%

Figure A2. Hospitalisation rates of MA RSV LRT infants based on wGA and age at incidence derived from previously published studies.^{2,3} The range of rates are reported in Table A3.

wGA	Age at incidence (months)											
≥33	0	1	2	3	4	5	6	7	8	9	10	11
Low	1.76	3.11	2.22	1.56	1.35	0.82	0.70	0.79	0.59	0.65	0.59	0.49
High	2.28	4.37	2.42	1.74	1.50	1.08	0.96	0.95	0.72	0.84	0.63	0.59
mean	2.02	3.74	2.32	1.65	1.425	0.95	0.83	0.87	0.655	0.745	0.61	0.54
29-32												
Low	3.52	6.22	4.44	3.12	2.70	1.64	1.40	1.58	1.18	1.30	1.18	0.98
High	4.56	8.74	4.84	3.48	3.00	2.16	1.92	1.90	1.44	1.68	1.26	1.18
mean	4.04	7.48	4.64	3.3	2.85	1.9	1.66	1.74	1.31	1.49	1.22	1.08
<29												
Low	5.28	9.33	6.66	4.68	4.05	2.46	2.10	2.37	1.77	1.95	1.77	1.47


 Table A3. Hospitalisation rates (%) by wGA and age at incidence.

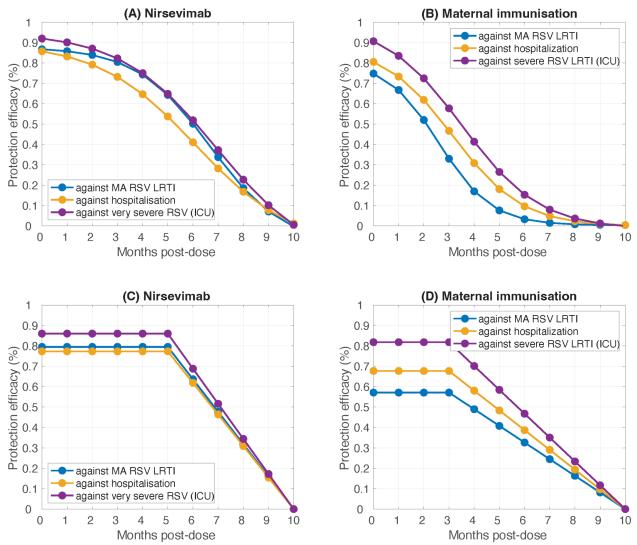
High	6.84	13.11	7.26	5.22	4.50	3.24	2.88	2.85	2.16	2.52	1.89	1.77
mean	6.06	11.22	6.96	4.95	4.275	2.85	2.49	2.61	1.965	2.235	1.83	1.62

The probability of hospitalisation (p_c) for infants with CLD or CHD condition was determined by

$$p_c(a) = \frac{p_0(a)L}{1 + p_0(a)L - p_0(a)},$$

where $p_0(a)$ is the probability of hospitalisation for infants without CLD or CHD at age a in months (Table A3), and L is the likelihood of hospitalisation for infants with CLD or CHD compared to those without these conditions.^{4,5}

Figure A3. Timelines of immunisation. Nirsevimab is offered at birth to infants born during RSV season from the start of October to the end of March. Those who are born off-season are immunised with nirsevimab at the start of season in October. Maternal immunisation is offered to pregnant women year-round, during the third trimester before gestation week 33.


2. Temporal decline of efficacy

To parameterize the model with temporal efficacy of nirsevimab and RSVpreF, we considered a sigmoidal decay function over a 10-month period, given by

$$V_e(t) = VE_{max} - \frac{(VE_{max} - VE_{min})a}{b + e^{-ct}}$$

where VE_{mean} is the mean efficacy estimated during the follow-up period post vaccination, VE_{max} and VE_{min} are the maximum and minimum efficacy estimates during the study period. Assuming that the vaccine efficacy reduced to zero at 10 months after vaccination,⁶ we estimated the parameters a > 0, b > 0, and c > 0 (using curve fitting function in Matlab) to derive estimates with the same average residual protections as reported in clinical trials for the first 5 months post immunisation. Figure A4 (A,B) illustrates the decline of protection efficacy over a 10-month period post-dose for different outcomes.

We also considered constant vaccine efficacy profiles for each outcome with the mean

estimates reported in clinical trials over the study period, followed by a linear decline to a zero protection at 10 months after immunisation (Figure A4, C-D).

Figure A4. Vaccine efficacy profiles. Panel (A) and (B) correspond to sigmoidal decay of protection for each outcome after a single dose of nirsevimab and RSVpreF, respectively. Panel (C) and (D) correspond to constant protection efficacy followed by a linear decline to zero after a single dose of nirsevimab and RSVpreF, respectively.

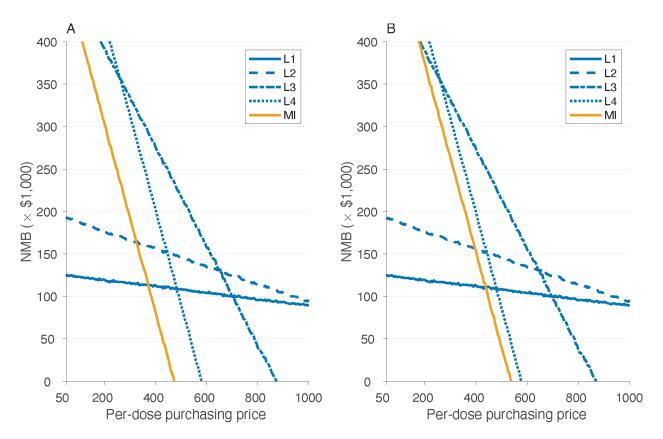
3. Reduction of direct and indirect costs

Table A4. Reduction of direct (outpatient and inpatient) costs and indirect costs using intervention scenarios evaluated with 100% coverage of nirsevimab and 100% coverage of maternal vaccination, compared to no intervention.

	Reduction of costs (%)							
Intervention	Outpatient (95% CI)	Inpatient (95% CI)	indirect (95% CI)					
Sigmoidal vaccin	e efficacy profiles							
L1	2.40	11.24	2.80					
	(2.36 to 2.44)	(10.36 to 12.11)	(2.73 to 2.87)					
L2	6.31	16.86	6.73					
	(6.25 to 6.38)	(15.96 to 17.74)	(6.64 to 6.83)					
L3	41.30	63.21	41.29					
	(41.20 to 41.42)	(62.17 to 64.25)	(41.18 to 41.42)					
L4	64.73	79.93	64.99					
	(64.58 to 64.90)	(79.04 to 80.78)	(64.82 to 65.15)					
MI	38.13	76.13	38.05					
	(37.98 to 38.28)	(75.23 to 76.95)	(37.89 to 38.21)					
LMI	39.26	78.11	39.28					
	(39.11 to 39.41)	(77.28 to 78.91)	(39.13 to 39.45)					
Constant vaccine	e efficacy profiles	•						
L1	2.37	11.21	2.77					
	(2.33 to 2.41)	(10.30 to 12.03)	(2.70 to 2.84)					
L2	6.21	16.87	6.63					
	(6.14 to 6.28)	(15.90 to 17.75)	(6.54 to 6.72)					
L3	40.52	63.12	40.55					
	(40.42 to 40.63)	(62.07 to 64.12)	(40.44 to 40.69)					
L4	63.66	79.83	63.97					
	(63.53 to 63.80)	(78.91 to 80.64)	(63.82 to 64.12)					
MI	45.93	84.24	46.23					
	(45.78 to 46.09)	(83.47 to 84.88)	(46.07 to 46.39)					
LMI	46.75	85.10	47.09					
	(46.61 to 46.91)	(84.38 to 85.75)	(46.94 to 47.26)					

Table A5. Reduction of direct (outpatient and inpatient) costs and indirect costs using intervention scenarios evaluated with 80% coverage of nirsevimab and 60% coverage of maternal vaccination, compared to no intervention.

	Reduction of costs (%)								
Intervention	Outpatient (95% CI)	Inpatient (95% CI)	indirect (95% CI)						
Sigmoidal vaccin	Sigmoidal vaccine efficacy profiles								
L1	1.92	9.01	2.25						
	(1.88 to 1.95)	(8.19 to 9.72)	(2.18 to 2.31)						
L2	5.06	13.70	5.42						
	(5.00 to 5.12)	(12.83 to 14.57)	(5.33 to 5.50)						
L3	33.03	50.63	33.03						
	(32.92 to 33.14)	(49.61 to 51.73)	(32.90 to 33.14)						
L4	51.80	63.80	52.00						
	(51.64 to 51.94)	(62.76 to 64.87)	(51.84 to 52.15)						
MI	22.83	45.43	22.83						
	(22.70 to 22.95)	(44.33 to 46.54)	(22.70 to 22.98)						
LMI	24.15	49.90	24.32						
	(24.02 to 24.27)	(48.83 to 50.96)	(24.18 to 24.45)						
Constant vaccine	efficacy profiles								
L1	1.89	8.97	2.22						
	(1.85 to 1.93)	(8.18 to 9.71)	(2.15 to 2.28)						
L2	4.98	13.64	5.34						
	(4.92 to 5.04)	(12.78 to 14.50)	(5.26 to 5.43)						
L3	32.41	50.51	32.43						
	(32.30 to 32.52)	(49.45 to 51.58)	(32.31 to 32.54)						
L4	50.94	63.72	51.18						
	(50.79 to 51.07)	(62.66 to 64.72)	(51.03 to 51.32)						
MI	27.51	50.02	27.73						
	(27.38 to 27.65)	(48.93 to 51.07)	(27.58 to 27.88)						
LMI	28.67	54.07	29.04						
	(28.55 to 28.81)	(52.96 to 55.10)	(28.89 to 29.18)						


4. Secondary analyses with a WTP of \$50,000 per QALY gained

4.1. 100% coverage of nirsevimab and 100% coverage of maternal vaccination

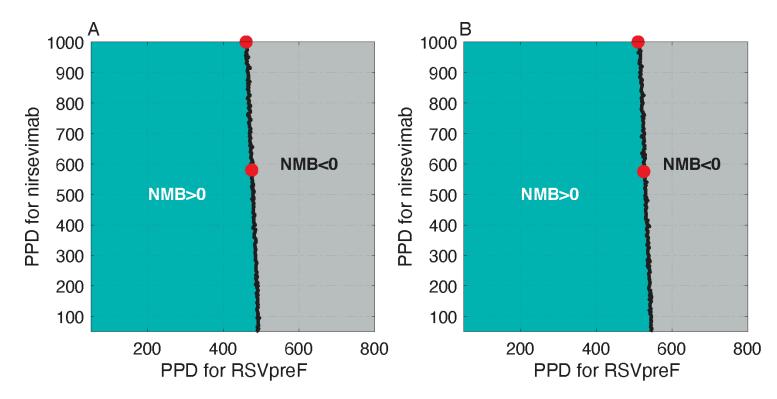
Table A6. Reduction of RSV-related outcomes (%) in intervention programs compared to no intervention with 100% coverage of nirsevimab and 100% coverage of maternal vaccination, corresponding to Figure 2 of the main text.

Intervention	Outpatient (95% CI)	Inpatient (95% CI)	Death (95% CI)					
Sigmoidal vaccine efficacy profiles								
L1	2.0 (2.0 to 2.1)	6.2 (5.8 to 6.6)	24.3 (16.0 to 33.2)					
L2	5.9 (5.8 to 5.9)	11.1 (10.6 11.6)	36.3 (26.8 to 46.5)					
L3	38.9 (38.8 to 39.0)	61.2 (60.4 to 62.1)	67.9 (58.8 to 77.3)					
L4	63.4 (63.2 to 63.5)	79.3 (78.7 to 80.1)	77.8 (69.6 to 82.3)					
МІ	34.0 (33.9 to 34.2)	72.8 (72.1 to 73.5)	72.4 (62.5 to 81.9)					
LMI	35.2 (35.0 to 35.3)	74.2 (73.5 to 74.9)	76.8 (67.1 to 85.8)					
Constant vaccine	e efficacy profiles							
L1	2.0 (2.0 to 2.0)	6.1 (5.7 to 6.6)	24.3 (16.0 to 33.2)					
L2	5.8 (5.7 to 5.8)	11.0 (10.5 to 11.6)	36.3 (26.8 to 46.5)					
L3	38.1 (38.0 to 38.2)	60.8 (60.0 to 61.7)	67.9 (58.4 to 77.4)					
L4	62.3 (62.1 to 62.4)	78.9 (78.2 to 79.6)	77.9 (69.3 to 85.4)					
МІ	42.3 (42.1 to 42.4)	80.6 (80.0 to 81.2)	80.1 (71.4 to 88.9)					
LMI	43.1 (43.0 to 43.3)	81.3 (80.6 to 81.9)	82.3 (74.0 to 90.2)					

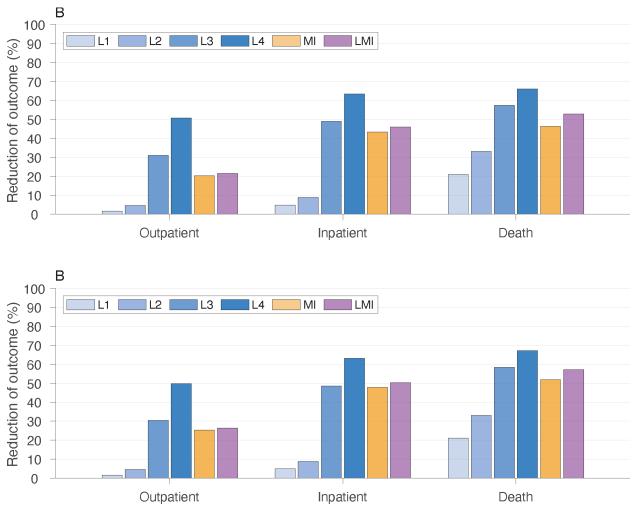
The results in this section include the monetary loss of life as an indirect cost in the costeffectiveness analysis from a societal perspective.

Figure A5. Estimated net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$50,000 per QALY gained with the inclusion of monetary loss of life due to RSV-related infant mortality. Panels (A) and (B) correspond to the analysis from a societal perspective using sigmoidal and constant vaccine efficacy profiles, respectively. Note that the inclusion of monetary loss due to infant mortality (as an indirect cost) does not affect cost-effectiveness analysis from a healthcare perspective.

Table A7. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from a societal perspective at the WTP of \$50,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table 3 and 4 of the main text are applicable for the healthcare perspective.


Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% Cl)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal pers	pective, sigmoida	al vaccine efficacy profiles				•
L1	1,000	-38,282 (-60,190 to -17,798)	1.023 (0.607 to 1.479)	-37,439 (-41,487 to-28,904)	Cost-saving	15,688
L2	1,000	-17,393 (-44,625 to 7,446)	1.533 (1.025 to 2.083)	-11,345 (-21,523 to 7,164)	100%	66,571
L3	870	142,571 (107,290 to 176,328)	2.904 (2.256 to 3.595)	49,091 (29,780 to 78,778)	52%	334,811
L4	580	165,298 (126,772 to 201,367)	3.324 (2.635 to 4.065)	49,721 (31,088 to 76,585)	50%	406,748
MI	470	151,898 (113,226 to 188,026)	3.101 (2.406 to 3.882)	48,980 (29,229 to 78,462)	52%	349,576
Societal pers	pective, constant	t vaccine efficacy profiles				-
L1	1,000	-38,129 (-60,033 to -17,630)	1.022 (0.607 to 1.479)	-37,291 (-41,376 to -28,707)	Cost-saving	15,795
L2	1,000	-17,089 (-44,330 to 7,796)	1.533 (1.025 to 2.083)	-11,147 (-21,381 to 7,553)	100%	66,752

L3	865	143,040 (107,283 to 176,698)	2.895 (2.212 to 3.595)	49,406 (29,797 to 79,337)	52%	333,862
L4	575	163,397 (125,353 to 198,966)	3.327 (2.635 to 4.064)	49,118 (30,763 to 75,788)	53%	403,730
МІ	535	170,325 (129,747 to 208,487)	3.419 (2.684 to 4.209)	49,813 (30,798 to 78,090)	49%	321,215


Table A8. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from a societal perspective at the WTP of \$50,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table 5 and 6 of the main text are applicable for the healthcare perspective.

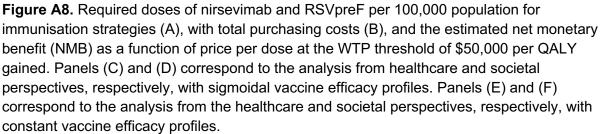
Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% CI)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal perspec	ctive, sigmoida	al vaccine efficacy profiles				
1,000	460	162,923 (125,144 to 198,706)	3.282 (2.589 to 4.023)	49,639 (3,1034 to 77,219)	50%	371,090
580	475	163,549 (125,058 to 200,848)	3.282 (2.589 to 4.023)	49,735 (30,880 to 78,871)	50%	370,880
Societal perspec	ctive, constant	vaccine efficacy profiles				
1,000	510	171,165 (130,776 to 208,772)	3.526 (2.778 to 4.344)	48,549 (30,289 to 75,213)	55%	400,735

575	525	172,376 (132,556 to 210,729)	3.526 (2.778 to 4.344)	49,035 (30,833 to 76,584)	53%	401,464
-----	-----	---------------------------------	---------------------------	------------------------------	-----	---------

Figure A6. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$50,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from a societal perspective with sigmoidal and constant vaccine efficacy profiles, respectively. Red circles correspond to the PPD values in Table A8.


4.2. 80% coverage of nirsevimab and 60% coverage of maternal vaccination

Figure A7. Overall reduction of RSV-related outpatient care (office and ED visits), inpatient care (paediatric ward and ICU admissions), and death among infants under one year of age for standalone immunisation programs with nirsevimab (L1, L2, L3, L4) and RSVpreF (MI), and combined nirsevimab and RSV-preF immunisation program (LMI), compared to the scenario without any prevention strategy. Panel (A) and (B) correspond to the sigmoidal and constant vaccine efficacy profiles, respectively.


Reduction of health outcomes presented in Figure A7 are summarised in Table A9.

Intervention	Outpatient (95% CI)	Inpatient (95% CI)	Death (95% CI)					
Sigmoidal vaccin	Sigmoidal vaccine efficacy profiles							
L1	1.6 (1.6 to 1.7)	4.9 (4.5 to 5.3)	21.1 (13.0 to 29.8)					
L2	4.7 (4.7 to 4.8)	9.0 (8.5 to 9.5)	33.1 (23.5 to 43.3)					
L3	31.1 (31.0 to 31.2)	49.0 (48.1 to 49.9)	57.1 (47.3 to 67.0)					
L4	50.7 (50.5 to 50.8)	63.5 (62.7 to 64.5)	65.9 (56.0 to 75.6)					
MI	20.4 (20.3 to 20.5)	43.4 (42.5 to 44.2)	46.0 (35.4 to 57.8)					
LMI	21.6 (21.4 to 21.7)	46.1 (45.2 to 46.9)	52.6 (42.0 to 63.3)					
Sigmoidal vaccin	e efficacy profiles							
L1	1.6 (1.6 to 1.6)	4.9 (4.5 to 5.2)	21.1 (13.0 to 29.8)					
L2	4.6 (4.6 to 4.7)	8.9 (8.4 to 9.4)	33.1 (23.5 to 43.3)					
L3	30.5 (30.4 to 30.6)	48.7 (47.8 to 49.6)	58.2 (48.6 to 67.9)					
L4	49.8 (49.7 to 49.9)	63.2 (62.4 to 64.1)	67.1 (58.1 to 76.9)					
MI	25.3 (25.2 to 25.4)	47.9 (47.0 to 48.7)	51.6 (41.4 to 62.4)					
LMI	26.4 (26.3 to 26.5)	50.3 (49.4 to 51.2)	57.1 (46.9 to 67.7)					

Table A9. Reduction of RSV-related outcomes (%) in intervention programs compared to no intervention with 80% coverage of nirsevimab and 60% coverage of maternal vaccination.

4.2.1. Cost-effectiveness analysis without monetary loss of life

Table A10. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$50,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

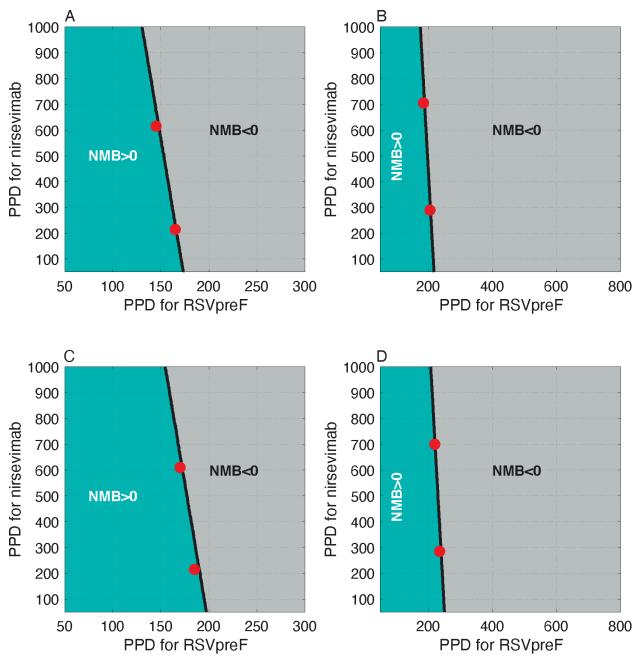
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% CI)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	rspective					
L1	615	1,001 (-368 to 2,312)	0.020 (0.014 to 0.027)	49,074 (-17,909 to 13,0531)	50%	1,029
L2	380	1,338 (-249 to 2,871)	0.031 (0.024 to 0.040)	42,543 (-7,968 to 100,737)	61%	1,368
L3	300	2,612 (-274 to 5,414)	0.077 (0.066 to 0.088)	33,985 (-3,586 to 73,369)	79%	2,692
L4	215	648 (-2,982 to 4,230)	0.091 (0.080 to 0.103)	7,136 (-32,462 to 47,950)	98%	687
MI	160	2,389 (-318 to 5,013)	0.068 (0.058 to 0.080)	34,976 (-4,485 to 77,612)	76%	2,551
Societal persp	pective					
L1	705	956 (-485 to 2,355)	0.020 (0.014 to 0.028)	46,730 (-22,840 to 132,578)	53%	3,734
L2	460	1,420 (-233 to 3,041)	0.031 (0.024 to 0.040)	45,175 (-7,152 to 106,659)	56%	8,015
L3	385	2,203 (-1,187 to 5,577)	0.077 (0.066 to 0.089)	28,577 (-15,159 to 74,875)	83%	42,242

L4	290	4,424 (215 to 8,673)	0.091 (0.080 to 0.102)	48,691 (2,268 to 98,420)	52%	67,469
MI	200	1,334 (-1,762 to 4,364)	0.068 (0.058 to 0.080)	19,525 (-25,258 to 66,318)	90%	29,245

Table A11. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$50,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% CI)	QALYs gained (95% Cl)	ICER, \$/QALY (95% Cl)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	erspective					
L1	610	951 (-383 to 2,300)	0.020 (0.014 to 0.027)	46,605 (-17,996 to 128,074)	54%	982
L2	375	1,172 (-385 to 2,683)	0.031 (0.024 to 0.040)	37,266 (-11,347 to 93,874)	68%	1,194
L3	295	1,873 (-1,054 to 4,742)	0.077 (0.066 to 0.088)	24,335 (-13,546 to 64,696)	90%	1,929
L4	215	2,681 (-927 to 6,227)	0.091 (0.080 to 0.103)	29,490 (-10,022 to 70,933)	84%	2,721
MI	185	2,309 (-599 to 5,097)	0.073 (0.062 to 0.085)	31,544 (-7,883 to 73,556)	81%	2,502
Societal pers	pective					
L1	700	945	0.020	46,279	53%	3,688

		(-470 to 2,348)	(0.014 to 0.027)	(-21,844 to 13,3081)		
L2	455	1,337 (-297 to 2,947)	0.031 (0.024 to 0.040)	42,566 (-9,033 to 103,820)	61%	7,840
L3	380	2,240 (-1,077 to 5,484)	0.077 (0.066 to 0.088)	29,101 (-13,567 to 73,876)	82%	41,479
L4	285	3,011 (-1,284 to 7,328)	0.091 (0.080 to 0.103)	33,127 (-13,956 to 83,476)	75%	65,050
MI	235	2,030 (-1,207 to 5,259)	0.073 (0.063 to 0.085)	27,715 (-15,848 to 74,388)	83%	35,869


Table A12. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$50,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	rspective				•	
615	145	1854 (-1090 to 4734)	0.075 (0.064 to 0.087)	24,640 (-14,443 to 66,016)	89%	1,880
215	165	3,173 (221 to 6,074)	0.075 (0.064 to 0.087)	42,208 (2,806 to 84,576)	65%	3,204
Societal persp	pective				1	

705	185	1,733 (-1,543 to 4,974)	0.075 (0.064 to 0.087)	23,028 (-19,838 to 69,035)	88%	31,279
290	205	2,582 (-650 to 5,822)	0.075 (0.064 to 0.087)	34,267 (-8,500 to 81,059)	75%	32,152

Table A13. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$50,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

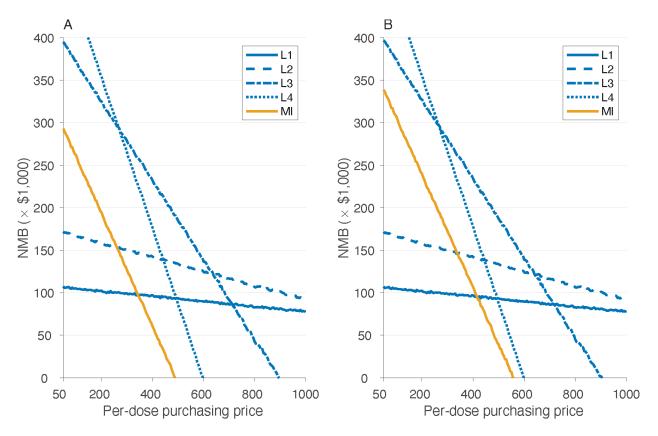
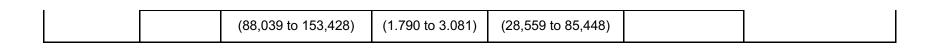

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	rspective					
610	170	2,524 (-492 to 5,541)	0.079 (0.068 to 0.091)	31,790 (-6,126 to 72,815)	81%	2,567
215	185	688 (-2,365 to 3,668)	0.079 (0.068 to 0.091)	8,660 (-29,622 to 48,272)	98%	705
Societal persp	pective					
700	220	3,445 (-91 to 6,901)	0.079 (0.068 to 0.091)	43,375 (-1,130 to 90,441)	61%	38,639
285	235	933 (-2,474 to 4,439)	0.079 (0.068 to 0.091)	11,750 (-30,796 to 57,765)	95%	36,175

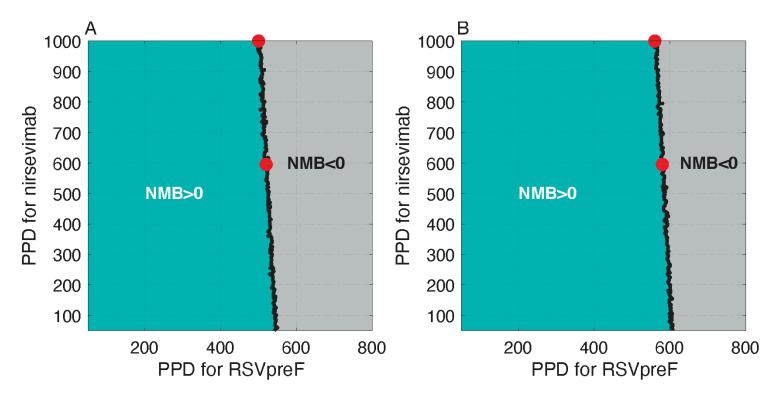
Figure A9. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$50,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles. Red circles correspond to the PPD values in Tables A12 and A13.

4.2.2. Cost-effectiveness analysis with monetary loss of life

Cost-effectiveness analyses in this section include the monetary loss of life as an indirect cost from a societal perspective. Reductions of RSV-related outcomes remain the same as reported in Figure A7 and Table A6.

Figure A10. Estimated net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$50,000 per QALY gained with the inclusion of monetary loss of life due to RSV-related infant mortality. Panels (A) and (B) correspond to the analysis from a societal perspective using sigmoidal and constant vaccine efficacy profiles, respectively. Note that the inclusion of monetary loss due to infant mortality (as an indirect cost) does not affect cost-effectiveness analysis from a healthcare perspective.


Table A14. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from a societal perspective at the WTP of \$50,000 per QALY gained. All strategies were compared to the baseline with no intervention with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A10 and A11 are applicable for the healthcare perspective.


Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal persp	ective, sigmo	idal vaccine efficacy profile	S			
L1	1,000	-33,700 (-54,217 to -15,243)	0.881 (0.513 to 1.295)	-38,274 (-42,304 to -29,416)	Cost-saving	12,601
L2	1,000	-22,491 (-48,607 to 1,060)	1.390 (0.930 to 1.898)	-16,175 (-25,432 to 1,140)	100%	52,877
L3	895	120,358 (86,526 to 151,470)	2.432 (1.832 to 3.122)	49,485 (27,795 tp 83,415)	50%	279,546
L4	595	138,753 (104,526 to 172,047)	2.803 (2.163 to 3.499)	49,509 (30,004 to 80,034)	51%	339,048
MI	490	98,474 (67,486 to 126,963)	1.973 (1.417 to 2.572)	49,907 (26,051 to 89,830)	49%	222,614
Societal persp	ective, consta	ant vaccine efficacy profiles				
L1	1,000	-33,560 (-54,101 to -15,073)	0.880 (0.513 to 1.295)	-38,115 (-42,186 to -29,129)	Cost-saving	12,705
L2	1,000	-22,153 (-48,236 to 1,425)	1.390 (0.930 to 1.898)	-15,932 (-25,280 to 1,532)	100%	53,118
L3	900	122,582	2.480	49,419	51%	283,436

		(89,659 to 153,435)	(1.878 to 3.124)	(28,662 to 81,814)		
L4	595	139,555 (104,894 to 173,201)	2.847 (2.208 to 3.544)	49,014 (29,618 to 78,922)	53%	341,082
MI	555	107,807 (75,203 to 138,403)	2.203 (1.602 to 2.849)	48,936 (26,452 to 86,427)	52%	205,850

Table A15. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from a societal perspective at the WTP of \$50,000 per QALY gained. All strategies were compared to the baseline with no intervention with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A12 and A13 of the previous section are applicable for the healthcare perspective.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal perspe	ective, sigmoid	dal vaccine efficacy profile	s			
1,000	500	110,671 (78,640 to 140,196)	2.251 (1.651 to 2.895)	49,160 (27,185 to 84,425)	51%	250,357
595	520	111,898 (79,222 to 142,298)	2.251 (1.651 to 2.895)	49,723 (27,292 to 86,213)	50%	251,530
Societal perspe	ective, constar	nt vaccine efficacy profiles				
1,000	560	120,062 (86,604 to 151,712)	2.438 (1.790 to 3.081)	49,284 (27,996 to 83,419)	51%	274,550
595	580	121,126	2.438	49,688	51%	275,724

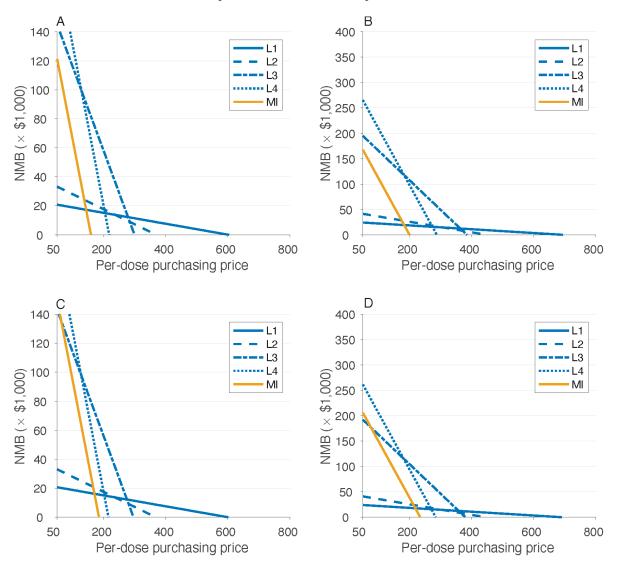


Figure A11. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$50,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from a societal perspective with sigmoidal and constant vaccine efficacy profiles, respectively. Red circles correspond to the PPD values in Table A15.

5. Secondary analyses with a WTP of \$30,000 per QALY gained

5.1. 100% coverage of nirsevimab and 100% coverage of maternal vaccination

The reductions of health outcomes for this scenario are the same as those reported in the main text at the WTP of \$50,000 per QALY gained.

5.1.1. Cost-effectiveness analysis without monetary loss of life

Figure A12. Estimates of the net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$30,000 per QALY gained. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles.

Table A16. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

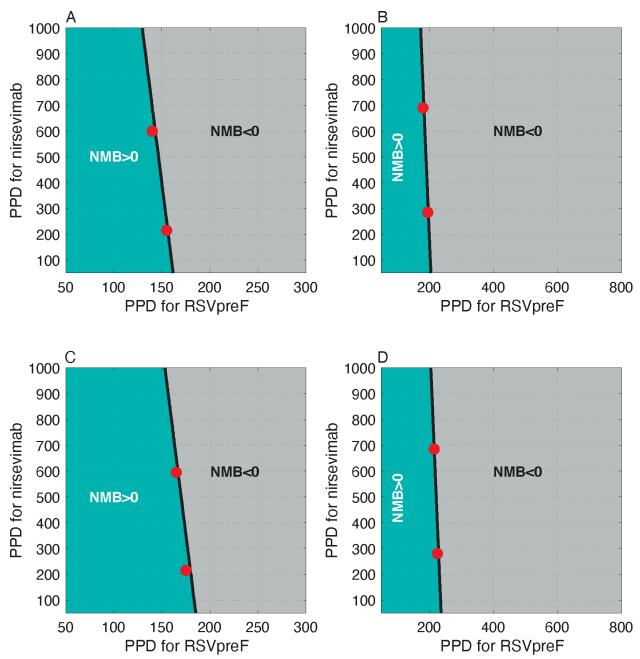
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	erspective					
L1	600	629 (-924 to 2,110)	0.024 (0.018 to 0.032)	25,985 (-36,445 to 97,260)	54%	661
L2	365	597 (-1,164 to 2,349)	0.036 (0.028 to 0.045)	16,639 (-32,325 to 70,184)	69%	630
L3	295	348 (-3,130 to 3,814)	0.094 (0.082 to 0.107)	3,695 (-33,149 to 41,600)	92%	395
L4	215	467 (-3,878 to 4,708)	0.111 (0.099 to 0.124)	4,200 (-34,697 to 43,384)	90%	503
MI	155	-1,115 (-4,932 to 2,682)	0.109 (0.096 to 0.123)	-10,214 (-44,180 to 25,029)	99%	-1,019
Societal pers	pective					
L1	690	603 (-1,029 to 2,214)	0.024 (0.018 to 0.032)	24,866 (-41,045 to 102,508)	55%	4,043
L2	445	740 (-1,160 to 2,568)	0.036 (0.028 to 0.045)	20,674 (-32,467 to 77,558)	63%	8,937
L3	385	2,705 (-1,342 to 6,703)	0.094 (0.082 to 0.107)	28,634 (-13,811 to 73,395)	52%	52,738

L4	285	-378 (-5,674 to 4,892)	0.111 (0.099 to 0.124)	-3403 (-50,404 to 45,184)	91%	78,413
MI	200	2,816 (-1,495 to 7,037)	0.109 (0.096 to 0.123)	25,815 (-13,217 to 66,816)	58%	49,066

Table A17. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

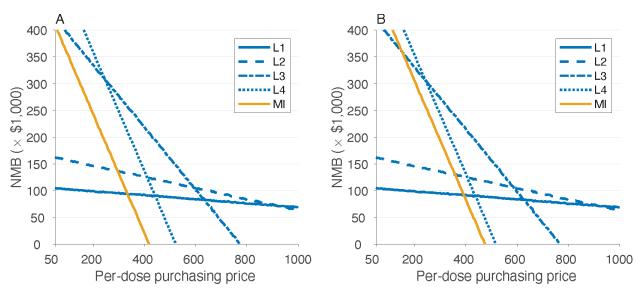
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	erspective					
L1	595	541 (-989 to 2,036)	0.024 (0.018 to 0.032)	22,417 (-40,159 to 94,033)	59%	581
L2	365	776 (-976 to 2,547)	0.036 (0.028 to 0.045)	21,640 (-27,237 to 76,304)	62%	811
L3	295	2,311 (-1,131 to 5,714)	0.094 (0.082 to 0.106)	24,716 (-11,905 to 63,068)	61%	2,354
L4	215	3,017 (-1,327 to 7,221)	0.110 (0.098 to 0.123)	27,348 (-11,810 to 67,888)	55%	3,050
MI	180	-1,603 (-5,725 to 2,439)	0.117 (0.104 to 0.131)	-13,677 (-48,261 to 21,179)	99%	-1,555
Societal persp	pective					

L1	685	562 (-1,085 to 2,133)	0.024 (0.018 to 0.031)	23,259 (-43,323 to 98,999)	57%	3,962
L2	445	1,046 (-865 to 2,885)	0.036 (0.028 to 0.045)	29,231 (-23,894 to 87,190)	51%	9,118
L3	380	2,751 (-1,242 to 6,664)	0.094 (0.082 to 0.106)	29,422 (-13,081 to 73,612)	51%	51,790
L4	280	-2,162 (-7,370 to 3,042)	0.110 (0.098 to 0.123)	-19,596 (-66,256 to 27,983)	98%	75,395
MI	230	-2,014 (-6,770 to 2,707)	0.117 (0.104 to 0.131)	-17,184 (-56,975 to 23,531)	99%	54,095


Table A18. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare p	perspective					
600	140	-132 (-4,058 to 3,681)	0.112 (0.099 to 0.126)	-1,174 (-35,712 to 33,741)	96%	-97
215	155	2,041 (-1,846 to 5,892)	0.112 (0.099 to 0.126)	18,193 (-16,004 to 54,135)	75%	2,135
Societal persp	pective				•	1

690	180	86 (-4,417 to 4,482)	0.112 (0.099 to 0.126)	768 (-38,946 to 40,828)	92%	47,804
285	195	1,551 (-2,842 to 5,944)	0.112 (0.099 to 0.126)	13,835 (-24,884 to 54,520)	79%	45,528

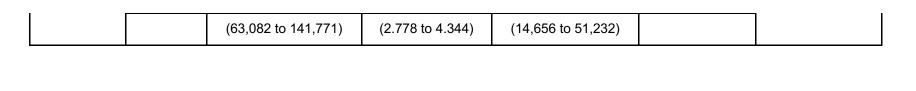

Table 19. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

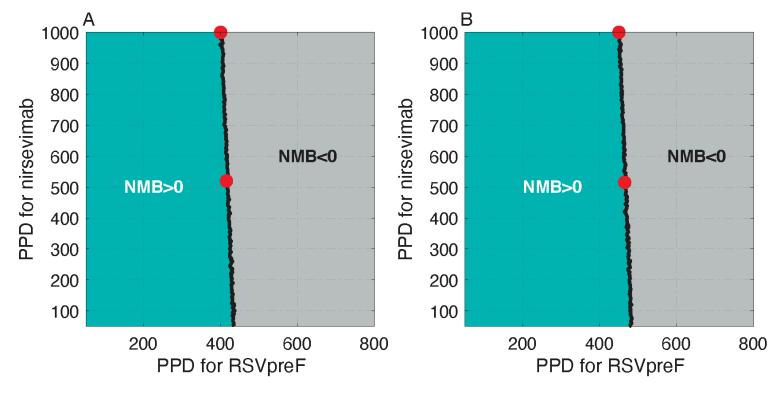
Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare p	perspective					
595	165	1,483 (-2,557 to 5,532)	0.119 (0.106 to 0.133)	12,495 (-21,445 to 48,068)	83%	27,541
215	175	-1,657 (-5,873 to 2,300)	0.119 (0.106 to 0.133)	-13,954 (-48,719 to 19,878)	99%	24,395
Societal persp	pective				•	
685	215	3,426 (-1,262 to 8,114)	0.119 (0.106 to 0.133)	28,853 (-10,603 to 70,149)	52%	60,566
280	225	-615 (-5,364 to 4,115)	0.119 (0.106 to 0.133)	-5,187 (-44,579 to 35,417)	95%	56481

Figure A13. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$30,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles. Red circles correspond to the PPD values in Tables A18 and A19.

5.1.2. Cost-effectiveness analysis with monetary loss of life

Figure A14. Estimated net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$30,000 per QALY gained with the inclusion of monetary loss of life due to RSV-related infant mortality. Panels (A) and (B) correspond to the analysis from a societal perspective using sigmoidal and constant vaccine efficacy profiles, respectively. Note that the inclusion of monetary loss due to infant mortality (as an indirect cost) does not affect cost-effectiveness analysis from a healthcare perspective.


Table A20. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from a societal perspective at the WTP of \$30,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A16 and A17 of the previous section are applicable for the healthcare perspective.


Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal persp	ective, sigmoi	dal vaccine efficacy profiles				
L1	1,000	-38,282 (-60,190 to -17,798)	1.023 (0.607 to 1.479)	-37,439 (-41,487 to -28,904)	Cost-saving	15,688
L2	1,000	-17,393 (-44,625 to 7,446)	1.533 (1.025 to 2.083)	-11,345 (-21,523 to 7,164)	100%	66,571
L3	770	84,322 (47,373 to 118,185)	2.904 (2.256 to 3.595)	29,000 (13,073 to 53,082)	53%	276,652
L4	520	98,492 (61,202 to 134,922)	3.324 (2.635 to 4.065)	29,614 (15,047 to 51,601)	52%	339,968
MI	415	91,165 (53,096 to 127,298)	3.101 (2.406 to 3.882)	29,485 (13,805 to 53,519)	51%	288,361
Societal persp	ective, consta	nt vaccine efficacy profiles			·	
L1	1,000	-38,129 (-60,033 to -17,630)	1.022 (0.607 to 1.479)	-37,291 (-41,376 to -28,707)	Cost-saving	15,795
L2	1,000	-17,089 (-44,330 to 7,796)	1.533 (1.025 to 2.083)	-11,147 (-21,381 to 7,553)	100%	66,752
L3	770	87,177	2.895	29,982	49%	278,611

		(50,566 to 120,777)	(2.212 to 3.595)	(13,957 to 53,808)		
L4	515	96,103 (58,229 to 132,136)	3.327 (2.635 to 4.064)	28,798 (14,288 to 50,361)	55%	336,950
MI	470	97,623 (56,455 to 135,039)	3.419 (2.684 to 4.209)	28,488 (13,359 to 50,188)	56%	321,215

Table A21. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from a societal perspective at the WTP of \$30,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A18 and A19 of the previous section are applicable for the healthcare perspective.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal perspe	ective, sigmoid	lal vaccine efficacy profiles	;			
1,000	400	96,038 (57,312 to 132,076)	3.282 (2.589 to 4.023)	29,238 (14,182 to 51,228)	52%	304,310
520	415	95119 56690 131762	3.282 (2.589 to 4.023)	29033 14013 51677	54%	302,973
Societal perspe	ective, constar	nt vaccine efficacy profiles				
1,000	450	105,185 (65,889 to 143,091)	3.526 (2.778 to 4.344)	29,961 (15,346 to 51,799)	49%	333,955
515	465	103,318	3.526	29,372	52%	332,430

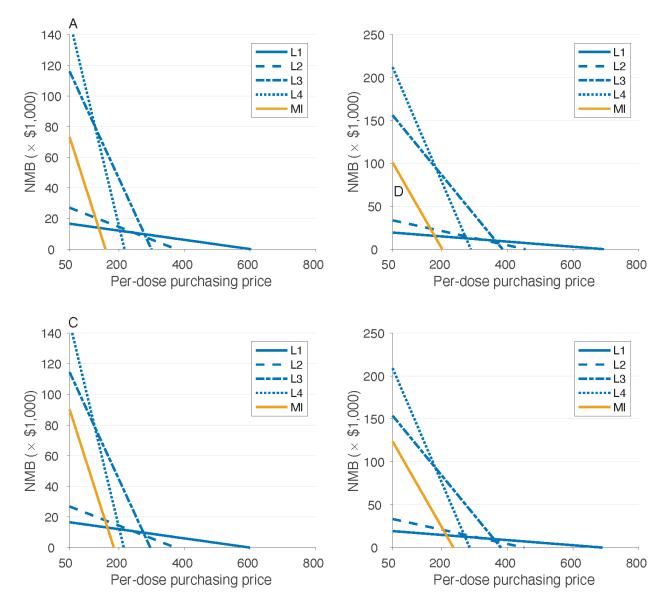


Figure A15. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$30,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from a societal perspective with sigmoidal and constant vaccine efficacy profiles, respectively. Red circles correspond to the PPD values in Table A21.

