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Abstract8

For the long term control of an infectious disease such as COVID-19, it is crucial to identify9

the most likely individuals to become infected and the role that differences in demographic10

characteristics play in the observed patterns of infection. As high-volume surveillance winds11

down, testing data from earlier periods are invaluable for studying risk factors for infection12

in detail. Observed changes in time during these periods may then inform how stable the13

pattern will be in the long term.14

To this end we analyse the distribution of cases of COVID-19 across Scotland in 2021,15

where the location (census areas of order 500–1,000 residents) and reporting date of cases are16

known. We consider over 450,000 individually recorded cases, in two infection waves triggered17

by different lineages: B.1.1.529 (“Omicron”) and B.1.617.2 (“Delta”). We use random forests,18

informed by measures of geography, demography, testing and vaccination. We show that the19

distributions are only adequately explained when considering multiple explanatory variables,20

implying that case heterogeneity arose from a combination of individual behaviour, immunity,21

and testing frequency.22

Despite differences in virus lineage, time of year, and interventions in place, we find the23

risk factors remained broadly consistent between the two waves. Many of the observed smaller24

differences could be reasonably explained by changes in control measures.25
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1 Introduction26

A key challenge in the long term control of an infectious disease is to identify predictable patterns of27

incidence. The emergence and spread of the SARS-CoV-2 virus saw restrictions imposed globally28

on everyday life to control the spread of COVID-19 infection, and to protect individuals at highest29

risk of severe disease. While as of March 2023 few to no restrictions remain in place in Scotland,30

as in the rest of the UK, randomised testing [1] and hospital admissions [2] indicate continued31

widespread transmission. The winding down of community testing and other surveillance is making32

it more difficult to track the transmission patterns of COVID-19 in detail.33

Typically, identifying risk factors for infection rely on disease surveillance studies. While these34

studies can be powerful and provide important insights [3, 4, 5, 6], they are often expensive,35

laborious and time consuming. “Big Data” in the health sciences offers an opportunity to gain36

some of the same insights using routinely collected data. The availability of COVID-19 case37

data at fine spatial scales with detailed metadata enables us to identify important health-related38

risks, with the data collected during the pandemic being made available to researchers in close to39

real-time.40

In this work we aim to identify risk factors for COVID-19 cases in Scotland, and their change41

over time, to serve as an indicator for how the longer-term profile of infection may evolve. We42

fit the case distributions of two different waves of COVID-19, with a machine learning model43

informed by a range of explanatory variables relating to geography and demographics.44

The first COVID-19 case in Scotland was identified on 1st March 2020 [7]. The Scottish45

Government imposed strict “lockdown” non-pharmaceutical intervenions (NPIs) on 23rd March46

2020 [8]. While initially applied at the national level, following the initial lockdown period NPIs47

were adjusted by local authority (administrative areas with populations ranging between 22,540–48

635,130) through a “levels”-based system [9]. The seeding and rapid spread of the B.1.1.7 lineage49

(termed the “Alpha” variant) in December 2020 led to a tightening of NPIs and a second lock-50

down [10, 11]. A mass vaccination programme began in December 2020 [12, 13], prioritising the51

elderly and healthare workers, with all adults eventually eligible.52

We focus on case data gathered between May 2021 and January 2022, a period that saw the53

steady relaxation of nearly all NPIs [14]. This period had two major waves of infection: the first54

from May 2021 triggered by the B.1.617.2 lineage (“Delta”), and a second wave from November55

2021 by the B.1.1.529 B.A.1 lineage (“Omicron”). The deletion of two specific amino acids in the56

Omicron sub-variant distinguished it from most co-circulating variants including Delta, in PCR57
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tests that have an accompanying “S-gene” test result [15]. A high-capacity testing programme58

was in place throughout, with free-of-charge lateral flow testing strongly encouraged, and PCR59

testing mandated for those with symptoms, or a lateral flow positive.60

Earlier work has exploited finely-grained case data to highlight risk factors for cases and se-61

vere outcomes including (but not limited to) sex [16, 17, 18], population density [19, 20, 21],62

deprivation [22, 23, 24, 25], occupation [26, 27, 28], and age [29, 30, 31]. Similar studies have63

incorporated movement data [32] to demonstrate the protective impact of NPIs that restrict mo-64

bility [21, 33, 34, 35, 36, 37]. Many of these studies focus on “first wave” of infection, during which65

strict NPIs were imposed and no population immunity had been established. This study focuses66

on a more advanced period moving away from NPIs, and the conditions for disease spread com-67

paratively less “exceptional”. This is especially the case for the Omicron wave. A unique feature68

of our model is the inclusion of lateral flow test taking frequency. The proportion of infectons that69

end up reported is likely to depend on testing propensity, and we consider how that may lead to70

distortions in the case distribution.71

Our main finding is that the risk factors for cases remained broadly consistent across both72

waves. Differences between the two waves either offer relatively small scale changes in demographic73

risk or are consistent with the impact of changes in approaches to control.74

2 Results75

The period November 15th 2021 – January 6th 2022 covers the first outbreak and peak of the76

B.1.1.529 lineage (BA.1 sublineage, hereafter referred to as the Omicron variant) (S-gene “dropout”77

test signature). Prior to this, the B.1.617.2 lineage (Delta variant) (S-gene positive test signature)78

was dominant. From 15th November 2021, S-gene dropout cases consistently rise, and all subse-79

quent “dropout” cases are assumed Omicron. Remaining S-gene positive cases are presumed to80

be Delta, consistent with nationwide sequence data [38].81

2.1 Time evolution and early patterns of spread82

We identified 385,558 cases between November 15th 2021 and January 6th 2022, of which 227,28683

were likely Omicron. From 1st May 2021 to 7th September 2021 we identified 269,838 cases, of84

which 229,073 were likely Delta. The remaining cases in these periods (those with no S-gene result,85

or a different result) are excluded. The start date for each of these periods is the first date from86
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which there are consistent rises in cases that are likely the new variant.87

Omicron cases had a doubling time (the time taken for newly reported daily cases to double) of88

2.9 days over the first 28 days, compared to 6.2 days for Delta (Supplementary Material, Fig. S1).89

Over half of all DZs had reported an Omicron case in the wave within 29 days, whereas for Delta90

this took 39 days (Supplementary Material, Fig. S2).91

The reproduction number Rt consistently rose for Omicron, peaking at above 2 for nearly all92

local authorities 28 days in to the outbreak, and only consistently falling below 1 after 50 days93

(Supplementary Material, Fig. S3). Reproduction numbers for Delta are less consistent between94