5.2. 80% coverage of nirsevimab and 60% coverage of maternal vaccination

Reduction of health outcomes are the same as presented in section 3.2 of this Supplemental.

5.2.1. Cost-effectiveness analysis without monetary loss of life

Figure A16. Estimates of the net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$30,000 per QALY gained. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles.

Table A22. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

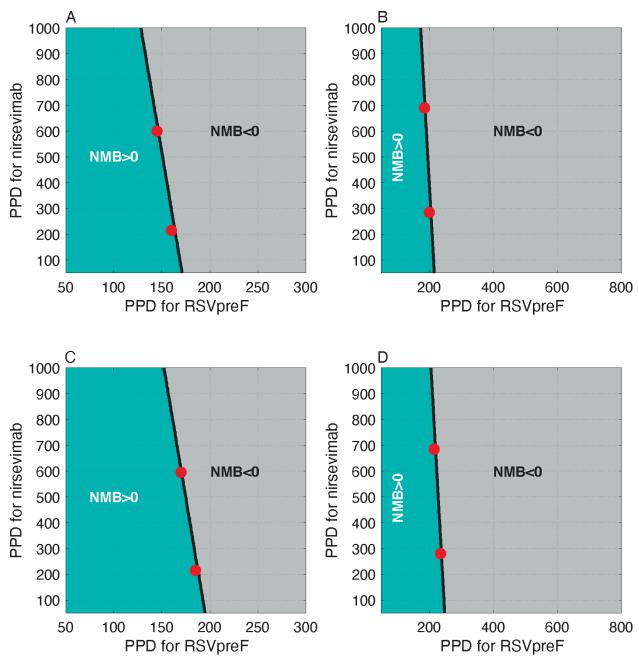
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	rspective					
L1	600	549 (-817 to 1,864)	0.020 (0.014 to 0.027)	26,966 (-38,162 to 103,237)	52%	578
L2	375	936 (-624 to 2,437)	0.031 (0.024 to 0.040)	29,719 (-18,876 to 84,742)	50%	953
L3	295	303 (-2,612 to 3,197)	0.077 (0.066 to 0.088)	3,937 (-34,141 to 43,287)	90%	365
L4	215	648 (-2,982 to 4,230)	0.091 (0.080 to 0.103)	7,136 (-32,462 to 47,950)	87%	687
МІ	155	-975 (-3,720 to 1,717)	0.068 (0.058 to 0.080)	-14,269 (-53,712 to 25,789)	98%	-944
Societal persp	pective				•	
L1	690	515 (-914 to 1,938)	0.020 (0.014 to 0.028)	25,188 (-42,664 to 108,526)	55%	3,284
L2	450	610 (-1,029 to 2,226)	0.031 (0.024 to 0.040)	19,393 (-3,1978 to 75,957)	65%	7,184
L3	385	2203 (-1,187 to 5,577)	0.077 (0.066 to 0.089)	28,577 (-15,159 to 74,875)	53%	42,242

L4	285	-43 (-4,411 to 4,321)	0.091 (0.080 to 0.102)	-474 (-48,457 to 48,740)	89%	63,017
MI	200	1,334 (-1,762 to 4,364)	0.068 (0.058 to 0.080)	19,525 (-25,258 to 66,318)	67%	29,086

Table A23. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

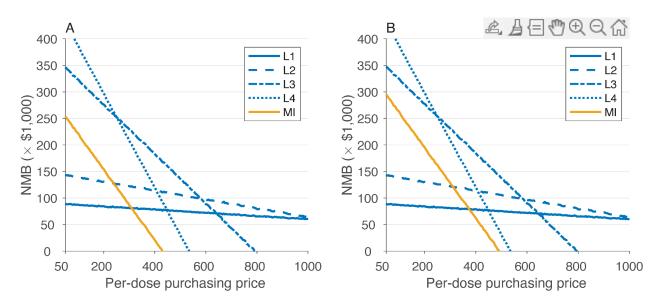
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$			
Healthcare pe	Healthcare perspective								
L1	595	496 (-878 to 1,813)	0.020 (0.014 to 0.027)	24,389 (-41,470 to 100,863)	56%	532			
L2	370	754 (-783 to 2,253)	0.031 (0.024 to 0.040)	23,960 (-24,526 to 78,262)	59%	779			
L3	295	1,873 (-1,054 to 4,742)	0.077 (0.066 to 0.088)	24,335 (-13,546 to 64,696)	61%	1,929			
L4	215	2,681 (-927 to 6,227)	0.091 (0.080 to 0.103)	29,490 (-100,22 to 70,933)	51%	2,721			
MI	180	-1,045 (-3,914 to 1,802)	0.073 (0.062 to 0.085)	-14,266 (-52,698 to 25,657)	99%	-1,025			
Societal pers	Societal perspective								
L1	685	502	0.020	24,697	56%	3,237			

		(-922 to 1,859)	(0.014 to 0.027)	(-45,414 to 105,796)		
L2	445	507 (-1,140 to 2,089)	0.031 (0.024 to 0.040)	16,153 (-35,575 to 73,124)	69%	7,010
L3	380	2,240 (-1,077 to 5,484)	0.077 (0.066 to 0.088)	29,101 (-13,567 to 73,876)	51%	41,479
L4	280	-1,462 (-5,700 to 2,837)	0.091 (0.080 to 0.103)	-16,076 (-62,970 to 31,800)	97%	60,598
MI	235	2,030 (-1,207 to 5,259)	0.073 (0.063 to 0.085)	27,715 (-15,848 to 74,388)	54%	35,679


Table A24. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	rspective					
600	145	1,404 (-1,541 to 4,283)	0.075 (0.064 to 0.087)	18,649 (-20,449 to 59,587)	72%	1,430
215	160	-153 (-3,053 to 2,727)	0.075 (0.064 to 0.087)	-2,030 (-40,074 to 37,601)	94%	-132
Societal persp	bective					1

690	185	1,282 (-1,995 to 4,522)	0.075 (0.064 to 0.087)	17,036 (-25,638 to 62,765)	72%	30,828
285	200	-901 (-4,135 to 2,324)	0.075 (0.064 to 0.087)	-11,959 (-54,870 to 32,037)	97%	28,665

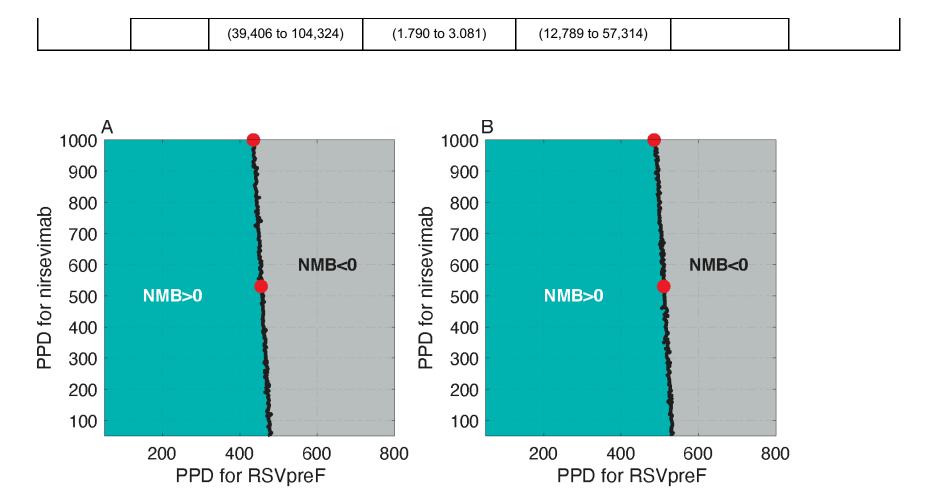

Table A25. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$30,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	rspective					
595	170	2,074 (-942 to 5,089)	0.079 (0.068 to 0.091)	26,112 (-11,594 to 66,756)	57%	2,116
215	185	688 (-2,365 to 3,668)	0.079 (0.068 to 0.091)	8,660 (-29,622 to 48,272)	86%	705
Societal persp	pective					
685	215	-391 (-3,835 to 3,040)	0.079 (0.068 to 0.091)	-4,921 (-47,341 to 39,482)	94%	34,851
280	235	783 (-2,624 to 4,289)	0.079 (0.068 to 0.091)	9,859 (-32,671 to 55,729)	81%	36,025

Figure A17. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$30,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles. Red circles correspond to the PPD values in Tables A24 and A25.

5.2.2. Cost-effectiveness analysis with monetary loss of life

Figure A18. Estimated net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$30,000 per QALY gained with the inclusion of monetary loss of life due to RSV-related infant mortality. Panels (A) and (B) correspond to the analysis from a societal perspective using sigmoidal and constant vaccine efficacy profiles, respectively. Note that the inclusion of monetary loss due to infant mortality (as an indirect cost) does not affect cost-effectiveness analysis from a healthcare perspective.


Table A26. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from a societal perspective at the WTP of \$30,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A22 and A23 of the previous section are applicable for the healthcare perspective.

Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal pers	pective, sigmo	idal vaccine efficacy profile	95			
L1	1,000	-33,700 (-54,217 to -15,243)	0.881 (0.513 to 1.295)	-38,274 (-42,304 to -29,416)	Cost-saving	12,601
L2	1,000	-22,491 (-48,607 to 1,060)	1.390 (0.930 to 1.898)	-16,175 (-25,432 to 1,140)	100%	52,877
L3	790	71,513 (38,525 to 102,736)	2.432 (1.832 to 3.122)	29,408 (12,477 to 56,626)	52%	230,689
L4	530	80,634 (45,069 to 112,940)	2.803 (2.163 to 3.499)	28,722 (12,828 to 52,115)	54%	281,171
MI	430	58,616 (27,535 to 86,877)	1.973 (1.417 to 2.572)	29,772 (10,633 to 61,444)	50%	182,573
Societal pers	pective, const	ant vaccine efficacy profiles	3			
L1	1,000	-33,560 (-54,101 to -15,073)	0.880 (0.513 to 1.295)	-38,115 (-42,186 to -29,129)	Cost-saving	12,705
L2	1,000	-22,153 (-48,236 to 1,425)	1.390 (0.930 to 1.898)	-15,932 (-25,280 to 1,532)	100%	53,118
L3	795	73,592	2.480	29,639	51%	234,579

		(40,529 to 104,645)	(1.878 to 3.124)	(12,894 to 56,205)		
L4	530	81,418 (45,889 to 114,324)	2.847 (2.208 to 3.544)	28,543 (12,924 to 51,753)	55%	283,204
MI	490	64,379 (31,594 to 94,526)	2.203 (1.602 to 2.849)	29,208 (11,019 to 58,847)	52%	205,850

Table A27. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from a societal perspective at the WTP of \$30,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A24 and A25 of the previous section are applicable for the healthcare perspective.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% CI)	QALYs gained (95% Cl)	ICER, \$/QALY (95% Cl)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal persp	ective, sigmo	idal vaccine efficacy profile	2S			
1,000	435	67,379 (34,766 to 97,791)	2.251 (1.651 to 2.895)	29,953 (12,021 to 59,212)	49%	206,980
530	455	66,558 (34,166 to 96,844)	2.251 (1.651 to 2.895)	29,567 (11,793 to 58,652)	51%	206,200
Societal persp	ective, consta	ant vaccine efficacy profiles	3			
1,000	485	69,866 (36,677 to 102,388)	2.438 (1.790 to 3.081)	28,657 (11,850 to 57,103)	54%	224,500
530	510	72,319	2.438	29,631	51%	227,057

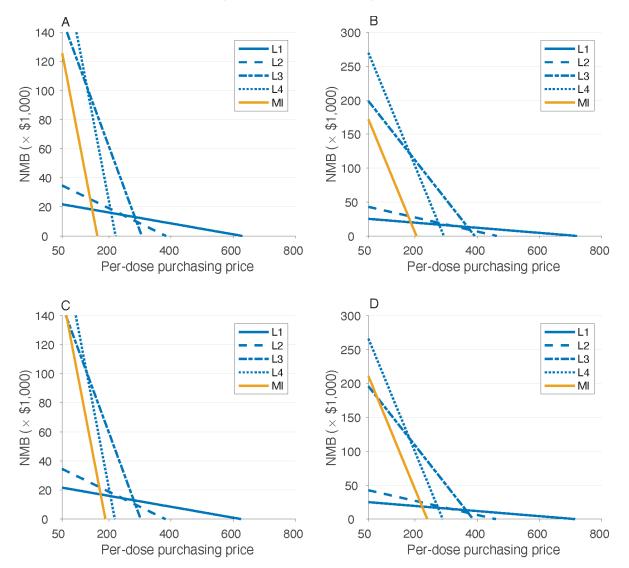


Figure A19. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$30,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from a societal perspective with sigmoidal and constant vaccine efficacy profiles, respectively. Red circles correspond to the PPD values in Table A27.

6. Secondary analyses with a WTP of \$70,000 per QALY gained

6.1. 100% coverage of nirsevimab and 100% coverage of maternal vaccination

The reductions of health outcomes for this scenario are the same as those reported in the main text with the WTP of \$50,000 per QALY gained.

6.1.1. Cost-effectiveness analysis without monetary loss of life

Figure A20. Estimates of the net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$70,000 per QALY gained. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles.

Table A28. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

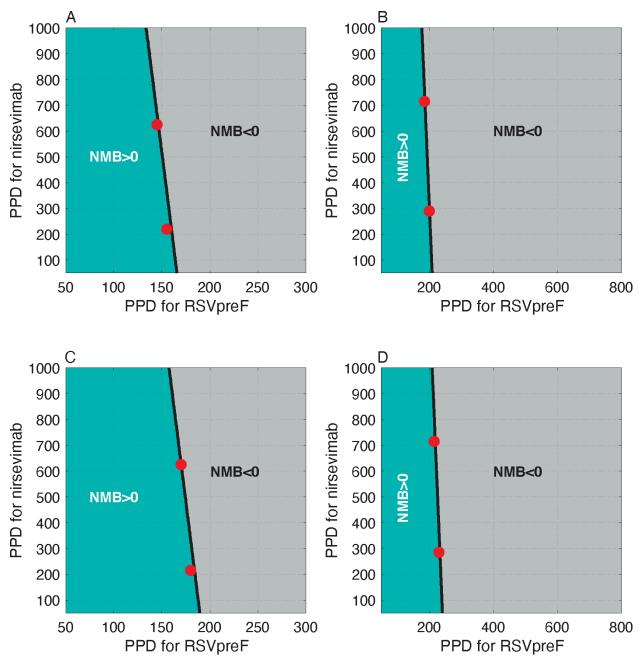
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	erspective				•	
L1	625	1,546 (27 to 3,022)	0.024 (0.018 to 0.032)	63,636 (10,22 to 144,239)	57%	1,601
L2	380	2,151 (331 to 3,895)	0.036 (0.028 to 0.045)	60,007 (8,944 to 120,389)	64%	2,188
L3	305	6,164 (2,795 to 9,563)	0.094 (0.082 to 0.107)	65,322 (28,701 to 106,456)	60%	6,211
L4	220	6,083 (1,638 to 10,445)	0.111 (0.099 to 0.124)	54,742 (14,437 to 97,296)	76%	6,068
MI	160	4,501 (764 to 8,262)	0.109 (0.096 to 0.123)	41,321 (6,800 to 78,174)	94%	4,546
Societal pers	pective			•		
L1	715	1,543 (-92 to 3,116)	0.024 (0.018 to 0.032)	63,630 (-3,464 to 147,418)	56%	4,982
L2	460	2,303 (402 to 4,176)	0.036 (0.028 to 0.045)	64,271 (10,477 to 128,675)	57%	10,495
L3	390	5,694 (1,656 to 9,585)	0.094 (0.082 to 0.107)	60,317 (17,139 to 105,805)	66%	55,646

L4	290	5,195 (68 to 10,285)	0.111 (0.099 to 0.124)	46,749 (597 to 95,262)	83%	83,978
МІ	200	2,816 (-1,495 to 7,037)	0.109 (0.096 to 0.123)	25,815 (-13,217 to 66,816)	98%	49,066

Table A29. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	erspective					
L1	625	1,652 (126 to 3,116)	0.024 (0.018 to 0.031)	68,144 (5,105 to 149,616)	52%	1,708
L2	380	2,329 (516 to 4,063)	0.036 (0.028 to 0.045)	64,973 (1,3921 to 126,237)	57%	2,368
L3	300	5,198 (1,802 to 8,538)	0.094 (0.082 to 0.106)	55,623 (18,734 to 95,404)	77%	5,262
L4	215	3,017 (-1,327 to 7,221)	0.110 (0.098 to 0.123)	27,348 (-11,810 to 67,888)	98%	3,050
MI	185	3,991 (-45 to 8,032)	0.117 (0.104 to 0.131)	34,041 (-362 to 71,355)	97%	4,010
Societal pers	pective			·	•	
L1	715	1,694	0.024	69,993	49%	5,089

		(78 to 3,276)	(0.018 to 0.031)	(3,063 to 155,201)		
L2	455	2,083 (180 to 3,894)	0.036 (0.028 to 0.045)	58,105 (4,851 to 120,342)	66%	10,157
L3	385	5,602 (1,624 to 9,559)	0.094 (0.082 to 0.106)	59,775 (16,760 to 105,812)	67%	54,698
L4	285	3,439 (-1,753 to 8,664)	0.110 (0.098 to 0.123)	31,187 (-15,679 to 80,821)	94%	80,960
MI	235	3,554 (-1,100 to 8,303)	0.117 (0.104 to 0.131)	30,317 (-9,310 to 73,014)	96%	59,660


Table A30. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pers	pective					
625	145	6,366 (2,515 to 10,154)	0.112 (0.099 to 0.126)	56,818 (21,806 to 94,480)	76%	6,408
220	155	2,228 (-1,658 to 6,080)	0.112 (0.099 to 0.126)	19,867 (-14,409 to 55,964)	100%	2,323
Societal perspec	ctive					1

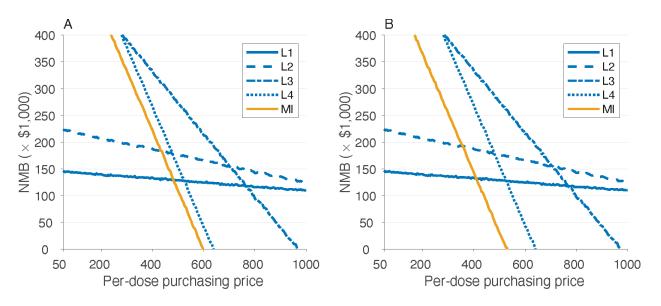

715	185	6,612 (2,225 to 11,049)	0.112 (0.099 to 0.126)	58,980 (19,448 to 103,015)	70%	54,309
290	200	7,300 (2,905 to 11,642)	0.112 (0.099 to 0.126)	65,090 (25,525 to 107,942)	59%	55,038

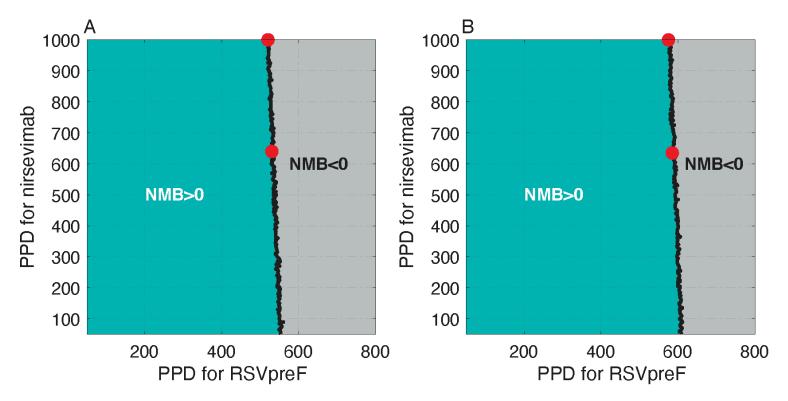
Table A31. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pers	pective					
625	170	8,183 (4,141 to 12,247)	0.119 (0.106 to 0.133)	68,943 (34,000 to 107,073)	52%	8,227
215	180	3,911 (-272 to 7,989)	0.119 (0.106 to 0.133)	32,932 (-2,311 to 69,494)	98%	3,954
Societal perspec	ctive					
715	215	4,553 (-133 to 9,241)	0.119 (0.106 to 0.133)	38,344 (-1,120 to 80,203)	93%	61,693
285	230	5,083 (266 to 9,849)	0.119 (0.106 to 0.133)	42,805 (2,217 to 85,356)	90%	62,234

Figure A21. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$70,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles. Red circles correspond to the PPD values in Tables A30 and A31.

6.1.2. Cost-effectiveness analysis with monetary loss of life

Figure A22. Estimated net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$70,000 per QALY gained with the inclusion of monetary loss of life due to RSV-related infant mortality. Panels (A) and (B) correspond to the analysis from a societal perspective using sigmoidal and constant vaccine efficacy profiles, respectively. Note that the inclusion of monetary loss due to infant mortality (as an indirect cost) does not affect cost-effectiveness analysis from a healthcare perspective.


Table A32. Model estimates of cost-effectiveness analyses associated with LAMA and maternal immunisation programs as standalone prevention strategies from a societal perspective at the WTP of \$70,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A28 and A29 are applicable for the healthcare perspective.

Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% CI)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal pers	pective, sigmoid	al vaccine efficacy profiles			•	•
L1	1,000	-38,282 (-60,190 to -17,798)	1.023 (0.607 to 1.479)	-37,439 (-41,487 to -28,904)	Cost-saving	15,688
L2	1,000	-17,393 (-44,625 to 7,446)	1.533 (1.025 to 2.083)	-11,345 (-21,523 to 7,164)	100%	66,571
L3	975	203,472 (168,305 to 237,559)	2.904 (2.256 to 3.595)	69,951 (46,591 to 106,528)	49%	395,878
L4	640	231,840 (194,127 to 268,248)	3.324 (2.635 to 4.065)	6,9641 (47,771 to 102,355)	50%	473,528
MI	525	213,258 (175,637 to 249,344)	3.101 (2.406 to 3.882)	68,850 (45,767 to 104,191)	52%	410,791
Societal pers	pective, constan	t vaccine efficacy profiles				
L1	1,000	-38,129 (-60,033 to -17,630)	1.022 (0.607 to 1.479)	-37,291 (-41,376 to -28,707)	Cost-saving	15,795
L2	1,000	-17,089 (-44,330 to 7,796)	1.533 (1.025 to 2.083)	-11,147 (-21,381 to 7,553)	100%	66,752
L3	965	201,094	2.895	69,413	51%	392,022

		(165,494 to 234,697)	(2.212 to 3.595)	(45,971 to 104,848)		
L4	635	230,156 (192,093 to 266,222)	3.327 (2.635 to 4.064)	69,170 (47,216 to 101,519)	52%	470,510
МІ	595	237,119 (197,394 to 274,121)	3.419 (2.684 to 4.209)	69,340 (46,968 to 101,859)	51%	460,340

Table A33. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from a societal perspective at the WTP of \$70,000 per QALY gained. All strategies were compared to the baseline with no intervention, and with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A30 and A31 are applicable for the healthcare perspective.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% Cl)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal perspec	ctive, sigmoidal	vaccine efficacy profiles				
1,000	520	229,702 (190,522 to 267,562)	3.282 (2.589 to 4.023)	69,979 (46,880 to 105,196)	49%	437,870
640	530	227,291 (189,396 to 263,542)	3.282 (2.589 to 4.023)	69,229 (46,830 to 102,719)	51%	435,476
Societal perspec	ctive, constant	vaccine efficacy profiles				
1,000	570	243,784 (203,966 to 281,373)	3.526 (2.778 to 4.344)	69,257 (474,53 to 101,422)	52%	467,515
635	580	241,282 (201,386 to 279,445)	3.526 (2.778 to 4.344)	68,552 (46,789 to 100,640)	53%	464,933

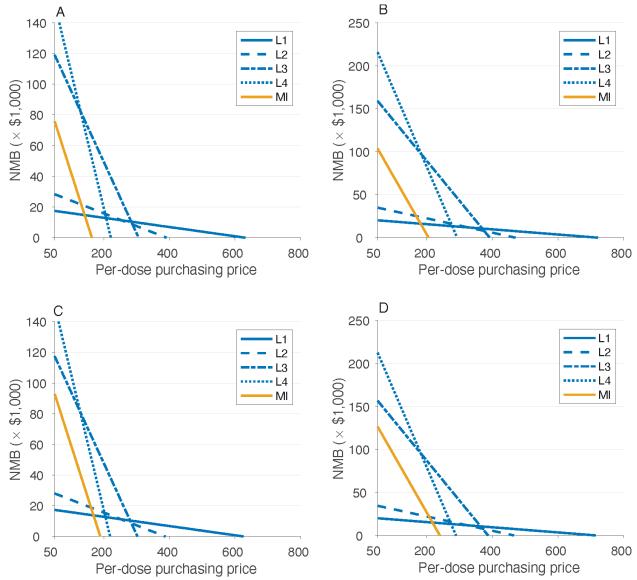


Figure A23. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$70,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from a societal perspective with sigmoidal and constant vaccine efficacy profiles, respectively. Red circles correspond to the PPD values in Table A33.

6.2. 80% coverage of nirsevimab and 60% coverage of maternal vaccination

Reduction of health outcomes are the same as presented in section 3.2 of this Supplemental.

Figure A24. Estimates of the net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$70,000 per QALY gained. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles.