LAs; while the number generally remains above 1 for most LAs in the period, there is no coherent95

peak at the start of the wave.96

In the intermediate period during which Omicron became dominant and Delta declined, the97

age distributions by variant differed. Taking the mid-points of the five-year age brackets, the98

mean ages of the Delta-type cases was 3.9 years lower than the Omicron-type cases (31.8 years99

compared to 35.7 years). A Student’s t test shows this difference to be statistically significant100

(t = −52.2, p < 0.001). This was the case from relatively early on when Omicron accounted for at101

least 5% of cases (Supplementary Material, Fig. S4A). However, the median ages are equal (both102

32.5 years), as in the Omicron-type cases there is a trough in those aged 0–14, with fewer than103

50% of cases in this age group Omicron, but then a peak in the 20–29 age group (Supplementary104

Material, Fig. S4B).105

2.2 Case distribution and model fit106

Fig. 1, shows the distribution of COVID-19 cases for the Omicron and Delta waves broken down107

by age, sex, prior cases (serving as a proxy for prior immunity from infection), deprivation and108

health board. Omicron case rates were highest in younger adults, peaking at 90 cases/1,000 in ages109

20–24. There was only a small difference in rates between men and women. Case rates were much110

lower amongst those that had tested positive for COVID-19 previously. Fig. 2 shows case rates111

per DZ. Geographically, case rates fall with increasing rurality, most notably in Orkney, Shetland112

and the Western Isles (all island communities). The trend with respect to multiple deprivation113

decile is bimodal, with higher rates towards the highest and lowest deciles.114

The fit case rates from our random forest regression models are overlaid onto Fig. 1. We achieve115

a good fit to these larger-scale trends. The model slightly under-fits the age ranges 15–24, where116

case rates were the highest overall. Variable importance outputs are presented in Supplementary117
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Figure 1: Summary of 227,286 Omicron COVID-19 cases in Scotland between November 15th 2021
and January 6th 2022 (blue, filled), and 229,073 Delta cases from 1st May 2021 to 7th September
2021 (green, filled). The full population (N = 5, 465, 169) is broken down by age range, prior case
status (whether a person had previously reported a COVID-19 case prior to that specific wave,
and when), deprivation (of place of residence, per the SIMD decile, with 1 the most deprived),
rurality (of place of residence, per the census Urban/Rural Classification) and location (at the level
of Scottish health board). Cases are given per 1,000 people in that group (with subpopulation N
recorded on the axis labels). The corresponding case rates as fit by our models are superimposed.
Note that the subpopulations in the prior case status plot change across waves, due to being at
different points in time.

Material Fig. S7, with node purity and accuracy loss.118

Fig. 3 (top) shows model performance at DZ level, comparing observed cases to fit cases.119
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Beginning with Omicron cases, our full model explains 70% (fit: 71%, test: 62%) of local variation120

in the case distribution (R-squared for case numbers, aggregated at a DZ level), with a poorer fit121

for cohorts with very high case counts. A “reduced” random forest model informed by population122

and population density alone explained 59% (fit: 60%, test: 55%) of variation. A model informed123

by only population/deprivation rank explained 53% (fit: 53%, test: 51%), and one informed by124

only population/age explained 48% (fit: 48%, test: 51%). Fig. 3 shows further deviation of the125

data-fit slopes away from the diagonal for these “reduced” models.126

Considering now earlier Delta cases from 1st May to 7th September 2021, the geographical127

distribution (Fig. 2) is visually similar, with a concentration of high case rates in the denser128

“central belt”. Cases skewed slightly younger (Fig. 1), with the highest rates within ages 15–19.129

The distributon with respect to deprivation decile remains bimodal, with higher rates in both the130

most and least deprived DZs. Model performance was similar, explaining 72% (fit: 73%, test:131

61%) of DZ-level variation.132

Fig. 3 (bottom) shows for both the Delta and Omicron models, autocorrelation of residuals (as133

measured by the Moran’s I statistic, Section 4.5) within 1km is 0.35, falling to 0.15 at 5km, and134

0.05 at 50km. The reduced models exhibit much higher residual autocorrelation, with the density-135

only model performing best, but persisting over larger distances (see Supplementary Material,136

Fig. S6 for a map view of residuals).137

2.3 Accumulated local effects138

Fig. 4 shows the accumulated local effects (ALEs) of all explanatory variables in the model (see139

Section 4.4 for definition).140

Population, age, sex, and prior case status have ALEs that follow the empirical distributions141

observed in Fig. 1; ALEs are strongly positive for ages between 15–40, and those that had never142

reported a case before.143

Beyond these variables, Fig. 4 shows that features such as low population density, high vac-144

cination uptake, a low mean household size, and a low rate of negative LFD test reporting are145

protective. We note that for vaccination uptake, the protective value at zero is likely an artefact146

arising from cohorts with ages 0–9 that were not eligible.147

The effects for many variables associated with social deprivation such as the ratio of working148

age people with no qualifications and the rate of income deprivation (see Supplementary Material,149

Section B.2 for full descriptions) are weaker. This is consistent with the small degree of deprivation-150
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Figure 2: COVID-19 cases in Scotland (top) over the Omicron period (right, blue) as compared
to Delta cases (left, green), with focus on the Greater Glasgow region (boxed, bottom). Each
point indicates the population centroid of a DZ, with the colour representing the number of cases
reported.

level variation seen in Fig. 1.151

The directionality of the ALEs remain broadly consistent across both waves. Some risk factors152

were more pronounced in the Delta model, including in mean hosehold size, population density153
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Figure 3: Top: performance of different models, comparing observed cases to fit cases at DZ level.
Each point represents a DZ. Points deviating from the diagonal indicate DZs with less accurate fits.
The full model is compared with performance of reduced models informed with only population,
and one of either age, overall deprivation rank, or population density. Bottom: residual clustering
as measured by the Moran’s I statistic, at different physical (left) and network-based distances
(right). Higher values represent higher autocorrelation between model residuals, when comparing
DZs sitting within a given locus. DZs are defined as nearest neighbours of one another if they
share a boundary.

and the proportion of individuals belonging to a black or minority ethnicity. Conversely, cohorts154

with very high student populations were associated more strongly with high case rates in the155

Omicron fit.156

3 Discussion157

Scotland’s programme of free community testing was an invaluable tool for tracking the spread of158

COVID-19 infection up to early 2022. With the ending of detailed surveillance since, it is more159

difficult to monitor the precise patterns of infection amongst the population and how that will160
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Figure 4: Accumulated local effects across all explanatory variables. For each variable, the x-axis
represents the range of values of that variable in the data, and the y-axis (note scale differences
for population, age, sex and prior case status) is the ALE for that variable value. The overall
magnitude of the ALE represents the relative size of the effect.
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evolve over time, especially with respect to different variants.161