Table A34. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

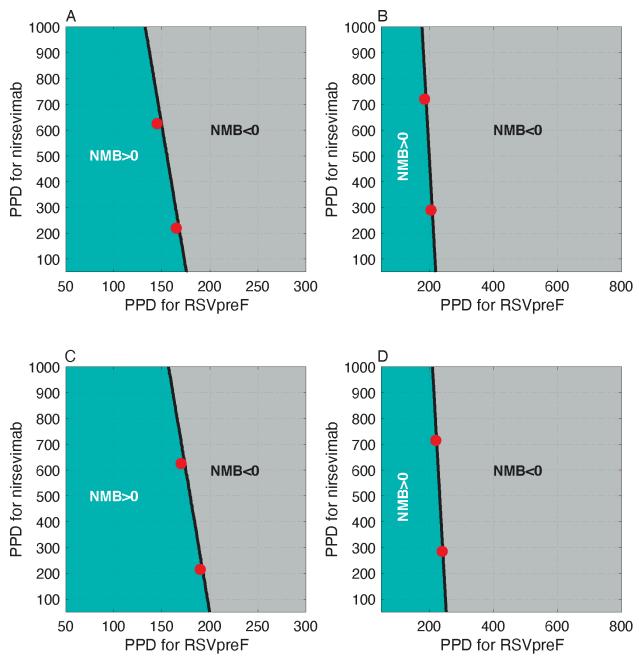
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% Cl)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pe	erspective				•	
L1	625	1,279 (-61 to 2,589)	0.020 (0.014 to 0.027)	62,523 (-28,11 to 151,206)	58%	1,180
L2	390	2,189 (680 to 3,695)	0.031 (0.024 to 0.040)	69,603 (20,526 to 132,935)	50%	2,199
L3	305	4,967 (2,109 to 7,798)	0.077 (0.066 to 0.088)	64,557 (26,778 to 106,680)	60%	5,018
L4	220	5,143 (1,415 to 8,756)	0.091 (0.080 to 0.103)	56,623 (15,056 to 100,241)	73%	5,139
MI	160	2,389 (-318 to 5,013)	0.068 (0.058 to 0.080)	34,976 (-4,485 to 77,612)	95%	2,393
Societal pers	pective					
L1	720	1,418 (12 to 2,816)	0.020 (0.014 to 0.028)	69,543 (490 to 160,533)	50%	4,185
L2	465	1,847 (179 to 3,473)	0.031 (0.024 to 0.040)	58,736 (5,311 to 122,968)	65%	8,430
L3	390	4,584 (1,279 to 7,824)	0.077 (0.066 to 0.089)	59,548 (16,162 to 105,915)	67%	44,569

L4	290	4,424 (215 to 8,673)	0.091 (0.080 to 0.102)	48,691 (2,268 to 98,420)	81%	67,469
МІ	205	4,667 (1,667 to 7,664)	0.068 (0.058 to 0.080)	68,223 (23,401 to 117,995)	52%	32,423

Table A35. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

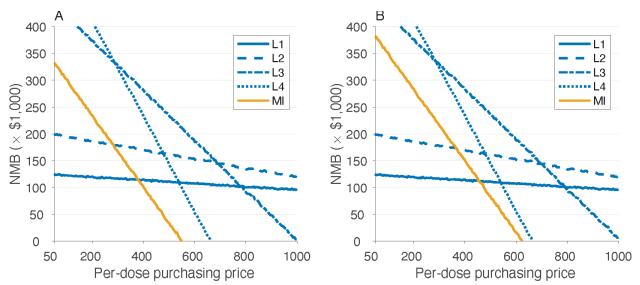
Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$		
Healthcare pe	erspective							
L1	625	1,381 (40 to 2,687)	0.020 (0.014 to 0.027)	67,634 (1,794 to 156,827)	53%	1,433		
L2	385	1,979 (443 to 3,474)	0.031 (0.024 to 0.040)	62,837 (13,542 to 122,251)	60%	2,025		
L3	300	4,181 (1,285 to 6,997)	0.077 (0.066 to 0.088)	54,338 (16,468 to 95,551)	78%	4,255		
L4	215	2,681 (-927 to 6,227)	0.091 (0.080 to 0.103)	29,490 (-10,022 to 70,933)	97%	2,721		
MI	185	2,309 (-599 to 5,097)	0.073 (0.062 to 0.085)	31,544 (-7,883 to 73,556)	97%	2,312		
Societal pers	Societal perspective							
L1	715	1,412	0.020	69,236	50%	4,138		

		(-39 to 2,792)	(0.014 to 0.027)	(-1,843 to 160,493)		
L2	465	2,187 (517 to 3,820)	0.031 (0.024 to 0.040)	69,620 (15,408 to 135,143)	50%	8,671
L3	385	4,525 (1,139 to 7,852)	0.077 (0.066 to 0.088)	58,640 (14,514 to 106,013)	69%	43,806
L4	285	3,011 (-1,284 to 7,328)	0.091 (0.080 to 0.103)	33,127 (-13,956 to 83,476)	93%	65,050
MI	235	2,030 (-1,207 to 5,259)	0.073 (0.063 to 0.085)	27,715 (-15,848 to 74,388)	96%	35,679


Table A36. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using sigmoidal vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pers	pective					
625	145	2,155 (-789 to 5,034)	0.075 (0.064 to 0.087)	28,634 (-10,255 to 70,030)	98%	2,181
220	165	3,323 (370 to 6,225)	0.075 (0.064 to 0.087)	44,207 (4,742 to 86,554)	89%	3,355
Societal perspec	ctive					1

720	185	2,184 (-1,090 to 5,426)	0.075 (0.064 to 0.087)	29,020 (-14,136 to 75,183)	96%	31,730
290	205	2,582 (-650 to 5,822)	0.075 (0.064 to 0.087)	34,267 (-8,500 to 81,059)	94%	32,152

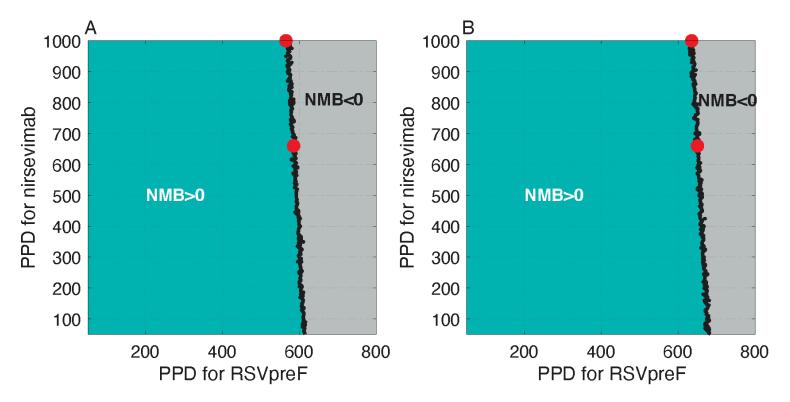

Table A37. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from healthcare and societal perspectives at the WTP of \$70,000 per QALY gained, using constant vaccine efficacy profiles. All strategies were compared to the baseline with no intervention.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% Cl)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Healthcare pers	pective					
625	170	2,975 (-40 to 5,991)	0.079 (0.068 to 0.091)	37,468 (-537 to 78,834)	94%	3,018
215	190	4,022 (1,011 to 7,148)	0.079 (0.068 to 0.091)	50,665 (12,098 to 94,734)	82%	4,041
Societal perspec	ctive					
715	220	3,896 (359 to 7,351)	0.079 (0.068 to 0.091)	49,051 (43,26 to 96,418)	81%	39,090
285	240	4,283 (745 to 7,673)	0.079 (0.068 to 0.091)	53,929 (9,035 to 101,768)	76%	39,512

Figure A25. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$70,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from healthcare and societal perspectives, respectively, with sigmoidal vaccine efficacy profiles. Panels (C) and (D) correspond to the analysis from the healthcare and societal perspectives, respectively, with constant vaccine efficacy profiles. Red circles correspond to the PPD values in Tables A36 and A37.

6.2.2. Cost-effectiveness analysis with monetary loss of life

Figure A26. Estimated net monetary benefit (NMB) as a function of price per dose at the WTP threshold of \$70,000 per QALY gained with the inclusion of monetary loss of life due to RSV-related infant mortality. Panels (A) and (B) correspond to the analysis from a societal perspective using sigmoidal and constant vaccine efficacy profiles, respectively. Note that the inclusion of monetary loss due to infant mortality (as an indirect cost) does not affect cost-effectiveness analysis from a healthcare perspective.


Table A38. Model estimates of cost-effectiveness analyses associated with infant and maternal immunisation programs as standalone prevention strategies from a societal perspective at the WTP of \$70,000 per QALY gained. All strategies were compared to the baseline with no intervention with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A34 and A35 are applicable for the healthcare perspective.

Prevention strategy	Maximum PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$
Societal pers	pective, sigmoid	lal vaccine efficacy profiles			•	•
L1	1,000	-33,700 (-54,217 to -15,243)	0.881 (0.513 to 1.295)	-38,274 (-42,304 to -29,416)	Cost-saving	12,601
L2	1,000	-22,491 (-48,607 to 1,060)	1.390 (0.930 to 1.898)	-16,175 (-25,432 to 1,140)	100%	52,877
L3	1,000	169,134 (136,177 to 200,153)	2.432 (1.832 to 3.122)	69,504 (44,069 to 109,710)	50%	328,402
L4	660	196,246 (161,825 to 229,689)	2.803 (2.163 to 3.499)	69,847 (46,405 to 107,012)	50%	396,926
MI	545	135,497 (105,141 to 163,923)	1.973 (1.417 to 2.572)	68,899 (40,795 to 116,021)	52%	292,684
Societal pers	pective, constan	t vaccine efficacy profiles				
L1	1,000	-33,560 (-54,101 to -15,073)	0.880 (0.513 to 1.295)	-38,115 (-42,186 to -29,129)	Cost-saving	12,705
L2	1,000	-22,153 (-48,236 to 1,425)	1.390 (0.930 to 1.898)	-15,932 (-25,280 to 1,532)	100%	53,118
L3	1,000	169,177	2.480	68,257	53%	329,966

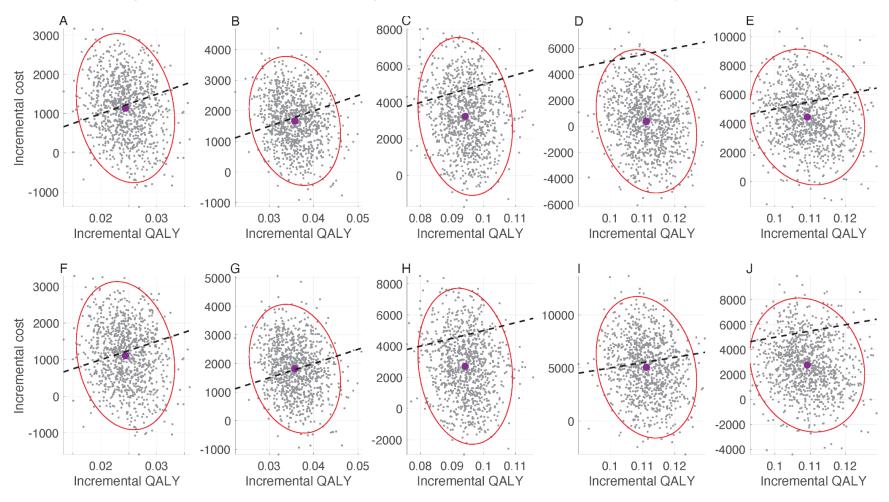
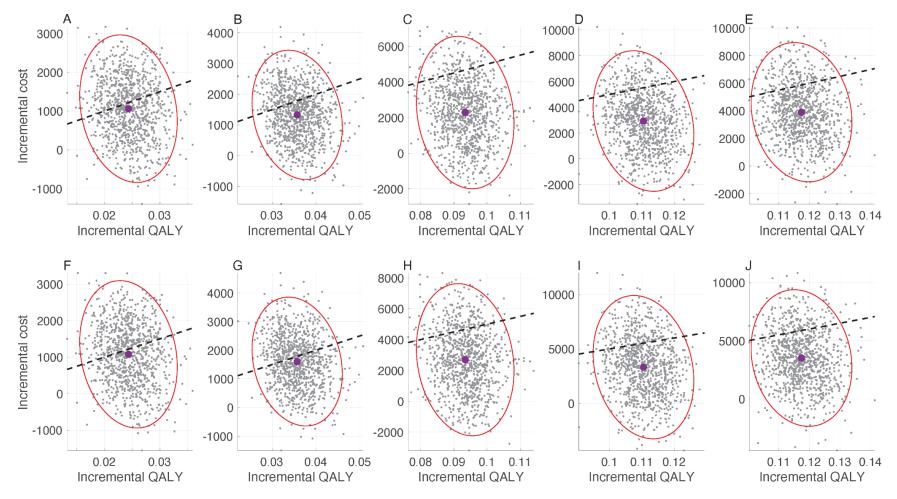

		(135,932 to 200,388)	(1.878 to 3.124)	(43,319 to 107,606)		
L4	660	196,973 (162,364 to 231,073)	2.856 (2.186 to 3.545)	68,972 (45,842 to 105,412)	52%	398,960
MI	620	151,336 (119,116 to 181,867)	2.203 (1.602 to 2.849)	68,775 (42,031 to 113,753)	52%	275,920

Table A39. Model estimates of cost-effectiveness analyses associated with the combined infant and maternal immunisation program from a societal perspective at the WTP of \$70,000 per QALY gained. All strategies were compared to the baseline with no intervention with the inclusion of monetary loss of life due to RSV-related infant mortality. Since the monetary loss of life, as an indirect cost, does not affect cost-effectiveness from a healthcare perspective, the results of Table A36 and A37 are applicable for the healthcare perspective.

Nirsevimab PPD, \$	RSVpreF PPD, \$	Incremental costs, \$ (95% Cl)	QALYs gained (95% Cl)	ICER, \$/QALY (95% CI)	Probability of being cost- effective	Budget impact per 100,000 population, \$	
Societal perspec	tive, sigmoidal	vaccine efficacy profiles					
1,000	565	153,896 (121,674 to 183,664)	2.255 (1.650 to 2.895)	68,260 (42,156 to 111,078)	53%	293,734	
660	585	157255 124816 187622	2.255 (1.650 to 2.895)	69887 43093 113721	49%	296,861	
Societal perspec	Societal perspective, constant vaccine efficacy profiles						
1,000	635	170,187 (136,513 to 200,934)	2.438 (1.835 to 3.126)	69,916 (44,134 to 109,821)	50%	324,601	
660	650	169,798 (135,507 to 200,892)	2.438 (1.835 to 3.126)	69,645 (43,335 to 110,023)	50%	324,391	

Figure A27. Net monetary benefit (NMB) of the combined infant and maternal immunisation program at the WTP of \$70,000 per QALY gained as a function of PPD for nirsevimab and RSVpreF. Panels (A) and (B) correspond to the analysis from a societal perspective with sigmoidal and constant vaccine efficacy profiles, respectively. Red circles correspond to the PPD values in Table A39.