The aim of this study was to compare the pattern of cases across two waves of COVID-19162

in Scotland in 2021, during which non pharmaceutical interventions (NPIs) were being relaxed163

but testing remained mandatory and a mass vaccination rollout was in progress. We analysed164

the distribution of cases during the B.1.617.2 “Delta” wave from May 2021, and the B.1.1.529165

“Omicron” wave from November 2021. We have shown that case heterogeneity was associated166

with broad factors such as age structure and residual immunity from earlier cases, but also with167

factors relating to testing, vaccination, geography and demographics. Despite differences in the168

severity of interventions in place, time of year, vaccination uptake and virus phenotype, these risk169

factors remain broadly consistent across both waves.170

Our models accurately capture the case distributions (Fig. 1). However, not all variation is171

explained, and residual autocorrelation persists at <5km scales (Fig. 3). A reason for this may be172

that our model is not informed by mobility, thus explicit links between communities are not known173

to the model. We also do not include meteorological data (such as in e.g. [33]). This could have174

explained further variation as our waves occur in different seasons, where the characteristic routes175

of transmission may have differed. Last, the fit cases are also time-aggregated, and therefore do176

not account for changes in risk factors during each wave.177

The inclusion of the local outbreak duration for each DZ (the time the first case was detected178

in the DZs wider intermediate zone, typically containing 4-6 DZs) accounts in part for local inter-179

actions between neighbouring communities, in the absence of explicit mobility data. A weakness180

of this is that the local outbreak duration correlates with the total number of cases, given the181

relatively short periods studied. We suspect this is less influential in the Omicron model where182

geographical spread was more rapid. The regression models applied here may be better suited183

to scenarios where an infectious disease is already well established in the population. For future184

analyses on cases at the very beginning of an outbreak with fewer cases, this approach may be185

adapted to instead fit case rates per day, from when the first case was identified locally.186

Risk factors187

We presented the accumulated local effects (Fig. 4), revealing broad indicators for higher or lower188

case rates, and how they changed between waves. It is difficult to fully disentangle whether a189

difference was caused by a change in control measures, or a change in virus strain. Nonetheless,190

our analyses provide some important insights.191
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To begin, high mean household size emerges as a risk factor, consistent with the high secondary192

attack rates for SARS-CoV-2 [39, 40], and increased risk of inter-household transmission relative193

to contacts outside of the home [41]. That this, and high population density are both stronger risk194

factors for Delta may reflect the stronger NPIs at this tme increasing the proportion of within-DZ195

or within-household transmissions.196

High vaccine uptake (amongst those eligible) is also protective, more so with Delta, consistent197

with higher rates of immune breakthrough with the Omicron variant as compared to Delta [42,198

43, 44]. We do not know the specific vaccination status of those in the test data, however, and199

linked data may show a stronger protective effect.200

For Delta, a high proportion of individuals of black and minority ethnicity is a stronger risk201

factor. In the UK, this is also a risk factor for severe COVID-19 outcomes [45, 46, 47] but202

without detailed, linked data, it is difficult to firmly establish drivers for a heightened risk during203

the Delta wave. Differences may emerge from known variations in vaccination uptake [48] and204

occupation [49] (thus ability to work from home or effectively physical distance), and the relative205

impacts of those factors changing across the two waves.206

Finally, living in a deprived community was suggested from early on [50] and has since also207

emerged as a risk factor for severe COVID-19 disease [51, 52, 53, 54, 55, 56]. However, the208

corresponding ALEs for the variables associated with deprivation are small. Deprivation effects209

may be captured by proxy with other variables that correlate with deprivation such as age [57]210

and vaccine uptake [58, 59].211

Testing frequency212

The low case rate variation with deprivation (Fig. 1) contrasts with observed inequalities over213

severe outcomes [60, 22, 23, 24, 25], suggesting that those living in more deprived communities214

experience a higher inherent case-hospitalisation rate. We suspect that a lower proportion of case215

ascertainment, however, may also be a factor.216

An important and unique variable in our model is the rate at which negative LFD tests were217

reported throughout the period. We found high rates of negative test reporting to be a risk factor.218

This suggests a variation in case ascertainment across different demographics, which may in turn219

lead to skews in the observed case distribution [61, 62, 22].220

Further work (Supplementary Material Table S7, Fig. S8) shows that up to February 2023,221

the rate of LFD testing and positivity varied substantially across deprivation (quintile 1: 3.6222
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tests/person, 4.61% positive; quintile 5: 6.7 tests/person, 3.57% positive) as well as sex (M: 3.7223

tests/person, 4.82% positive; F: 7.0 tests/person 3.30% positive). If demographic differences in224

testing behaviour correspond to differences in case ascertainment, the profile of all infections may225

then be biased from reported cases, and testing rates may be obscuring the true patterns of226

infection over sex and deprivation.227

In addition, the magnitude of the risk factor (as seen in the ALE, Fig. 4) plateaus beyond a228

certain rate (>∼1 test/person in each period). This hints at a deeper relationship between true229

incidence, the frequency of testing (and whom amongst the population is taking those tests), and230

the proportion of infections that are ascertained.231

Our model is unique in including negative test reporting, and has revealed strong differences232

between different demographics that may bias the profile of cases. Beyond the work presented233

here, further analysess of reported cases need to be considered with these strong skews in testing234

behaviour in mind.235

Conclusion236

The COVID-19 data studied here are remarkable in terms of volume and resolution, and has237

allowed us to assess a national-level epidemic at extremely fine scale. However, regardless of238

resolution, cases only partially represent the full underlying pattern of infection. Variations in239

testing frequency and known trends in severe outcomes suggest that the distribution of infections240

may have been very different to that of reported cases. By incorporating trends on cases, testing241

behaviour, and severe outcomes more closely linked to infection (hospitalisation, ICU admission242

and mortality), it may be possible to build a much more comprehensive retrospective picture of243

how infections were distributed amongst the population.244

Importantly, while our access to such finely-grained data was exceptional, it can be expected245

that such data are likely to become more common in the future, and may become available in246

real time. As such, our demonstration of the utility of such data points the way to an impor-247

tant approach to improving data analysis supporting control policy response to infectious disease248

emergencies in the future.249
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4 Data and methods250

4.1 Preparation of case data251

We use COVID-19 testing data from Public Health Scotland’s electronic Data Research and Inno-252

vation Service (eDRIS) system, dated from July 14th 2022. The data include individual tests by253

type (polymerase chain reaction (PCR) or rapid lateral flow device (LFD)), test result (positive,254

negative, void, inconclusive), test date, S-gene test result if known (positive, dropout, inconclu-255

sive), age, sex, and residing data zone (DZ, a census area typically comprising 500–1,000 individ-256

uals). De-identified IDs link repeat tests by the same individual. We reduce the raw test data to257

cases by removing duplicate tests by the same individual within 60 days (taking the date of the first258

PCR positive as the case date, or the first LFD in the absence of any PCR). These metadata — in259

particular the DZ, specifying location to within an area as small as 0.1km2 in densely populated260

areas — therefore identify cases at a fine spatio-temporal scale. Data on vaccine administrations261

are also provided by eDRIS.262

This analysis considers the BA.1 sub-variant of the Omicron lineage only. The sub-variant263

BA.2/B.1.1.529.2 later replaced BA.1, becoming dominant in Scotland from around 25th February264

2022. This variant, like Delta, has an S-gene positive test signature. However by the end of the265

period studied the BA.2 variant was only being identified in fewer than 1% of fully sequenced266

cases in the UK [63], and here we assume all remaining S-gene positive cases to be Delta.267

Prior to January 6th 2022 in Scotland, positive LFD tests (typically taken at home) required268

PCR confirmation. Approximately 90% of cases in this period have a definitive S-gene result. A269

policy change then dropped this PCR requirement [64], after which cases with S-gene results fell270

to about 50% by February 2022 (per eDRIS data).271

For Omicron cases, we gather from the data S-gene dropout cases between 15th November 2021272

and 6th January 2022, and for the Delta outbreak, S-gene positive cases between 1st May and 7th
273

September 2021 (choosing this end date to have a similar number of cases in each set). We exclude274

cases that have a different, or no S-gene result.275

Using the linked historical tests, we label cases based on whether the individual had either:276

never tested positive before; had tested positive in the last six months prior to the start of that277

wave, or; last tested positive over six months prior to the start of that wave. We denote this the278

prior case status, as a proxy for infection-based immunity.279

Finally to prepare the cases data to be fit, we group individuals that have the same age range,280
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sex, residing datazone, and prior case status, terming these subsets of individuals cohorts. As281

an illustrative example, a cohort may be a population of 38 males aged between 50–54 residing282

in a given datazone “X”, that have never tested positive for COVID-19 before, among whom 9283

Omicron COVID-19 cases were identified. This is the highest practical resolution we can acheive284

using the eDRIS case data, and our model (Section 4.3) fits case counts at this resolution.285

4.2 Time series analysis286

Time-dependent reproduction number287

The time-dependent reproduction number Ri is the average number of forward infections caused

by a person infected on day ti. Define nj as the number of new infections on day tj . These new

infections came from individuals infected on days on, or prior to tj . Define Aij as the number of

new infections on day tj specifically from those infected on day ti ≤ tj :

Aij =
(ni − δij)P (tj − ti)∑

i′≤j(ni′ − δi′j)P (tj − ti′)
nj .

P (∆t) is the probability of an individual passing on the infection, ∆t days after being infected.

The presence of the Kronecker delta δij excludes the possibility of infected individuals infecting

themselves. The reproduction number Ri is then the average total of infections generated over all

subsequent days [65]:

Ri =
1

ni

∑
j≥i

Aij =
1

ni

∑
j≥i

nj(ni − δij)P (tj − ti)∑
i′≤j(ni′ − δi′j)P (tj − ti′)

.

We take P (∆t) to be

P (∆t) ∼ e−λ∆t

with λ−1 the mean infectious period. Individuals are equally infectious throughout the entire288

infection. In our calculations we estimate 1/λ = 6.26 days, using the posterior mean duration289

of infectiousness obtained from the SCoVMod compartmental model (for more detail see Refer-290

ence [56]).291

As we estimate the infection reproduction number using the cases data, we implicitly assume292

that case ascertainment does not change over time, and does not account for the delay between293

infection, and registering a case.294

In this work the reproductive number is measured at local authority level, the level at which295
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the Scottish Government monitored and adjusted NPIs.296

Case doubling time297

At the start of each wave we assume exponential growth of cases:

new cases ∝ ert

where the gradient of a linear regression on log (new cases) against t returns the growth rate r.

The evolution of new cases an also be rewritten in terms of of a doubling time tD:

new cases ∝ 2t/tD

where tD = log 2
r .298

4.3 Model299

Our statistical model is designed to explain variation in COVID-19 case numbers as prepared in300

Section 4.1, and identify risk factors amongst a broad range of variables, using random forest301

regression. We fit models to the distribution of Delta and Omicron cases respectively, allowing for302

comparison of risk factors across the two waves.303

Explanatory variables304

We include demographic factors (population, age, sex, ethnicity, student population), COVID-19305

related factors (testing volume, prior case status, vaccination uptake), geography (local population306

density and transport time to public services to serve as proxies for connectivity and geographic307

remoteness), as well as deprivation. Data on deprivation are taken from the Scottish Indices of308

Multiple Deprivation (SIMD) [66]. The SIMD ranks DZs in Scotland by “multiple” deprivation,309

incorporating measures relating to local health, housing, geographic access, employment, income,310

crime, and education. In our model we use the raw measures of deprivation as explanatory311

variables. To account for local spread of infection between neighbourhoods that are geographically312

close to one another, we include an local outbreak duration parameter, which specifies the date at313

which the first case of the variant was identified at the intermediate zone (IZ, an administrative314

area containing of order 4–6 DZs).315
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A comprehensive description of all individual variables used in given in Supplementary Mate-316

rial, Section B.2.317

Random forest model318

We use random forest regression [67] on the distribution of COVID-19 cases, as it allows us to319

fit the distribution without specifying any prior analytical relation between the outcome variable320

(cases) and any of the explanatory variables, which may themselves be correlated. We fit the321

time-aggregated case distribution in R (version 4.1.0) [68], using the randomForest package [69]322

(version 4.6-14).323

We fit the outcome variable
√

cases + 1 at cohort level (with a cohort defined in Section 4.1).324

The fit number of cases at other scales (such as DZ level) is then an aggregation of cases from325

their constituent cohorts.326

We extract two metrics for variable importance from the randomForest function output: the327

node purity (a measure of how effective variables are at partitioning cohorts with differing numbers328

of cases in the tree), and the loss of model accuracy on effective removal of that variable from the329

model.330

Model hyperparameters were chosen manually so as to maximise the variance explained by331

a subset of the data not used to fit the model. Full hyperparameter specification is included in332