7. Cost-effectiveness planes for immunisation programs with the WTP of \$50,000 per QALY gained

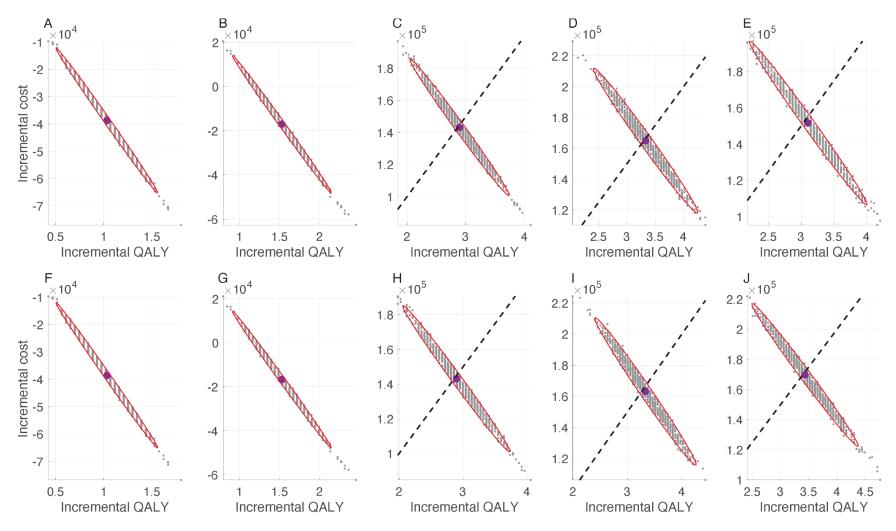
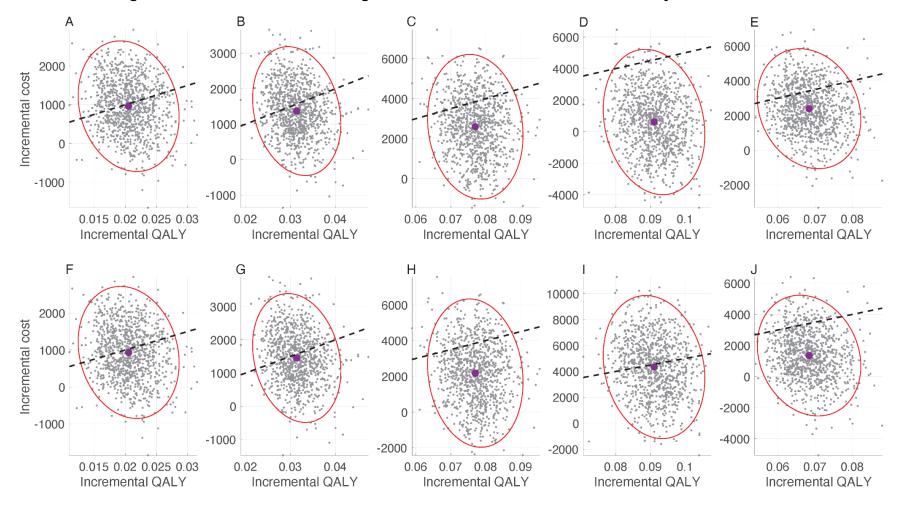

7.1. 100% coverage of nirsevimab and 100% coverage of maternal vaccination without monetary loss of life

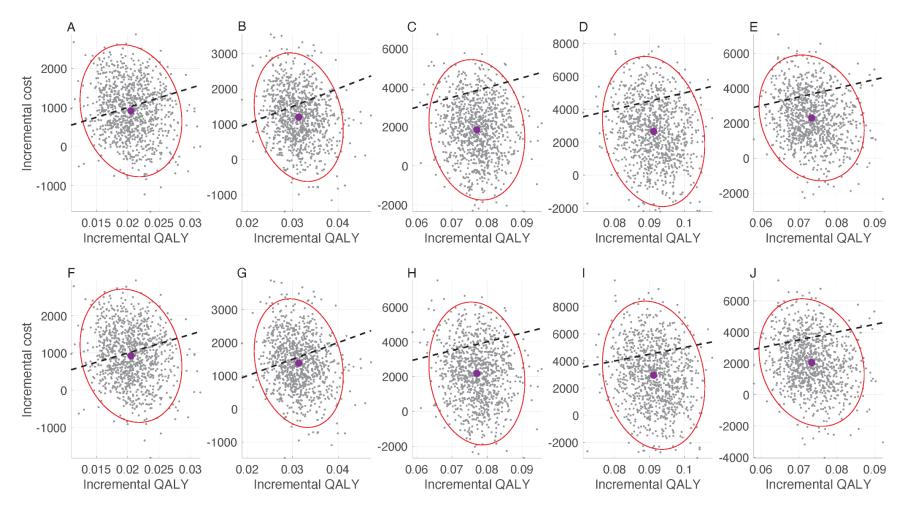
Figure A28. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using sigmoidal vaccine efficacy profiles. The maximum PPD for

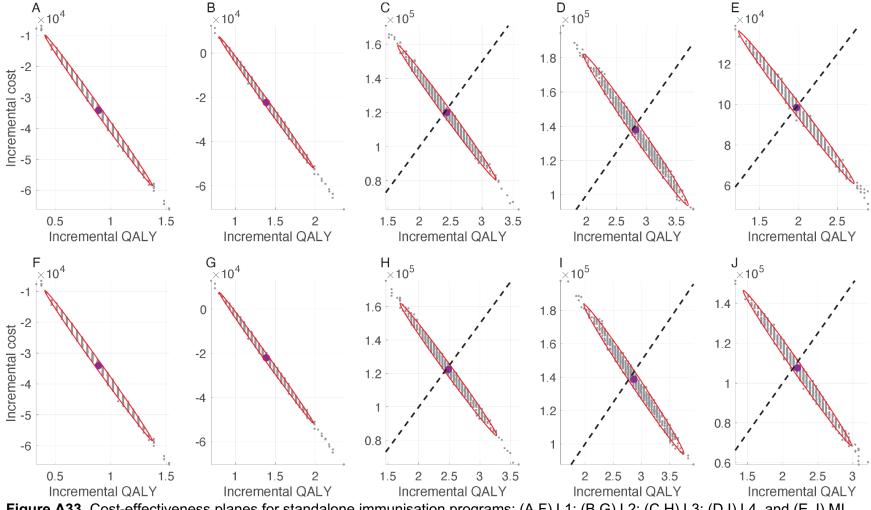
nirsevimab and RSVpreF correspond to estimates reported in Table 3 of the main text. Black dashed-line corresponds to the WTP threshold of \$50,000 per QALY gained.


Figure A29. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using constant vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table 4 of the main text. Black dashed-line corresponds to the WTP threshold of \$50,000 per QALY gained.

7.2. 100% coverage of nirsevimab and 100% coverage of maternal vaccination with monetary loss of life

Figure A30. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from a societal perspective using sigmoidal (A,B,C,D,E) and constant (F,G,H,I,J) vaccine efficacy profiles. The maximum PPD for

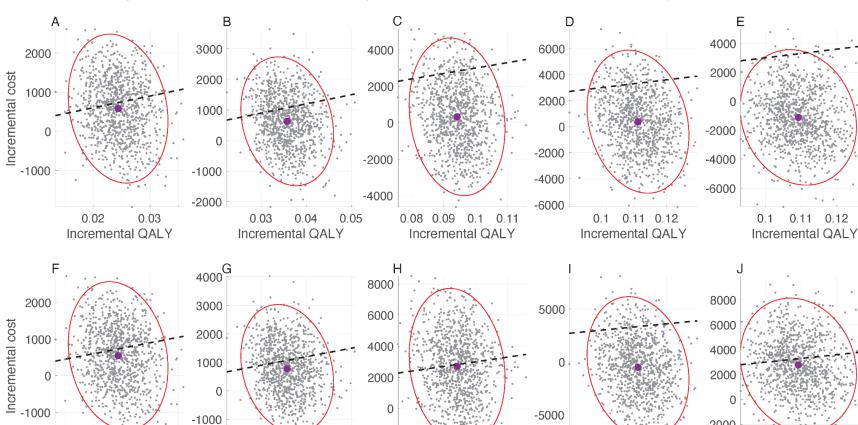

nirsevimab and RSVpreF correspond to estimates reported in Table A4. Black dashed-line corresponds to the WTP threshold of \$50,000 per QALY gained.


Figure A31. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using sigmoidal vaccine efficacy profiles. The maximum PPD for

nirsevimab and RSVpreF correspond to estimates reported in Table A7. Black dashed-line corresponds to the WTP threshold of \$50,000 per QALY gained.

Figure A32. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using constant vaccine efficacy profiles. The maximum PPD for

nirsevimab and RSVpreF correspond to estimates reported in Table A8. Black dashed-line corresponds to the WTP threshold of \$50,000 per QALY gained.



7.4. 80% coverage of nirsevimab and 60% coverage of maternal vaccination with monetary loss of life

Figure A33. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from a societal perspective using sigmoidal (A,B,C,D,E) and constant (F,G,H,I,J) vaccine efficacy profiles. The maximum PPD for

nirsevimab and RSVpreF correspond to estimates reported in Table A11. Black dashed-line corresponds to the WTP threshold of \$50,000 per QALY gained.

8. Cost-effectiveness planes for immunisation programs with the WTP of \$30,000 per QALY gained

-2000

0.08 0.09 0.1 0.11

Incremental QALY

0.05

-1000

-2000

0.03

0.04

Incremental QALY

0.03

0.02

Incremental QALY

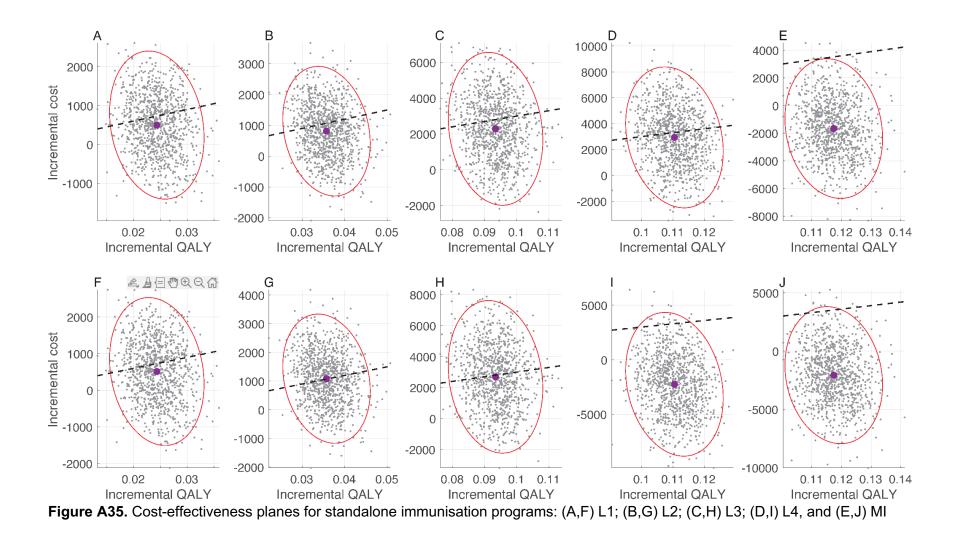
-2000

8.1. 100% coverage of nirsevimab and 100% coverage of maternal vaccination without monetary loss of life

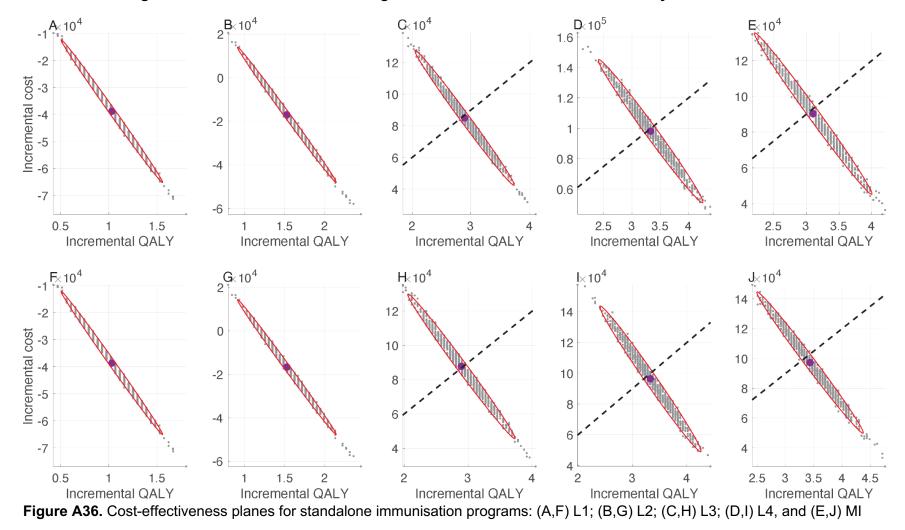
-2000

-4000

0.1

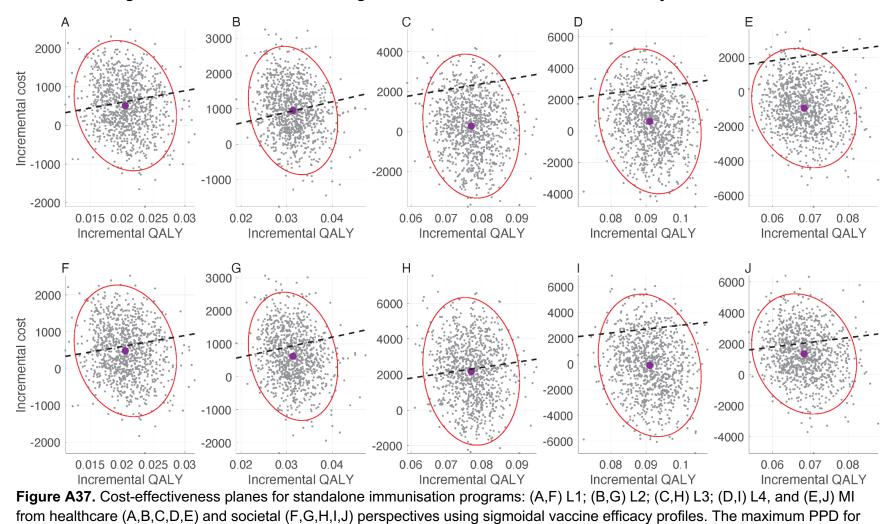

0.11 0.12

Incremental QALY

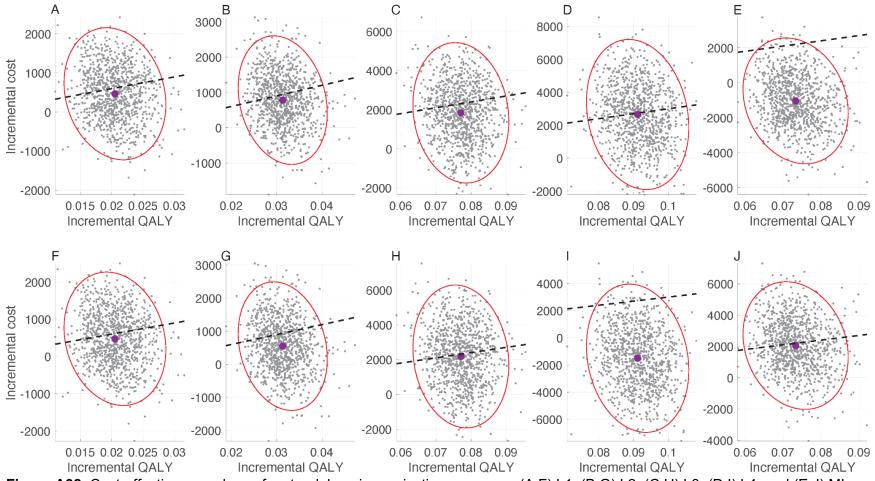

0.1 0.11 0.12

Incremental QALY

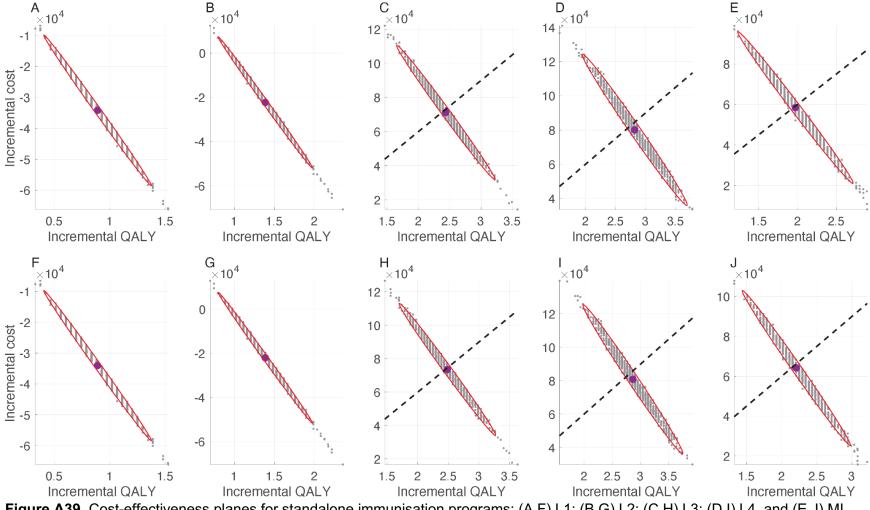
Figure A34. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using sigmoidal vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table A13. Black dashed-line corresponds to the WTP threshold of \$30,000 per QALY gained.



from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using constant vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table A14. Black dashed-line corresponds to the WTP threshold of \$30,000 per QALY gained.



from a societal perspective using sigmoidal (A,B,C,D,E) and constant (F,G,H,I,J) vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table A17. Black dashed-line corresponds to the WTP threshold of \$30,000 per QALY gained.