Supplementary Material, Section B.1. The model specifications for fitting the Omicron and Delta333

waves are identical with one exception: for the Omicron model, third/booster dose uptake is used,334

whereas for Delta, second dose uptake is used (third/booster doses were only administered later;335

see Supplementary Material, Section B.3 for further details).336

In addition to the full model, we fit for each of Omicron and Delta three “reduced” models,337

under equivalent hyperparameters to the full model and the same cohort structure, but informed338

only by population, and one of: age; the relative deprivation of the residing DZ, as defined by339

the overall SIMD deprivation rank [70], and; population density. These outputs illustrate how340

effective these variables are at alone at explaining case variation, relative to our full model.341

4.4 Accumulated local effects342

To identify risk factors amongst the explanatory variables used to inform the model, we calculate343

the accumulated local effects (ALEs) of each variable. The ALEs describe how the model fit value344

changes, in response to changing one variable value in isolation, averaged over many different345
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entries in the data [71]. In this context, ALEs indicate whether a variable value is associated with346

fewer or more cases in general over the data. If the ALE is greater than zero, the fit cases generally347

increases given that variable value.348

4.5 Moran’s I autocorrelation statistic349

To probe geographical variation in cases not explained by the model, we measure the Moran’s I

autocorrelation [72, 73] on the residuals (the difference between the data and fit value), relating to

their physical location. We compare local DZ-aggregated residuals over physical distances (from

1–100km), as well as network distance (number of nearest neighbours apart). For a set of N

residuals yi, the Moran’s I is a measure of autocorrelation:

I =
N∑N

i=1

∑N
j=1 wij

∑N
i=1

∑N
j=1 wi,j(yi − ȳ)(yj − ȳ)∑N

i=1(yi − ȳ)2

with ȳ the mean of all residuals, and wi,j is an associated weight of the pair of observations350

(i, j), with wi,i = 0. To measure the autocorrelation between residuals within a separation d351

(either a physical or network-based distance) of one another, we set wi,j = 1 if dist(i, j) ≤ d,352

and 0 otherwise. Fully correlated residuals would have I = 1, whereas I = 0 would indicate no353

correlation.354

This measure characterises how effective our models are at explaining geographical variation,355

and with different distances d shows over what length scales residual autocorrelation persists.356
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[26] Reuter M, Rigó M, Formazin M, Liebers F, Latza U, Castell S, et al. Occupation and SARS-465

CoV-2 infection risk among 108 960 workers during the first pandemic wave in Germany.466

Scandinavian Journal of Work, Environment & Health. 2022;48(6):446.467

[27] Rhodes S, Wilkinson J, Pearce N, Mueller W, Cherrie M, Stocking K, et al. Occupational468

differences in SARS-CoV-2 infection: analysis of the UK ONS COVID-19 infection survey. J469

Epidemiol Community Health. 2022;76(10):841–846.470

[28] Zhang M. Estimation of differential occupational risk of COVID-19 by comparing risk factors471

with case data by occupational group. American journal of industrial medicine. 2021;64(1):39–472

47.473

[29] Chadeau-Hyam M, Bodinier B, Elliott J, Whitaker MD, Tzoulaki I, Vermeulen R, et al. Risk474

factors for positive and negative COVID-19 tests: a cautious and in-depth analysis of UK475

biobank data. International journal of epidemiology. 2020;49(5):1454–1467.476

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.08.03.22278013doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.03.22278013
http://creativecommons.org/licenses/by-nc-nd/4.0/


[30] Lau MS, Grenfell B, Thomas M, Bryan M, Nelson K, Lopman B. Characterizing superspread-477

ing events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Pro-478

ceedings of the National Academy of Sciences. 2020;117(36):22430–22435.479

[31] Working group for the surveillance, control of COVID-19 in Spain, group for the surveillance480

W, control of COVID-19 in Spain, Redondo-Bravo L, Sierra Moros MJ, et al. The first wave481

of the COVID-19 pandemic in Spain: characterisation of cases and risk factors for severe482

outcomes, as at 27 April 2020. Eurosurveillance. 2020;25(50):2001431.483

[32] Hu T, Wang S, She B, Zhang M, Huang X, Cui Y, et al. Human mobility data in the COVID-484

19 pandemic: characteristics, applications, and challenges. International Journal of Digital485

Earth. 2021;14(9):1126–1147.486

[33] Ledebur K, Kaleta M, Chen J, Lindner SD, Matzhold C, Weidle F, et al. Meteorological487

factors and non-pharmaceutical interventions explain local differences in the spread of SARS-488

CoV-2 in Austria. PLoS computational biology. 2022;18(4):e1009973.489

[34] Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. Population flow drives spatio-temporal490

distribution of COVID-19 in China. Nature. 2020;582(7812):389–394.491

[35] Wang H, Ghosh A, Ding J, Sarkar R, Gao J. Heterogeneous interventions reduce the spread492

of COVID-19 in simulations on real mobility data. Scientific reports. 2021;11(1):7809.493

[36] Hou X, Gao S, Li Q, Kang Y, Chen N, Chen K, et al. Intracounty modeling of COVID-19494

infection with human mobility: Assessing spatial heterogeneity with business traffic, age, and495

race. Proceedings of the National Academy of Sciences. 2021;118(24):e2020524118.496

[37] Asem N, Ramadan A, Hassany M, Ghazy RM, Abdallah M, Ibrahim M, et al. Pattern and497

determinants of COVID-19 infection and mortality across countries: An ecological study.498

Heliyon. 2021;7(7).499

[38] Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-500

time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–4123.501

[39] Jalali N, Brustad HK, Frigessi A, MacDonald EA, Meijerink H, Feruglio SL, et al. Increased502

household transmission and immune escape of the SARS-CoV-2 Omicron variant compared to503

the Delta variant: evidence from Norwegian contact tracing and vaccination data. medRxiv.504

2022;.505

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.08.03.22278013doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.03.22278013
http://creativecommons.org/licenses/by-nc-nd/4.0/


[40] Fonager J, Bennedbæk M, Bager P, Wohlfahrt J, Ellegaard KM, Ingham AC, et al. Molec-506

ular epidemiology of the SARS-CoV-2 variant Omicron BA. 2 sub-lineage in Denmark, 29507

November 2021 to 2 January 2022. Eurosurveillance. 2022;27(10):2200181.508

[41] Dupraz J, Butty A, Duperrex O, Estoppey S, Faivre V, Thabard J, et al. Prevalence of509

SARS-CoV-2 in household members and other close contacts of COVID-19 cases: a serologic510

study in canton of Vaud, Switzerland. In: Open forum infectious diseases. vol. 8. Oxford511

University Press US; 2021. p. ofab149.512

[42] Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine513

effectiveness against the omicron (B. 1.1. 529) variant. New England Journal of Medicine.514

2022;.515

[43] Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al. Omicron extensively516

but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2022;602(7898):654–656.517

[44] Vasileiou E, Simpson CR, Shi T, Kerr S, Agrawal U, Akbari A, et al. Interim findings518

from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in519

Scotland: a national prospective cohort study. The Lancet. 2021;397(10285):1646–1657.520

[45] Office for National Statistics. Updating ethnic contrasts in deaths in-521

volving the coronavirus (COVID-19), England: 8 December 2020522

to 1 December 2021;. Available from: https://www.ons.gov.uk/523

peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/524

updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/525

8december2020to1december2021 (last accessed 15/08/2023).526

[46] Platt L, Warwick R. Are some ethnic groups more vulnerable to COVID-19 than others.527

Institute for fiscal studies. 2020;1(05):2020.528

[47] Lo CH, Nguyen LH, Drew DA, Warner ET, Joshi AD, Graham MS, et al. Race, ethnicity,529

community-level socioeconomic factors, and risk of COVID-19 in the United States and the530

United Kingdom. EClinicalMedicine. 2021;38.531

[48] Office for National Statistics. Coronavirus and vaccination rates in people aged 18532

years and over by socio-demographic characteristic and occupation, England: 8533

December 2020 to 31 December 2021;. Available from: https://www.ons.gov.534

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.08.03.22278013doi: medRxiv preprint 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19englandandwales/8december2020to1december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://doi.org/10.1101/2022.08.03.22278013
http://creativecommons.org/licenses/by-nc-nd/4.0/


uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/535

bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/536

8december2020to31december2021 (last accessed 15/08/2023).537

[49] National Records of Scotland. Census 2011: Release 3I - Detailed characteristics on Labour538

Market and Education in Scotland;. Available from: https://www.nrscotland.gov.uk/539

news/2014/census-2011-release-3i (last accessed 15/08/2023).540

[50] Khalatbari-Soltani S, Cumming RC, Delpierre C, Kelly-Irving M. Importance of collecting541

data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards.542

J Epidemiol Community Health. 2020;74(8):620–623.543

[51] Lone NI, McPeake J, Stewart NI, Blayney MC, Seem RC, Donaldson L, et al. Influence of544

socioeconomic deprivation on interventions and outcomes for patients admitted with COVID-545

19 to critical care units in Scotland: a national cohort study. The Lancet Regional Health-546

Europe. 2021;1:100005.547

[52] Blundell R, Costa Dias M, Joyce R, Xu X. COVID-19 and Inequalities. Fiscal studies.548

2020;41(2):291–319.549

[53] Bambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities.550

J Epidemiol Community Health. 2020;74(11):964–968.551

[54] Baena-Dı́ez JM, Barroso M, Cordeiro-Coelho SI, Dı́az JL, Grau M. Impact of COVID-19 out-552

break by income: hitting hardest the most deprived. Journal of Public Health. 2020;42(4):698–553

703.554

[55] McGurnaghan SJ, Weir A, Bishop J, Kennedy S, Blackbourn LA, McAllister DA, et al. Risks555

of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total556

population of Scotland. The lancet Diabetes & endocrinology. 2021;9(2):82–93.557

[56] Banks CJ, Colman E, Doherty T, Tearne O, Arnold M, Atkins KE, et al. SCoVMod–a spa-558

tially explicit mobility and deprivation adjusted model of first wave COVID-19 transmission559

dynamics. Wellcome Open Research. 2022;7(161):161.560

[57] National Records of Scotland. Mid-2021 Small Area Population Estimates, Scot-561

land (Report);. Available from https://www.nrscotland.gov.uk/files//statistics/562

population-estimates/sape-2021/sape-21-report.pdf (last accessed 15/08/2023).563

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.08.03.22278013doi: medRxiv preprint 

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandoccupationengland/8december2020to31december2021
https://www.nrscotland.gov.uk/news/2014/census-2011-release-3i
https://www.nrscotland.gov.uk/news/2014/census-2011-release-3i
https://www.nrscotland.gov.uk/news/2014/census-2011-release-3i
https://www.nrscotland.gov.uk/files//statistics/population-estimates/sape-2021/sape-21-report.pdf
https://www.nrscotland.gov.uk/files//statistics/population-estimates/sape-2021/sape-21-report.pdf
https://www.nrscotland.gov.uk/files//statistics/population-estimates/sape-2021/sape-21-report.pdf
https://doi.org/10.1101/2022.08.03.22278013
http://creativecommons.org/licenses/by-nc-nd/4.0/


[58] Office for National Statistics. Coronavirus (COVID-19) Infection Sur-564

vey technical article: Analysis of characteristics associated with565

vaccination uptake;. Available from https://www.ons.gov.uk/566

peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/567

articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/568

2021-11-15 (last accessed 15/08/2023).569

[59] Wood AJ, MacKintosh AM, Stead M, Kao RR. Predicting future spatial patterns in COVID-570

19 booster vaccine uptake. medRxiv. 2022;p. 2022–08.571

[60] Wood AJ, Kao RR. Empirical distributions of time intervals between COVID-19 cases and572

more severe outcomes in Scotland. PloS one. 2023;18(8):e0287397.573

[61] Colman E, Puspitarani GA, Enright J, Kao RR. Ascertainment rate of SARS-CoV-2 in-574

fections from healthcare and community testing in the UK. Journal of Theoretical Biology.575

2022;p. 111333. Available from: https://www.sciencedirect.com/science/article/pii/576

S0022519322003241.577

[62] Nightingale ES, Abbott S, Russell TW. The local burden of disease during the first wave of578

the COVID-19 epidemic in England: estimation using different data sources from changing579

surveillance practices. BMC public health. 2022;22(1):1–14.580

[63] The UK Health Security Agency. SARS-CoV-2 variants of concern and vari-581

ants under investigation in England: technical briefing 35;. Available from582

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/583

attachment_data/file/1050999/Technical-Briefing-35-28January2022.pdf (last584

accessed 15/08/2023).585

[64] The Scottish Government. Self-Isolation and testing changes;. Available from https://www.586

gov.scot/news/self-isolation-and-testing-changes/ (last accessed 15/08/2023).587

[65] Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal588

similar impacts of control measures. American Journal of epidemiology. 2004;160(6):509–516.589

[66] The Scottish Government. SIMD 2020 Technical Notes;. Available from https://www.gov.590

scot/publications/simd-2020-technical-notes/ (last accessed 15/08/2023).591

[67] Breiman L. Random forests. Machine learning. 2001;45(1):5–32.592

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.08.03.22278013doi: medRxiv preprint 