8.3. 80% coverage of nirsevimab and 60% coverage of maternal vaccination without monetary loss of life

nirsevimab and RSVpreF correspond to estimates reported in Table A19. Black dashed-line corresponds to the WTP threshold of \$30,000 per QALY gained.

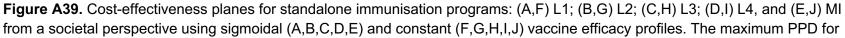
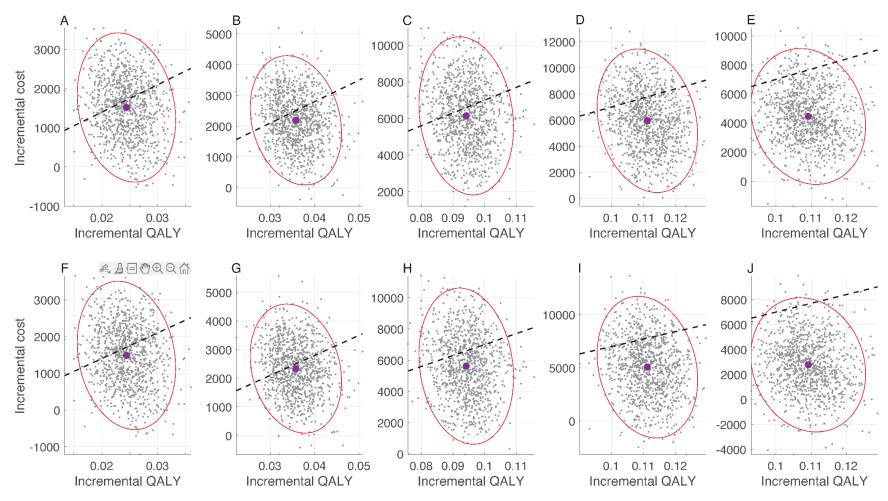
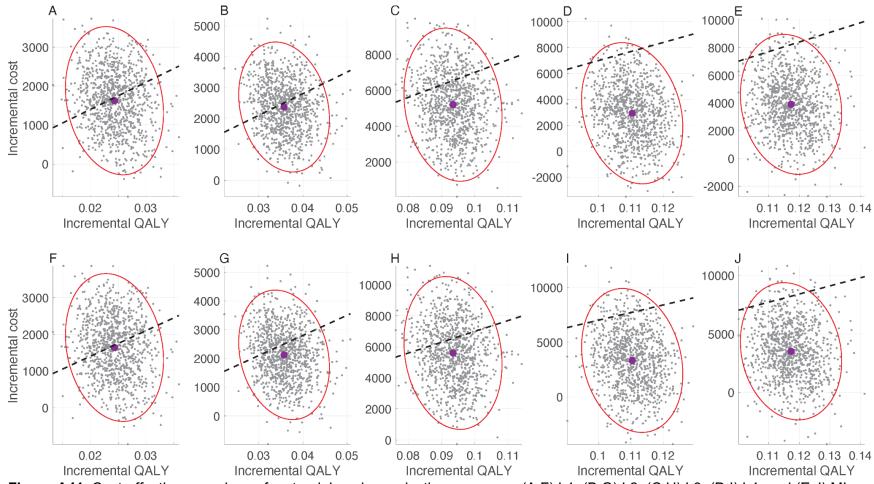


Figure A38. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using constant vaccine efficacy profiles. The maximum PPD for

nirsevimab and RSVpreF correspond to estimates reported in Table A20. Black dashed-line corresponds to the WTP threshold of \$30,000 per QALY gained.



8.4. 80% coverage of nirsevimab and 60% coverage of maternal vaccination with monetary loss of life


nirsevimab and RSVpreF correspond to estimates reported in Table A23. Black dashed-line corresponds to the WTP threshold of \$30,000 per QALY gained.

9. Cost-effectiveness planes for immunisation programs with the WTP of \$70,000 per QALY gained

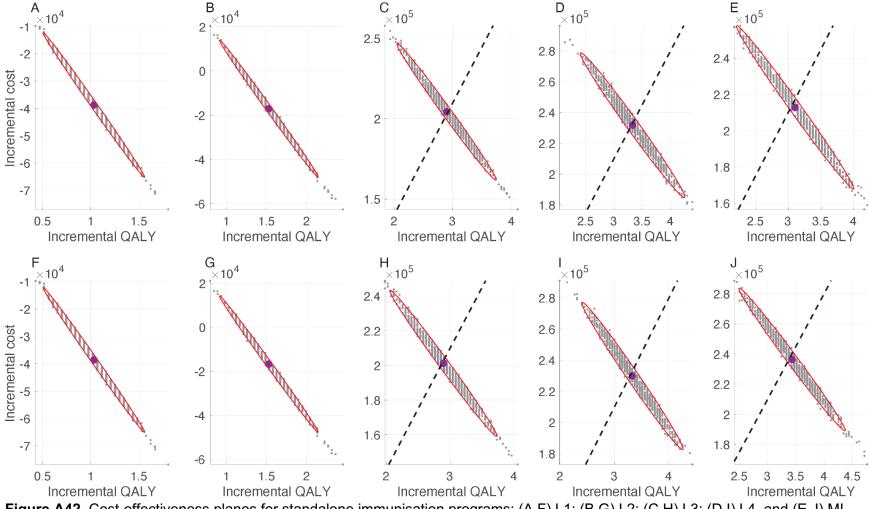
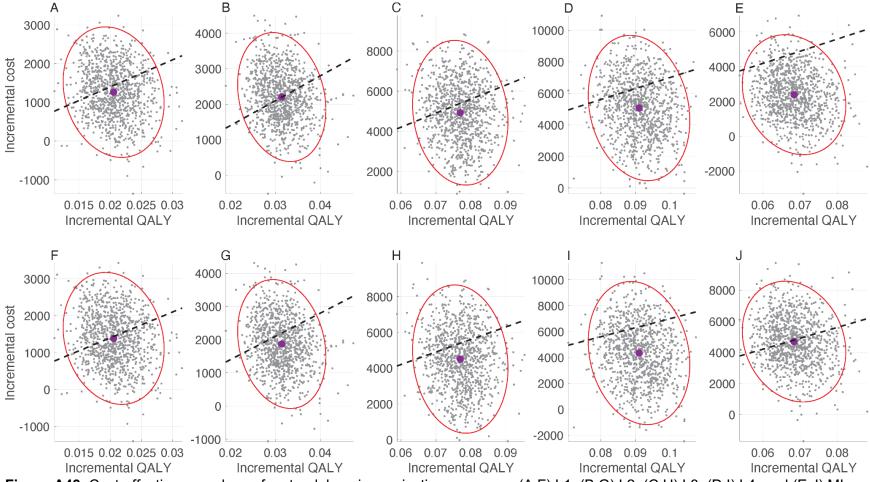

9.1. 100% coverage of nirsevimab and 100% coverage of maternal vaccination without monetary loss of life

Figure A40. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using sigmoidal vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table A25. Black dashed-line corresponds to the WTP threshold of \$70,000 per QALY gained.

Figure A41. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using constant vaccine efficacy profiles. The maximum PPD for


nirsevimab and RSVpreF correspond to estimates reported in Table A26. Black dashed-line corresponds to the WTP threshold of \$70,000 per QALY gained.

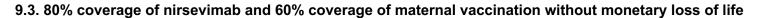
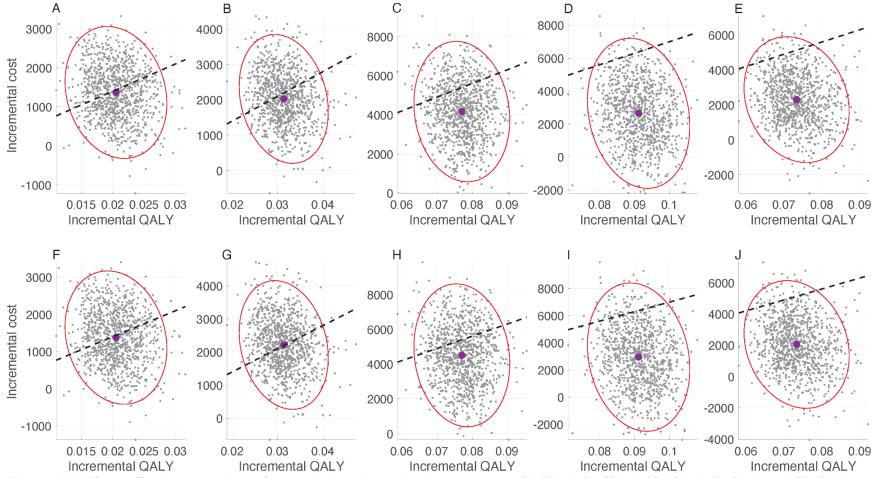


Figure A42. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from a societal perspective using sigmoidal (A,B,C,D,E) and constant (F,G,H,I,J) vaccine efficacy profiles. The maximum PPD for


nirsevimab and RSVpreF correspond to estimates reported in Table A29. Black dashed-line corresponds to the WTP threshold of \$70,000 per QALY gained.

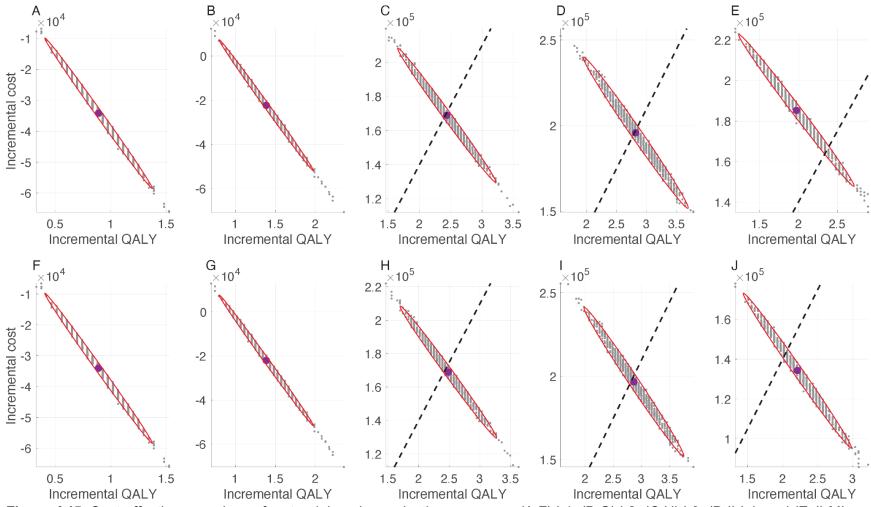


Figure A43. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using sigmoidal vaccine efficacy profiles. The maximum PPD for

nirsevimab and RSVpreF correspond to estimates reported in Table A31. Black dashed-line corresponds to the WTP threshold of \$70,000 per QALY gained.

Figure A44. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from healthcare (A,B,C,D,E) and societal (F,G,H,I,J) perspectives using constant vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table A32. Black dashed-line corresponds to the WTP threshold of \$70,000 per QALY gained.

9.4. 80% coverage of nirsevimab and 60% coverage of maternal vaccination with monetary loss of life

Figure A45. Cost-effectiveness planes for standalone immunisation programs: (A,F) L1; (B,G) L2; (C,H) L3; (D,I) L4, and (E,J) MI from a societal perspective using sigmoidal (A,B,C,D,E) and constant (F,G,H,I,J) vaccine efficacy profiles. The maximum PPD for nirsevimab and RSVpreF correspond to estimates reported in Table A35. Black dashed-line corresponds to the WTP threshold of \$70,000 per QALY gained.

References

- 1. Rafferty, E. *et al.* Evaluating the Individual Healthcare Costs and Burden of Disease Associated with RSV Across Age Groups. *PharmacoEconomics* **40**, 633–645 (2022).
- Vadlamudi, N. K. Characterizing Respiratory Syncytial Virus-Related Pediatric Disease Severity in Canada. (2022).
- 3. Parikh, R. C. *et al.* Chronologic Age at Hospitalization for Respiratory Syncytial Virus Among Preterm and Term Infants in the United States. *Infect. Dis. Ther.* **6**, 477–486 (2017).
- Ratti, C., Greca, A. D., Bertoncelli, D., Rubini, M. & Tchana, B. Prophylaxis protects infants with congenital heart disease from severe forms of RSV infection: an Italian observational retrospective study: Palivizumab prophylaxis in children with congenital heart disease. *Ital. J. Pediatr.* 49, 4 (2023).
- Paes, B. *et al.* Defining the Risk and Associated Morbidity and Mortality of Severe Respiratory Syncytial Virus Infection Among Infants with Chronic Lung Disease. *Infect. Dis. Ther.* 5, 453–471 (2016).
- Ortega-Sanchez, I. R. Economics of Preventing Respiratory Syncytial Virus Lower Respiratory Tract Infections (RSV- LRTI) among US Infants with Nirsevimab. (2023).