 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnicalarticleanalysisofcharacteristicsassociatedwithvaccinationuptake/2021-11-15
https://www.sciencedirect.com/science/article/pii/S0022519322003241
https://www.sciencedirect.com/science/article/pii/S0022519322003241
https://www.sciencedirect.com/science/article/pii/S0022519322003241
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1050999/Technical-Briefing-35-28January2022.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1050999/Technical-Briefing-35-28January2022.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1050999/Technical-Briefing-35-28January2022.pdf
https://www.gov.scot/news/self-isolation-and-testing-changes/
https://www.gov.scot/news/self-isolation-and-testing-changes/
https://www.gov.scot/news/self-isolation-and-testing-changes/
https://www.gov.scot/publications/simd-2020-technical-notes/
https://www.gov.scot/publications/simd-2020-technical-notes/
https://www.gov.scot/publications/simd-2020-technical-notes/
https://doi.org/10.1101/2022.08.03.22278013
http://creativecommons.org/licenses/by-nc-nd/4.0/


[68] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria;593

2022. Available from: https://www.R-project.org/.594

[69] Liaw A, Wiener M, et al. Classification and regression by randomForest. R news. 2002;2(3):18–595

22.596

[70] The Scottish Government. Scottish Index of Multiple Depriva-597

tion 2020;. Available from https://www.gov.scot/publications/598

scottish-index-of-multiple-deprivation-2020v2-indicator-data/ (last accessed599

15/08/2023).600

[71] Apley D, Apley MD. Package ‘ALEPlot’. 2018;.601

[72] Moran PA. Notes on continuous stochastic phenomena. Biometrika. 1950;37(1/2):17–23.602

[73] Gittleman JL, Kot M. Adaptation: statistics and a null model for estimating phylogenetic603

effects. Systematic Zoology. 1990;39(3):227–241.604

[74] National Records of Scotland. Mid-2020 Small Area Population Estimates for 2011 Data605

Zones;. Available from https://www.nrscotland.gov.uk/statistics-and-data/606

statistics/statistics-by-theme/population/population-estimates/607

small-area-population-estimates-2011-data-zone-based/mid-2020/ (last accessed608

15/08/2023).609

[75] The Scottish Government. Major milestone in vaccination programme;. Available610

from https://www.gov.scot/news/major-milestone-in-vaccination-programme/ (last611

accessed 15/08/2023).612

[76] The Cabinet Secretary for Health, Care S. Scotland’s autumn/winter vacci-613

nation strategy 2021;. Available from https://www.gov.scot/publications/614

scotlands-autumn-winter-vaccination-strategy-2021/ (last accessed 15/08/2023).615

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2023. ; https://doi.org/10.1101/2022.08.03.22278013doi: medRxiv preprint 

https://www.R-project.org/
https://www.gov.scot/publications/scottish-index-of-multiple-deprivation-2020v2-indicator-data/
https://www.gov.scot/publications/scottish-index-of-multiple-deprivation-2020v2-indicator-data/
https://www.gov.scot/publications/scottish-index-of-multiple-deprivation-2020v2-indicator-data/
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/small-area-population-estimates-2011-data-zone-based/mid-2020/
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/small-area-population-estimates-2011-data-zone-based/mid-2020/
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/small-area-population-estimates-2011-data-zone-based/mid-2020/
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/small-area-population-estimates-2011-data-zone-based/mid-2020/
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates/small-area-population-estimates-2011-data-zone-based/mid-2020/
https://www.gov.scot/news/major-milestone-in-vaccination-programme/
https://www.gov.scot/publications/scotlands-autumn-winter-vaccination-strategy-2021/
https://www.gov.scot/publications/scotlands-autumn-winter-vaccination-strategy-2021/
https://www.gov.scot/publications/scotlands-autumn-winter-vaccination-strategy-2021/
https://doi.org/10.1101/2022.08.03.22278013
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary material616

Assessing the importance of demographic risk factors across two waves617

of SARS-CoV-2 using fine-scale case data618

619
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A Supplementary plots for time evolution of cases621

Figure S1: Timeseries of the initial outbreaks of the Delta and Omicron variants in terms of
newly reported cases. The gradient of the linear regression (straight line) of the early trajectory
of log(new cases + 1) is inversely proportional to the case doubling time.
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Figure S2: Timeseries of the initial outbreaks of the Delta and Omicron variants in terms of
the cumulative number of DZs to have reported at least one case associated with the variant of
interest.
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Figure S3: Time-dependent reproduction numbers for the Delta (left) and Omicron waves (right),
over each of the 32 individual local authorities.
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B Additional methodology details622

B.1 Model hyperparameters623

The random forest regression model is fit in R version 4.1.0 [68], using the randomForest pack-624

age [69] (version 4.6-14), and ALEs analysed using the ALEPlot package [71] (version 1.1).625

From 6,976 DZs, 2 sexes, 16 age ranges, and 3 prior case states, there were a total of 669,696626

cohorts (of which a fraction will have population zero and are excluded). Cohorts from 90% of627

DZs were used for the fit, with 10% reserved to test model performance against data it explicitly628

did not fit. The fit was made to
√

cases + 1. The RF comprised 500 trees, with cohorts sampled629

for building each tree weighted by population. 5 variables were tested at each split, and each tree630

had a maximum of 30,000 terminal nodes, with a minimum node size of 300.631

B.2 Explanatory variables used in random forest regression model632

The models described in Section 4.3 are informed with the following data, first at cohort resolution:633

• Age range (five-year windows: [0 − 4], [5 − 9], . . . , [70 − 74], [75+]), using the numeric634

intermediate values 2, 7, . . . 72, and 75 for the 75+ category;635

• Sex ;636

• Prior case status: the time of the last reported case, broken into three categories: never637

tested positive before, last tested positive in the 6 months prior to the first day of the638

outbreak, last tested positive over 6 months prior;639

• Cohort population (derived using historical testing data for those testing positive before, and640

estimated populations as of mid-2020 collated by the National Records of Scotland [74], for641

the remainder that had not tested positive before).642

At age/sex/DZ resolution, we then include:643

• COVID-19 vaccination uptake (eDRIS) (see also Supplementary material B.3);644

• Ethnicity (% population belonging to a minority ethnicity), as per the most recent Scottish645

census data (2011);646

• The per-population, time-aggregated number of negative LFD tests reported in that period.647

Finally included are the following at DZ resolution or broader:648
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• Measures of DZ-level deprivation (obtained from Scottish census data, and the 2020 Scottish649

Index of Multiple Deprivation [70]);650

• Local outbreak duration: the difference between the final date of the period studied, and the651

date the variant was first detected in that cohort’s corresponding intermediate zone (IZ ).652

An IZ typically contains 4–6 DZs, and 3,000–5,000 individuals, with this granularity chosen653

to give a reasonable proxy for when the variant was seeded locally;654

• Student population (% population being a full-time student aged 18 or over), also per 2011655

census data;656

• Population density, at IZ-level;657

• S-gene coverage (the proportion of cases with an accompanying S-gene result, required to658

associate a likely variant) at IZ level. S-gene coverage was 90% overall across mainland659

Scotland (per eDRIS data), but significantly lower in the LAs of Orkney Islands, Shetland660

Islands and Na h-Eileanan Siar (74%, 20% and 23% respectively).661

The measures of DZ-level deprivation included are [66]:662

• Drive time from GP : Average drive time to a GP surgery in minutes;663

• Public transport time to GP : Public transport travel time to a GP surgery in minutes;664

• % Income deprived : Proportion of individuals in receipt of income support payments, such665

as Job Seekers Allowance;666

• % Employment deprived : Proportion of working age population claiming employment-related667

payments, such as Incapacity Benefit;668

• Standardised mortality ratio: Age/sex-standardised mortality rate as compared to the overall669

population;670

• Comparative illness factor : Proportion of individuals claiming from a variety of illness and671

disability-related payments as compared to the overall population;672

• Drug-related hospitalisation ratio: Rate of hospitalisations relating to drug use, as compared673

to the overall population;674

• Alcohol-related hospitalisation ratio: Rate of hospitalisations relating to alcohol use, as com-675

pared to the overall population;676
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• Crime rate: Rate of recorded crimes per population;677

• Attendance: Percentage of pupils with school attendance of over 90%;678

• Attainment : Measure for average attainment of school leavers from 2015–2018;679

• Ratio working age with no qualifications: Proportion of working age people with no qualifi-680

cations, as compared to the overall population.681

We do not use data on PCR negative tests. In the Omicron wave PCR positivity peaked682

at 30% (per eDRIS data), with testing capacity being reached (resulting in a policy change on683

5th January 2022 removing the need for a confirmatory PCR after an LFD positive [64]). Thus684

with this “ceiling” capacity being reached, we exclude negative PCR tests as a poorer proxy for685

propensity to test as compared to LFD negatives, and being too closely related to overall cases686

(requiring an S-gene sequenced positive PCR test).687

B.3 Vaccination uptake as an explanatory variable688

Scotland’s COVID-19 vaccination programme began on December 8th 2020, with initial priority689

given to healthcare workers, the elderly and those otherwise especially vulnerable to COVID-19,690

then generally by decreasing age [13]. All first doses had been offered and administered to willing691

adults by 18th July 2021 [75], with rates of first dose administration declining thereafter. By 15th
692

November 2021, then, the first dose date may have differed between two individuals by up to 11693

months. This likely led to substantial variation in protection offered by the first dose at the time694

of the Omicron wave, given both evidence of efficacy waning over timescales of six months, and695

high rates of breakthrough for Omicron against vaccines originally designed against earlier “wild-696

type” SARS-CoV-2 lineages, particularly for non-mRNA vaccines [42, 43, 44]. This, combined697

with high uncertainty in the cohort-level population denominator used to determine uptake, leads698

us to exclude first and second dose uptake (being highly correlated with first dose uptake) as an699

explanatory variable for Omicron cases. We do, however, include third/booster dose uptake, as700

the proportion receiving a first dose to have returned for a third/booster dose by 15th November701

2021 (and zero if nobody in the cohort had yet received a first dose). This definition eliminates702

uncertainty in the underlying population. Prior to the detection of Omicron, those aged 50+ or703

otherwise vulnerable to COVID-19 were due to be offered a third or booster dose, twelve weeks704

after their second [76]. The booster programme began on September 20th 2021, and a snapshot705

on 15th November 2021 shows substantial variation between different cohorts, particularly by age.706
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With these doses being delivered more recently, as well as evidence of this dose proving more707

protective against Omicron [42, 4], we include this definition of third/booster dose uptake as a708

reasonable proxy for vaccine-induced protection against Omicron at the time.709

The initial Delta wave occurred while the bulk of first and second doses were still being admin-710

istered, thus we include second dose uptake on 1st May 2021 as an explanatory variable, as the711

proportion of individuals that had returned for a second dose, having received a first (and zero, if712

nobody in the cohort had yet received their first dose).713
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C Map views of population distribution, model residuals714

Figure S5: Distribution of population in Scotland. Each point indicates the population-weighted
centroid of a datazone (DZ) of which there are 6,976 in total, with each representing a population
of approximately 500-1,000 individuals.
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Figure S6: Comparing residuals for the distribution of Omicron cases, between the full model (top
left), and the reduced models informed by population and one of age, deprivation and population
density respectively. The colour scale indicates the DZ-level model error (model estimate - data),
where purple points indicate DZs where the model overestimated the number of cases, and green
points indicate where the model underestimated cases.
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D Random forest variable importance715

Fig. S7 shows variable importance measures extracted from the RandomForest function. Age,716

population and prior case status have much higher node purity (Fig. S7, top) than the other717

variables, indicating that splits in individual trees using values of these variables in particular are718

characteristically more “effective” at separating cohorts with differing numbers of cases. Fig. S7,719

bottom, then shows random permutation of each of the variables results in appreciable increase in720

fit error, confirming that this larger collection of variables are important to explain finer patterns721

in the data.722
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Figure S7: Feature importance outputs form the random forest regression models. Top: Node
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E Frequency of lateral flow testing by sex, deprivation quin-723

tile724

Population LFD tests Tests per person Positive LFD tests Positivity
Total 5,466,000 29,508,794 5.40 1,123,210 3.81%

Sex
F 2,800,788 19,639,047 7.01 647,529 3.30%
M 2,665,212 9,869,747 3.70 475,681 4.82%

Deprivation
quintile
(1: most
deprived)

1 1,057,767 3,827,970 3.62 176,600 4.61%
2 1,057,929 4,992,257 4.72 201,148 4.03%
3 1,077,589 6,023,840 5.59 220,258 3.66%
4 1,140,448 7,134,794 6.26 256,101 3.59%
5 1,132,267 7,529,933 6.65 269,103 3.57%

Table S7: Summary statistics of lateral flow device (LFD) tests reported in Scotland from July
2020 to February 2023, broken down by sex, and deprivation quintile of the residing datazone of
individuals as ranked by the 2020 Scottish Index of Multiple Deprivation, where the most deprived
datazones are in quintile 1. The test positivity is the proportion of all tests of any result that were
reported as positive.

Figure S8: Lateral flow testing from July 2020 to February 2023 by datazone, ranked by deprivation
per the 2020 Scottish Index of Multiple Deprivation, where the rank 1 is the datazone ranked as
most deprived. Left: the number of LFD tests reported per person in each datazone. Right: the
LFD test positivity, defined as the proportion of all reported LFD tests to have been positive.
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